环境科学学报  2014, Vol. 34 Issue (2): 532-536
模拟酸雨对水稻叶片质膜H+-ATPase活性与胞内Ca2+浓度的影响    [PDF全文]
魏金卓, 梁婵娟     
江南大学环境与土木工程学院, 无锡 214122
摘要:在水培条件下研究了模拟酸雨(pH=2.5~5.5)对水稻叶片胞内Ca2+浓度和质膜H+-ATPase活性的影响.结果表明:与对照组(CK)相比,酸雨处理5 d(胁迫期)后,pH=5.5和5.0处理组的水稻叶片胞内H+浓度、质膜H+-ATPase活性、胞内Ca2+浓度、质膜Ca2+-ATPase活性无显著变化;pH=4.0和3.5处理组各指标显著升高,且H+-ATPase活性随Ca2+浓度升高而上升;pH=3.0和2.5处理组各指标显著降低,此时胞内Ca2+缺失,对H+-ATPase活性的调节作用受到限制.经正常条件培养5 d(恢复期)后,pH=4.0和3.5处理组各指标均恢复至CK的处理水平,表明H+-ATPase活性受到Ca2+调控已恢复到正常;pH=3.0和2.5处理组的Ca2+浓度高于CK及胁迫期,H+-ATPase活性低于CK但高于胁迫期,表明H+-ATPase活性受Ca2+调控得到部分恢复.因此,酸雨胁迫下胞内Ca2+对质膜H+-ATPase活性有一定调节作用,且受酸雨强度的制约.
关键词胞内Ca2+浓度    质膜H+-ATPase    模拟酸雨    水稻    胞内H+浓度    
Effect of simulated acid rain on plasma membrane H+-ATPase activity and intracellular Ca2+ concentration in rice leaves
WEI Jinzhuo, LIANG Chanjuan     
School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122
Abstract: We studied the effect of acid rain on plasma membrane H+-ATPase activity and intracellular Ca2+ concentration in rice leaves by hydroponic in a greenhouse. Results show that concentration of intracellular H+, activity of H+-ATPase, concentration of intracellular Ca2+, and activity of Ca2+-ATPase in leaves treated with acid rain at pH 5.5 or 5.0 had no significant difference from those of the control (p<0.05). When rice leaves were exposed to acid rain at pH 4.0 or 3.5, these four parameters were all higher than those of the control (p<0.05). In addition, Ca2+ concentration increased in response to the increase in activity of H+-ATPase by transferring cell signal. When rice leaves were exposed to acid rain at pH 3.0 or 2.5, these four parameters obviously decreased. It was indicated that the intensity of acid rain exceeded the tolerance of rice. Therefore, the regulating effect of Ca2+ on activity of ATPase was not obvious. During the recovery period, the four parameters in leaves treated with acid rain at pH 4.0 and 3.5 were close to those of the control, showing that the activity of H+-ATPase was recovered because of Ca2+ regulation. For pH 3.0 and 2.5 treatments, concentration of Ca2+ was higher than that of the control. Activity of H+-ATPase was lower than that of the control but higher than that measured during stress period. Results showed that the activity of H+-ATPase was partly recovered because of Ca2+ regulating. We found that intracellular Ca2+ could adjust H+-ATPase activity under acid rain stress. Moreover, the regulating effect was related to the intensity of acid rain.
Key words: intracellular Ca2+ concentration    plasma membrane H+-ATPase    simulated acid rain    rice    intracellular H+ concentration    
1 引言(Introduction)

酸雨(Acid rain,AR)是全球主要的环境问题之一,研究表明,酸雨已覆盖我国国土面积的40%左右,我国已成为继北欧和北美之后世界第三大酸雨区(Feng et al., 2002).酸雨对植物最直接的影响就是造成叶片胞外H+浓度增加.质膜功能蛋白H+-ATPase被誉为植物的主宰酶,参与转运胞内H+和植物对逆境胁迫的响应(杨颖丽等,2006).Kim等(2013)研究发现,低温环境会引起亚麻荠叶片质膜H+-ATPase活性升高,产生H+和能量,以此抵抗低温胁迫,胁迫结束后质膜H+-ATPase活性会随着外界温度的逐渐升高而降低.Geilfus等(2013)研究表明,质膜H+-ATPase通过转运H+可以缓解由NaCl胁迫造成的蚕豆叶片细胞内的碱性环境.本课题组前期研究表明(葛雨晴等,2013),AR胁迫下质膜H+-ATPase活性变化与植物对酸雨的耐受性相关.质膜H+-ATPase活性变化受多因素调节,其中,质膜H+-ATPase磷酸化的翻译后共价修饰活性的调节是质膜H+-ATPase活性调节机理之一(Desbrosses et al.,1998),磷酸化的蛋白激酶活性依赖于胞内Ca2+的浓度(鲁翠涛等,2006).Ca2+可以作为第二信使,当细胞受到刺激时,Ca2+顺着电化学梯度进入胞质,胞质Ca2+浓度升高转导内、外因信号,进而引起一系列应激反应以此调节H+-ATPase活性(宋秀芬等,2001).目前,国内外关于H+-ATPase和Ca2+在植物响应逆境胁迫下的作用已有大量报道.然而,鲜有关于非生物逆境胁迫下植物中Ca2+浓度变化对H+-ATPase活性影响的研究.那么AR胁迫下质膜H+-ATPase活性变化是否受胞内Ca2+浓度调节?AR胁迫下两者之间是怎样的关系?阐明这些关键问题,可进一步揭示质膜H+-ATPase响应酸雨胁迫的活性调节机制.基于此,本文以属耐酸性的粮食作物水稻为试材,以胞内H+浓度、质膜H+-ATPase活性、胞内Ca2+浓度、质膜Ca2+-ATPase活性为指示参数,探讨模拟酸雨胁迫对水稻叶片质膜H+-ATPase活性与胞内Ca2+浓度的影响,研究Ca2+对质膜H+-ATPase响应酸雨胁迫的活性调节作用,以期为丰富植物抗酸雨胁迫机理研究提供基础数据.

2 材料与方法(Materials and methods) 2.1 试材培养

供试水稻(Oryza sativa)为淮稻8号.挑选籽粒饱满的种子,用0.1%HgCl2消毒10 min,去离子水浸泡2 d后置于25 ℃恒温光照培养箱中催芽4 d,然后将幼芽放在蛭石里培养20 d,待幼苗长至2叶1心期移入6.88 L周转箱中进行水培,营养液采用国际水稻研究所(IRRI)常规营养液配方,并略做修改(狄廷均等,2007).培养的光照强度为300 μmol · m-2 · s-1,光照12 h,昼/夜温度为30 ℃/24 ℃,相对湿度为60%.营养液每隔3 d换1次,待幼苗长至3叶1心期进行酸雨处理.

2.2 试材处理

模拟酸雨成分为SO2-4/NO-3(3 ∶ 1,V/V)(Chen et al., 2010).先配制pH=1.0的AR母液,用去离子水稀释成pH=2.5、3.0、3.5、4.0、5.0、5.5的模拟酸雨,然后用喷雾器均匀喷施在叶片上,滴液为限,对照组喷施等量的pH=7.0的溶液.连续喷5 d(胁迫期),取同一叶位的叶片进行指标测定.将未取过样且酸雨处理过的水稻幼苗移至对照条件下培养5 d(恢复期),再取样测定指标.

2.3 指标测定

用酶解法提取水稻叶片原生质体(Yemelyanov et al., 2001),分别采用BCECF-AM、Fluo4-AM荧光探针染料标记细胞,通过流式细胞仪测定胞内H+、Ca2+荧光强度来表示胞内H+浓度(Undem et al., 2012)、Ca2+浓度(Li et al., 2012).质膜H+-ATPase活性(狄廷均等,2007)、Ca2+-ATPase活性(李裕红等,2006)的测定采用无机磷含量法.

处理组与对照组设置3次重复,所有数据均为3次独立试验的平均值±标准误差(Mean±SD),所有数据平均值、标准误差、差异显著性用SPSS16.0软件分析.

3 结果与分析(Results and analysis) 3.1 模拟酸雨对水稻叶片胞内H+浓度和质膜H+-ATPase活性的影响

图 1a可知,胁迫期与CK(pH=7.0)相比,pH=5.5和5.0处理组胞内H+浓度变化不显著,说明低强度AR对水稻幼苗无明显伤害;pH=4.0和3.5处理组胞内H+浓度升高,这与Liu等(2011)研究结果一致,AR致使水稻幼苗质膜损伤,通透性增强,导致胞外H+进入胞质;在pH=3.0和2.5的AR胁迫下,胞内H+浓度降低,推测造成上述结果的原因是,质膜H+-ATPase为了适应外界酸性环境,H+/ATP耦合比增加并且H+/ATP浓度比例失去平衡(Astolfi et al., 2005),导致H+浓度降低.恢复期,与CK相比,pH=5.5和5.0处理组胞内H+浓度仍然没有显著变化;pH=4.0和3.5处理组胞内H+浓度已恢复到CK水平;pH=3.0和2.5处理组胞内H+浓度显著低于CK,但相对于胁迫期有所恢复.可能是因为此时H+-ATPase在胁迫期受到的可逆伤害恢复后其结构趋于稳定,H+/ATP耦合比降低进而释放H+,故胞内H+浓度升高.

图 1 不同pH值模拟酸雨对胞内H+浓度(a)和质膜H+-ATPase活性(b)的影响(不同大小写字母分别表示胁迫期和恢复期各处理间差异显著(p<0.05)) Fig. 1 Effects of acid rain at different pH values on intracellular H+ concentration(a) and H+-ATPase activity(b)in plasma

图 1b可知,胁迫期pH=5.5和5.0处理组质膜H+-ATPase活性与CK相比变化不显著,说明低强度酸雨没有引起质膜功能酶H+-ATPase活性发生变化;pH=4.0和3.5处理组质膜H+-ATPase活性升高,且pH=3.5处理组H+-ATPase活性最大,结合胞内H+浓度在pH=3.5处理组中达到最高值分析可知,下降的pH值刺激诱导了转运H+的主要质膜功能蛋白H+-ATPase活性升高;pH=3.0和2.5处理组质膜H+-ATPase活性降低,推测高强度酸雨引发细胞内活性氧过量累积,引起膜脂过氧化(宫海军等,2003),进而降低膜脂不饱和脂肪酸含量及膜的流动性,致使H+-ATPase的构象发生变化而最终导致其活性降低.恢复期,pH=4.0和3.5处理组质膜H+-ATPase活性相对于胁迫期有所回落,接近CK水平,可能是因为此时胞内H+浓度已下降,转运H+的主要质膜功能蛋白H+-ATPase活性也随之降低;pH=3.0和2.5处理组H+-ATPase活性高于胁迫期,原因可能是虽然恢复期翻译后共价修饰的调节(Michelet et al., 1995)及磷酸化水平上升(凌启阆等,1998)使质膜H+-ATPase活性有所升高,但AR引发的质膜损伤已超过水稻自身的修复能力,质膜H+-ATPase活性依然低于对照.由上可知,与胁迫期相比,恢复期质膜H+-ATPase活性均向CK水平有不同程度的靠近,恢复效果受AR强度制约.

3.2 模拟酸雨对水稻叶片胞内Ca2+浓度和质膜Ca2+-ATPase活性的影响

图 2a可知,胁迫期与CK(pH=7.0)相比,pH=5.5和5.0处理组Ca2+浓度变化不显著;pH=4.0和3.5处理组Ca2+浓度升高,结合图 1a中此处理下胞内H+浓度上升,推测由于AR胁迫时需要大量的Ca2+转导胞内pH值下降信号(王海华等,2003),故Ca2+通道迅速打开,Ca2+顺着电化学梯度进入细胞,Ca2+浓度增加调节蛋白激酶活性变化(鲁翠涛等,2006),进而改变磷酸化水平以提高H+-ATPase活性(图 1b),增强水稻幼苗的抗酸性;pH=3.0和2.5处理组胞内Ca2+浓度降低,这可能是由于高强度的AR致使Ca2+通道受损伤,进而造成Ca2+很难进入细胞,原有的游离Ca2+通过与蛋白结合形成钙依赖性蛋白激酶、钙调素、钙调磷酸酶B类似蛋白三类钙结合蛋白(易籽林等,2010),这些钙信号向下游转达以适应酸雨胁迫,但调控效果受酸雨强度的影响.恢复期pH=4.0和3.5处理组胞内Ca2+浓度已恢复至CK水平,此时H+-ATPase活性已受到Ca2+调节恢复到正常水平,故Ca2+浓度也随之下降;pH=3.0和2.5处理组Ca2+浓度高于胁迫期且高于CK,分析原因可能是由AR引发的Ca2+离子通道损伤部分修复,Ca2+逐渐进入胞内以调节H+-ATPase活性,进而控制细胞内H+转运速率来维持胞内pH.

图 2 不同pH值模拟酸雨对胞内Ca2+浓度(a)和质膜Ca2+-ATPase活性(b)的影响 Fig. 2 Effects of acid rain at different pH values on intracellular Ca2+ concentration(a) and Ca2+-ATPase activity(b)in plasma

图 2b可知,胁迫期与CK相比,pH=5.5和5.0处理组质膜Ca2+-ATPase活性无显著变化;pH=4.0和3.5处理组质膜Ca2+-ATPase活性升高,并在pH=3.5时最大,此处理组的胞内Ca2+浓度也较高,表明AR胁迫下Ca2+-ATPase活性会应激升高来调控胞内Ca2+浓度,以达到调节H+-ATPase活性进而维持胞内pH的目的;pH=2.5处理组质膜Ca2+-ATPase活性降低,这可能是由于高强度AR对膜脂结构和流动性产生影响,而Ca2+-ATPase嵌于质膜磷脂双分子层中(李裕红等,2006),因此,Ca2+-ATPase构象会受影响,进而导致活性受抑,转运Ca2+能力降低,胞内Ca2+浓度降低(图 2b).恢复期,pH=4.0和3.5处理组质膜Ca2+-ATPase活性明显低于胁迫期,且恢复至接近CK水平,结合此时Ca2+浓度也低于胁迫期的事实可知,Ca2+对Ca2+-ATPase活性有反馈调节作用,即随着Ca2+浓度下降,应激上升的Ca2+-ATPase活性会逐渐下降;pH=3.0和2.5处理组质膜Ca2+-ATPase活性虽高于胁迫期但仍低于CK,这可能是因为在恢复期,高强度AR组Ca2+浓度增加虽能调节Ca2+依赖性蛋白磷酸酶(文彬等,2004),进而催化ATP酶发生磷酸化和去磷酸化作用,使Ca2+-ATPase活性有所上升,但恢复能力有限,受AR强度的制约.

4 结论(Conclusions)

1)胁迫期,pH=5.5和5.0的AR对水稻幼苗的伤害效果不明显,未引起各指标数据发生显著变化.pH=4.0和3.5处理组的Ca2+可以通过调控H+-ATPase活性降低胞内H+浓度,Ca2+-ATPase活性受到反馈调节转运多余Ca2+,以此增强水稻抗AR能力.pH=3.0和2.5处理组水稻的生理生化功能受到胞内Ca2+浓度降低的影响,质膜H+-ATPase活性受抑制,水稻抗AR胁迫能力下降.

2)恢复期,质膜H+-ATPase活性的恢复与Ca2+有关,恢复效果受AR强度影响.Ca2+通过调节质膜H+-ATPase活性使其恢复到CK的处理水平可以应答pH≥3.5的AR胁迫.但pH=3.0和2.5处理组Ca2+的调控能力受限,质膜H+-ATPase活性得到部分恢复.

3)由本文结果可知,在高强度酸雨(pH≤3.0)胁迫下,也许可以通过添加外源Ca2+来弥补胞内Ca2+的缺失,增强水稻抵抗AR胁迫的能力,添加外源Ca2+的效果值得进一步探讨.

参考文献
[1] Astolfi S, Zuchi S, Passera C. 2005.Effect of cadmium on H+-ATPase activity of plasma membrane vesicles isolated from roots of different S-supplied maize plants[J]. Plant Science, 169(2): 361-368
[2] Chen J, Li W, Gao F. 2010. Biogeochemical effects of forest vegetation on acid precipitation-related water chemistry: A case study in southwest China[J]. Journal of Environmental Monitoring, 12 (10): 1799-1806
[3] Desbrosses G, Stelling J, Renaudin J. 1998. Dephosphorylation activates the purified plant plasma membrane H+-ATPase[J]. European Journal of Biochemistry, 251 (1/2), 496-503
[4] 狄廷均, 朱毅勇, 仇美华, 等. 2007. 水稻根系细胞膜H+-ATPase对铵硝营养的响应差异[J].中国水稻科学, 21 (4): 360-366
[5] Feng Z W, Miao H, Zhang F Z, et al. 2002. Effects of acid deposition on terrestrial ecosystems and their rehabilitation strategies in China[J]. Journal of Environmental Sciences, 14 (2): 227-233
[6] 葛雨晴, 吕霞, 梁婵娟. 2013. 水稻叶片质膜H+-ATPase对酸雨胁迫的适应机制[J].环境化学, 32(6): 964-967
[7] Geilfus C M, Muehling K H. 2013. Ratiometric monitoring of transient apoplastic alkalinizations in the leaf apoplast of living Vicia faba plants: chloride primes and PMH+-ATPase shapes NaCl-induced systemic alkalinizations[J]. New Phytologist, 197 (4): 1117-1129
[8] 宫海军, 陈坤明, 陈国仓, 等. 2003.缓慢干旱下春小麦叶片质膜脂肪酸组成、H+-ATPase及5'AMPase活力的变化[J].植物生态学报, 27 (4): 459-465
[9] Kim H S, Oh J M, Luan S, et al. 2013. Cold stress causes rapid but differential changes in properties of plasma membrane H+-ATPase of camelina and rapeseed[J]. Journal of Plant Physiology, 170 (9): 828-837
[10] 李裕红, 严重玲. 2006. 木麻黄幼苗小枝质膜离子泵活性对酸雨的响应[J].厦门大学学报, 45(1): 131-135
[11] Li C, Meng Q, Yu X, et al. 2012. Regulatory effect of Connexin 43 on basal Ca2+ signaling in rat ventricular myocytes[J]. Plos One, 7 (4): e36165. DOI:10.1371/journal.pone.0036165
[12] 凌启阆, 向左云, 刘华, 等. 1998. 质膜H+-ATPase磷酸化对其活性的调节[J].中国生物化学与分子生物学报, 24(3): 247-252
[13] Liu E U, Liu C P. 2011. Effects of simulated acid rain on the antioxidative system in Cinnamomum philippinense seedlings[J]. Water, Air, & Soil Pollution, 215 (1): 127-135
[14] 鲁翠涛, 李合生, 王学奎. 2006.钙对小麦氮同化关键酶活性的影响及其与蛋白质磷酸化的关系[J].植物营养与肥料学报, 8 (1): 110-114
[15] Michelet B, Boutry M. 1995. The plasma membrane H+-ATPase (A highly regulated enzyme with multiple physiological functions)[J]. Plant Physiology, 108 (1): 1-6
[16] 宋秀芬, 洪剑明. 2001. 植物细胞中钙信号的时空多样性与信号转导[J].植物学通报, 18 (4): 436-444
[17] Undem C, Rios E J, Maylor J, et al. 2012.Endothelin-1 augments Na+/H+ exchange activity in murine pulmonary arterial smooth muscle cells via Rho Kinase[J]. Plos One, 7(9):e46303.DOI: 10.1371/journal.pone.0046303
[18] 王海华, 谭新中, 康健, 等. 2003. 钙对水稻幼苗镍毒害的缓解效应[J].农业环境科学学报, 22(3): 357-359
[19] 文彬, 宾金华, 王小菁. 2004.茉莉酸甲醋处理对绿豆下胚轴质膜H+-ATPase水解活力及磷酸化水平的影响[J].植物生理与分子生物学报, 30(6): 665-670
[20] 杨颖丽, 杨宁, 安黎哲, 等. 2006. 植物质膜H+-ATPase 的研究进展[J].西北植物学报, 26 (11): 2388-2396
[21] Yemelyanov V V, Shishova M F, Chirkova T V, et al. 2001. Anoxia-induced elevation of cytosolic Ca2+ concentration depends on different Ca2+ sources in rice and wheat protoplasts[J]. Planta, 234 (2): 271-280
[22] 易籽林, 徐立黄, 绵佳, 等.2010. 钙信号系统与植物激素信号扥研究进展[J].中国农学通报, 26(15): 221-226