抗生素主要以原药、代谢产物等形式排出体外,通过生活污水排放、养殖废水排放、农业粪肥灌溉径流等不同途径进入环境水体,近年来,在国内外的不同环境水体中均检出抗生素[1-4]。残留的抗生素给环境水体中的微生物带来巨大的选择性压力,对生态系统中各类生物产生危害,并可能在环境和生物体中累积或者通过食物链富集,诱发和传播各类抗生素耐药菌及抗生素抗性基因,严重威胁人类健康[5-8]。
进入环境水体的抗生素种类多、性质差别大,且多以痕量浓度存在,故检测难度较大。目前检测方法主要包括生物传感器检测、酶联免疫吸附检测(ELISA)、高效液相色谱—荧光检测(HPLC-FLD)、高效液相色谱—紫外检测(HPLC-UV)及高效液相色谱串联质谱检测(HPLC-MS/MS)[9-20]。
本文选取了使用范围广、用量大且有途径进入东江水源水的大环内酯类、氟喹诺酮类、林可胺类、β-内酰胺类及四环素类5类共14种抗生素为目标检测物,应用固相萃取技术,采用HLB柱进行富集浓缩,用HPLC-MS/MS进行检测,建立了一种灵敏、准确、可靠、可同时检测环境水样中14种抗生素的检测方法,并应用方法首次对东莞市东江水的抗生素污染情况进行调查,结果检出包括大环内酯类、氟喹诺酮类及林可胺类3类共6种抗生素。
1 材料与方法 1.1 仪器、试剂与材料3200 QTRAP液质联用仪(ESI源,美国AB SCIEX公司);CPA225D电子天平(瑞士Sartorius公司);Fotector plus 60自动固相萃取仪(含大体积进样装置,美国Reeko公司);自动氮吹仪(韩国GOOJUNG公司);SevenEasy S20 pH计(瑞士METTLER TOLEDO公司);Oasis HLB固相萃取柱(500 mg/6 mL,美国waters公司);Millipore S.A.S超纯水机(德国Meck公司)。
甲醇、乙腈及丙酮(色谱纯,德国Meck公司)、甲酸(色谱纯,美国Fluka公司);盐酸(优级纯,天津科密欧化学试剂有限公司)、乙二胺四乙酸钠(分析纯,国药集团化学试剂有限公司);试验用水为Millipore S.A.S处理过的超纯水。大环内酯类:阿奇霉素(AZ,纯度94.3%,下同)、罗红霉素(EM,96.0%)、克拉霉素(CLR,97.5%);氟喹诺酮类:左氧氟沙星(LEV,97.3%);林可胺类:克林霉素(DA,84.9%)、林可霉素(MY,85.5%);β-内酰胺类:青霉素(PEN,93.1%)、阿莫西林(AMC,86.9%)、氨苄西林(AM,86.5%)、舒他西林(STA,72.0%)、氯唑西林(OB,91.0%)、哌拉西林(PIP,95.9%)、双氯西林(DIC,纯度98.0%);四环素类:土霉素(OTC,88.8%);以上标准品除双氯西林购自德国Dr.Ehrenstorfer GmbH公司外,其余13种均购自中国食品药品检定研究院。
标准品贮备液和标准曲线溶液的制备:分别称取以上14种标准品,用甲醇溶解并定容于50 mL棕色容量瓶中,配成200 mg/L的标准品贮备液,置-20 ℃冰箱保存;取各标准品贮备液适量,用初始流动相稀释制成所需浓度的标准曲线工作溶液,注意临用新制。
1.2 仪器条件 1.2.1 色谱条件CAPCELL PAK MGⅢ C18色谱柱(100 mm × 2.0 mm,3 μm,日本资生堂),进样体积10 μL,柱温35℃,流速为0.2 mL/min,流动相A乙腈,流动相B为0.1%甲酸水溶液,梯度洗脱程序如下表 1。
时间/min | 乙腈体积构成比/% | 0.1%甲酸水溶液体积构成比/% |
0 | 90 | 10 |
5 | 65 | 35 |
10 | 50 | 50 |
13 | 10 | 90 |
16 | 10 | 90 |
16.5 | 90 | 10 |
20 | 90 | 10 |
1.2.2 质谱条件
电离方式采用电喷雾正离子(ESI+)模式,质谱以多反应监测(MRM)模式扫描;电离电压(IS)为+5 500 V;喷雾管雾化气(Gas1)、辅助加热气(Gas2)流速均为345 kPa、气帘气(CurtainGas)为172 kPa、辅助加热温度为550 ℃;各化合物质谱参数见表 2。
化合物 | 母离子/ (m/z) |
子离子/ (m/z) |
去簇电压 DP/V |
碰撞能 CE/eV |
AZ | 749.5 | 158.5*/591.5 | 55 | 40/30 |
EM | 837.4 | 158.4*/116.3 | 75 | 41/70 |
CLR | 748.5 | 158.5*/590.5 | 55 | 37/33 |
LEV | 362.1 | 216.1*/318.1 | 51 | 36/38 |
DA | 425.2 | 126.2*/377.2 | 60 | 25/25 |
MY | 407.2 | 126.2*/359.2 | 60 | 25/31 |
PEN | 335.1 | 91.1*/128.1 | 60 | 75/37 |
AMC | 366.1 | 114.1*/208.1 | 33 | 29/16 |
AM | 350.1 | 106.1*/192.1 | 32 | 25/21 |
STA | 595.2 | 405.2*/106.2 | 40 | 24/55 |
OB | 436.1 | 277.1*/160.1 | 27 | 18/20 |
PIP | 518.2 | 143.2*/160.2 | 50 | 33/19 |
DIC | 470.1 | 160.1*/311.1 | 25 | 23/23 |
OTC | 461.2 | 426.1*/201.1 | 46 | 25/50 |
注:“*”为定量离子 |
1.3 样品前处理
环境水样经0.45 μm微孔滤膜过滤后,准确量取1 000 mL,加入0.5g Na2EDTA,超声振荡使溶解,再用10%盐酸调节pH值为3.0;上样前,依次用10 mL甲醇、5 mL超纯水及5 mL 0.1%甲酸水溶液活化Oasis HLB固相萃取柱(6 mL/500 mg);然后以6 mL/min流速经HLB柱进行目标物富集;用12 mL超纯水淋洗小柱,气推后用10 mL甲醇以1 mL/min的速率洗脱。收集的洗脱液在35 ℃下氮气吹干,加初始比例流动相1 mL溶解,过0.22 μm滤膜,供HPLC-MS/MS分析。
2 结果与讨论 2.1 样品前处理条件优化 2.1.1 水样pH值水样经加入Na2EDTA后pH约为5,考虑到部分目标抗生素在偏碱性环境中稳定性较差,故用稀盐酸及氨水将水样调节pH值至2.0~7.0,考察其对目标物回收率的影响。结果表明,pH值为3.0时,14种目标物的综合回收率为最佳。
2.1.2 固相萃取条件 2.1.2.1 固相萃取小柱选择HLB、反向硅胶(C18)、混合型阳离子(MCX)、混合型阴离子(MAX)不同类型及规格的萃取柱进行比较,分别考察它们对目标抗生素的回收率。结果显示,HLB柱对目标物的富集效果最好,且体积容量较大的6 mL/500 mg HLB柱对于大体积样品的回收率较高,重复性好。
2.1.2.2 洗脱溶剂种类及体积选择甲醇、乙腈、二氯甲烷和丙酮四种试剂进行洗脱效果比较,结果表明,丙酮及乙腈仅对大环内酯类和四环素类抗生素的洗脱效果好;二氯甲烷毒性较大且易挥发,对极性成分洗脱能力较差;而甲醇对5类抗生素的洗脱能力较为平均,对目标物的综合回收率较高,且基质效应少,故选择甲醇为洗脱溶剂。对甲醇的洗脱体积的研究结果表明,当洗脱体积大于10 mL后,目标物回收率无明显提高,因此确定其洗脱体积为10 mL。
2.2 色谱条件优化选取了6种不同品牌和规格的色谱柱进行考察,综合考虑其响应值、分离效果及稳定性等,最终选择Capcell Pak MGⅢ C18(100 mm×2.0 mm,3μm)柱,其分离效果良好,灵敏稳定。
流动相的pH值对目标物的分离具有重要影响,且正离子模式电离中,适量添加酸有利于提高目标物的离子化效率,得到较高的灵敏度。经考察,选择0.1%甲酸水溶液为流动相B;此外分别比较了甲醇、乙腈、0.1%甲酸甲醇及0.1%甲酸乙腈作为流动相A对14种抗生素的分离效果,结果表明乙腈作为流动相A时响应及峰型最佳,故最终选定乙腈-0.1%甲酸水溶液梯度洗脱,程序如项表 1,14种抗生素的质量色谱图见图 1。
![]() |
图 1 14种抗生素(50 ng/mL)的质量色谱图 |
2.3 线性范围及检出限
在优化的实验条件下,14种目标抗生素均可得到良好的响应及分离。以目标物质量浓度为x,峰面积为y,绘制标准曲线,各成分分别在约(2~1 000) μg/L(相当于水样2~1 000 ng/L)范围内有良好的线性关系,相关系数均大于0.99;以信噪比(S/N)3 :1所对应浓度折算方法检出限(LOD)(表 3)。
化合物 | 线性回归方程 | 相关系数/r | 线性范围/(μg/L) | 方法检出限/(ng/L) |
AZ | Y=1 440X+6 310 | 0.993 | 2~1 000 | 0.2 |
EM | Y=2 080X+5 520 | 0.991 | 2~1 000 | 0.2 |
CLR | Y=4 480X+13 700 | 0.992 | 2~1 000 | 0.2 |
LEV | Y=9 840X+18 100 | 0.994 | 2~1 000 | 0.1 |
DA | Y=10 700X-4 450 | 0.997 | 2~1 000 | 0.1 |
MY | Y=4 260X+5 560 | 0.997 | 2~1 000 | 0.2 |
PEN | Y=1 800X+3 860 | 0.997 | 2~1 000 | 0.2 |
AMC | Y=1 900X+1 350 | 0.999 | 2~1 000 | 0.2 |
AM | Y=5 510X-4 840 | 0.995 | 2~1 000 | 0.2 |
STA | Y=1 760X-493 | 0.993 | 2~1 000 | 0.2 |
OB | Y=1 860X+2 360 | 0.997 | 2~1 000 | 0.2 |
PIP | Y=1 690X-335 | 0.996 | 2~1 000 | 0.2 |
DIC | Y=970X+620 | 0.997 | 2~1 000 | 0.2 |
OTC | Y=3 500X+7 510 | 0.996 | 2~1 000 | 0.2 |
2.4 方法的回收率与精密度
分别以阴性对照(超纯水)及东江水样品为基底,分别按10 ng/L及100 ng/L的质量浓度水平进行加标实验,按1.3项下制备样品,平行测定6份,其回收率及精密度测定结果见表 4。14种目标检测物在两种基底中的平均加标回收率分别为62.0%~96.1%和58.5%~113.3%,相对标准偏差分别为1.7%~11.4%和1.4%~9.6%,表明该方法具良好的准确度和精密度。
化合物 | 加标量/ ng/L |
超纯水 | 东江水 | |||||
原含量/(ng/L) | 平均回收率/% | RSD/% | 原含量/(ng/L) | 平均回收率/% | RSD/% | |||
AZ | 10/100 | ND | 68.7/76.4 | 8.1/7.2 | 1.30 | 63.8/86.4 | 4.8/2.3 | |
EM | 10/100 | ND | 63.6/74.2 | 5.5/1.7 | 4.31 | 72.2/112.7 | 8.4/3.0 | |
CLR | 10/100 | ND | 63.2/68.3 | 8.2/9.7 | 2.64 | 59.1/64.2 | 3.7/6.2 | |
LEV | 10/100 | ND | 87.0/88.0 | 4.2/9.0 | 1.17 | 79.7/86.4 | 9.1/4.8 | |
DA | 10/100 | ND | 86.8/76.7 | 8.8/8.9 | 1.71 | 60.2/74.7 | 9.6/8.8 | |
MY | 10/100 | ND | 67.1/80.3 | 5.1/8.1 | 7.27 | 67.9/69.3 | 9.0/5.3 | |
PEN | 10/100 | ND | 75.5/96.1 | 9.2/5.2 | ND | 96.8/90.8 | 5.4/8.2 | |
AMC | 10/100 | ND | 78.0/90.6 | 5.0/5.4 | ND | 58.5/73.5 | 5.5/9.5 | |
AM | 10/100 | ND | 62.0/75.6 | 10.0/11.4 | ND | 62.6/64.9 | 8.0/8.4 | |
STA | 10/100 | ND | 86.4/76.8 | 5.8/6.9 | ND | 66.8/71.0 | 1.4/2.6 | |
OB | 10/100 | ND | 76.1/90.4 | 8.8/1.8 | ND | 70.6/72.6 | 8.1/1.5 | |
PIP | 10/100 | ND | 62.5/89.6 | 9.9/8.1 | ND | 70.2/91.9 | 2.7/7.3 | |
DIC | 10/100 | ND | 77.1/75.5 | 8.1/9.9 | ND | 65.8/77.1 | 6.2/8.1 | |
OTC | 10/100 | ND | 65.6/88.7 | 8.1/9.1 | ND | 105.9/113.3 | 3.9/4.8 | |
ND:表示未检出 |
2.5 实际样品的测定
采用所建立的方法,对东莞市城区段东江3个采样点表层水中抗生素进行监测(表 5)。可见3个采样点的水样中分别检出大环内酯类、氟喹诺酮类及林可胺类抗生素,与文献报道[1, 3-4, 14-20]的国内其它水体抗生素污染的类别及成分有所区别。水体中检出LEV的最高浓度达46.7 ng/L,抗生素总量浓度范围为(38.95~100.7) ng/L,说明该段河流水体受到抗生素的污染,其生态影响需进一步研究。
采样点 | 化合物 | |||||||||||||
AZ | EM | CLR | LEV | DA | MY | PEN | AMC | AM | STA | OB | PIP | DIC | OTC | |
1 | 5.52 | 17.0 | 6.36 | 3.69 | 2.79 | 3.59 | ND | ND | ND | ND | ND | ND | ND | ND |
2 | 12.8 | 22.1 | 13.3 | 46.7 | 2.49 | 3.35 | ND | ND | ND | ND | ND | ND | ND | ND |
3 | 9.75 | 9.65 | 10.1 | 5.46 | 3.70 | 5.01 | ND | ND | ND | ND | ND | ND | ND | ND |
3 小结
本文采用固相萃取—高效液相色谱—串联质谱联用法,对水中14种抗生素同时进行定性定量测定,所建立的方法灵敏度高、准确度好、稳定性强,可应用于环境水样中抗生素污染情况调查及其分布规律研究。
[1] |
徐维海, 张干, 邹世春, 等. 香港维多利亚港和珠江广州河段水体中抗生素的含量特征及其季节变化[J]. 环境科学, 2006, 27(12): 2458-2462. (In English: Xu WH, Zhang G, Zou SC, et al. Occurrence and Seasonal Changes of Antibiotics in the Victoria Harbour and the Pearl River, South China[J]. Environ Sci, 2006, 27(12): 2458-2462. DOI:10.3321/j.issn:0250-3301.2006.12.016) |
[2] |
Benotti MJ, Trenholm RA, Vanderford BJ, et al. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water[J]. Environ Sci Technol, 2009, 43(3): 597-603. DOI:10.1021/es801845a |
[3] |
张君, 程艳茹, 杨海蓉, 等. 重庆地区典型水库表层水体抗生素分布特征研究[J]. 环境科学与管理, 2018, 43(11): 26-30. (In English: Zhang J, Cheng YR, Yang HR, et al. Concentrations and pollution characteristics of typical antibiotics in typical reservoir in Chongqing[J]. Environ Sci Manage, 2018, 43(11): 26-30. DOI:10.3969/j.issn.1673-1212.2018.11.007) |
[4] |
李文最, 陈高水, 郑艳影, 等. 闽江流域福州段水体中抗生素残留污染调查[J]. 实用预防医学, 2018, 25(12): 1455-1458. (In English: Li WZ, Chen GS, Zheng YY, et al. Contamination profiles of antibiotics residues in water bodies of the Fuzhou section of the Minjiang River[J]. Pract Prev Med, 2018, 25(12): 1455-1458. DOI:10.3969/j.issn.1006-3110.2018.12.013) |
[5] |
秦延文, 张雷, 时瑶, 等. 大辽河表层水体典型抗生素污染特征与生态风险评价[J]. 环境科学研究, 2015, 28(3): 361-368. (In English: Qin YW, Zhang L, Shi Y, et al. Contamination characteristics and ecological risk assessment of typical antibiotics in surface water of the Daliao River, China[J]. Res Environ Sci, 2015, 28(3): 361-368.) |
[6] |
刘晓晖, 卢少勇. 大通湖表层水体中抗生素赋存特征与风险[J]. 中国环境科学, 2018, 38(1): 320-329. (In English: Liu XH, Lu SY. Occurrence and ecological risk of typical antibioticsin surface water of the Datong Lake, China[J]. China Environ Sci, 2018, 38(1): 320-329. DOI:10.3969/j.issn.1000-6923.2018.01.036) |
[7] |
邓玉, 倪福全. 水环境中抗生素残留及其危害[J]. 南水北调与水利科技, 2011, 9(3): 96-100. (In English: Deng Y, Ni FQ. Research on antibiotics residues and hazardous in aquatic environment: a review[J]. South-to-North Water Transfers Water Sci Technol, 2011, 9(3): 96-100.) |
[8] |
王作铭, 陈军, 陈静, 等. 地表水中抗生素复合残留对水生生物的毒性及其生态风险评价[J]. 生态毒理学报, 2018, 13(4): 149-160. (In English: Wang ZM, Chen J, Chen J, et al. Toxicity to aquatic organisms and ecological risk assessment of antibiotic compound residues in the surface water[J]. Asian J Ecotoxicol, 2018, 13(4): 149-160.) |
[9] |
袁晓春. 光学生物传感器在抗生素残留检测中的研究进展[J]. 饲料博览, 2018(11): 43-46. (In English: Yuan XC. Advances in optical biosensors for detection of antibiotics[J]. Feed Rev, 2018(11): 43-46. DOI:10.3969/j.issn.1001-0084.2018.11.012) |
[10] |
Ashwin HM, Stead SL, Taylor JC, et al. Development and validation of screening and confirmatory methods for the detection of Chloramphenicol and Chloramphenicol glucuronide using SPR biosensor and liquid chromatography-tandem mass spectrometry[J]. Anal Chim Acta, 2005, 529(1-2): 103-108. DOI:10.1016/j.aca.2004.08.035 |
[11] |
丁志刚, 王静, 高红梅. 抗生素残留检测技术的研究进展[J]. 食品与发酵工业, 2005, 31(6): 112-116. (In English: Ding ZG, Wang J, Gao HM. Research advance on detection technique of residual antibiotics[J]. Food Fermentat Industr, 2005, 31(6): 112-116. DOI:10.3321/j.issn:0253-990X.2005.06.032) |
[12] |
戴晓虎, 薛勇刚, 刘华杰, 等. 基于固相萃取及高效液相色谱-荧光检测分析的污泥中氟喹诺酮类抗生素研究方法的开发[J]. 环境科学, 2016, 37(4): 1553-1561. (In English: Dai XH, Xue YG, Liu HJ, et al. Development of determination method of fluoroquinolone antibiotics in sludge based on solid phase extraction and HPLC-fluorescence detection analysis[J]. Environ Sci, 2016, 37(4): 1553-1561.) |
[13] |
李新朋, 姜金庆, 钱爱东, 等. 氟喹诺酮类药物多残留酶联免疫检测方法的建立[J]. 中国农业科学, 2014, 47(23): 4726-4735. (In English: Li XP, Jiang JQ, Qian AD, et al. Development of an ELISA method for multi-residue detecting of fluoroquinolones[J]. Sci Agric Sin, 2014, 47(23): 4726-2735. DOI:10.3864/j.issn.0578-1752.2014.23.017) |
[14] |
李玉静, 陈志冉, 王雪平. 高效液相色谱法快速筛查环境水体中16种氟喹诺酮类抗生素及质谱确证[J]. 现代化工, 2018, 38(9): 237-241. (In English: Li YJ, Chen ZR, Wang XP. Rapid determination of 16 fluoroquinolones in environmental water by high performance liquid chromatography and their verification by mass spectrometry[J]. Mod Chem Industry, 2018, 38(9): 237-241.) |
[15] |
谭芳, 孙凯, 宋威, 等. SPE-HPLC法测定环境水样中3种痕量抗生素的含量[J]. 江汉大学学报(自然科学版), 2017, 45(3): 209-213. (In English: Tan F, Sun K, Song W, et al. Determination of three antibiotics residue in environmental water samples with SPE-HPLC[J]. J Jianghan Univ (Nat Sci Ed), 2017, 45(3): 209-213.) |
[16] |
高立红, 史亚利, 厉文辉, 等. 高效液相色谱-电喷雾串联质谱法检测环境水样中22种抗生素类药物[J]. 色谱, 2010, 28(5): 491-497. (In English: Gao LH, Shi YL, Li WH, et al. Determination of 22 antibiotics in environmental water samples using high performance liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Chin J Chromatogr, 2010, 28(5): 491-497.) |
[17] |
陆克祥, 隋铭皓, 高乃云. 固相萃取-超高压液相色谱-串联质谱测定水中19种抗生素[J]. 分析测试学报, 2010, 29(12): 1209-1214. (In English: Lu KX, Sui MH, Gao NY. Simultaneous determination of 19 antibiotics in environmental water samples using solid phase extraction-ultra pressure liquid chromatography coupled with tandem mass spectrometry[J]. J Instrum Anal, 2010, 29(12): 1209-1214. DOI:10.3969/j.issn.1004-4957.2010.12.017) |
[18] |
程家兴, 赵起越, 李令军, 等. 固相萃取/超高效液相色谱-质谱法筛查及检测养鱼河水中抗生素[J]. 分析测试学报, 2018, 37(3): 275-281. (In English: Cheng JX, Zhao QY, Li LJ, et al. Screening and detection of antibiotics in fish pond water by Ultra performance liquid chromatography-mass spectrometry with solid phase extraction[J]. J Instrum Anal, 2018, 37(3): 275-281. DOI:10.3969/j.issn.1004-4957.2018.03.003) |
[19] |
王欣梅, 徐桂菊, 王晓利, 等. 三聚氰胺/邻苯二甲醛共价有机骨架材料结合固相萃取-液相色谱串联质谱检测环境水样中痕量磺胺类抗生素[J]. 分析化学, 2018, 46(12): 1990-1996. (In English: Wang XM, Xu GJ, Wang XL, et al. Melamine/o-phthalaldehyde covalent organic frameworks for solid phase extraction-liquid chromatography-tandem mass spectrometry analysis of sulfonamide antibiotics in environmental samples[J]. Chin J Anal Chem, 2018, 46(12): 1990-1996. DOI:10.11895/j.issn.0253-3820.181416) |
[20] |
杨梦晖, 金晶, 高仕谦, 等. 磁性固相萃取-高效液相色谱串联三重四级杆质谱法测定环境水样中的磺胺类抗生素残留[J]. 现代化工, 2018, 38(2): 215-218. (In English: Yang MH, Jin J, Gao SQ, et al. Determination of sulfonamides residue in environmental water sample by using magnetic solid phase extraction-high performance liquid chromatography tandem triple quadrupole mass spectrometry[J]. Mod Chem Industry, 2018, 38(2): 215-218.) |