地球物理学进展  2014, Vol. 29 Issue (3): 1023-1032   PDF    
磁化率各向异性在火成岩中的应用
潘小青, 沈忠悦 , 石林权, 张志亮    
浙江大学地球科学系, 杭州 310027
摘要:磁化率各向异性(AMS)表征岩石及其组成矿物的低场磁化率在不同方向上的变化.AMS以其高精度、经济省时和无损测量等优点,广泛应用于地学各个领域.火成岩原生的磁组构可用于分析岩石结构,指示熔岩流、火山碎屑流、浅成侵入岩以及深成岩体的岩浆流动方向、侵位方式和岩浆来源,研究岩石在侵位期间经历的构造事件,从而进行火成岩同构造侵位过程的研究;而利用次生磁组构则可分析岩石在侵位期后经历的改造作用.AMS结合传统岩石学、构造学方法,能有效解决特定的地质问题.
关键词磁化率各向异性     火成岩     应用    
Anisotropy of magnetic susceptibility of igneous rocks
PAN Xiao-qing, SHEN Zhong-yue , SHI Lin-quan, ZHANG Zhi-liang    
Department of Earth Sciences, Zhejiang University, Hangzhou 310027, China
Abstract: The anisotropy of magnetic susceptibility(AMS)of rocks is controlled by preferentially oriented magnetic mineral grains and it contains information about both the grain susceptibilities and the grain orientations. As a rapid and sensitive petrofabric tool, AMS has important applications in petrofabrics, rock magnetism, volcanology, structural geology, metamorphism and tectonics. For igneous rocks, magnetic fabric analysis is a powerful approach for studying emplacement mechanisms and magma sources of effusive, hypabyssal, intrusive and pyroclastic rocks. In addition, it is effectively used to analyze the process of syntectonic emplacement or postintrusive deformation of igneous rocks. Because of the interpretation of AMS might remain ambiguous, it is reasonable to attempt an interpretation that takes other petrofabrics and regional trends into consideration.
Key words: AMS     igneous rocks     application    
0 引 言

磁化率各向异性(Anisotropy of Magnetic Susceptibility,AMS)是岩石磁学各向异性中的一种,它表征岩石及其组成矿物的低场磁化率在不同方向上的变化,它取决于所有组成矿物颗粒的形状和晶体的各向异性以及它们的空间排布情况,是岩石形成期间及期后遭受的所有地质事件的综合结果,包括重力、地球磁场、流体力学和构造应力等等.AMS在颗粒沉积、岩浆结晶分异、构造变动过程中具有特定的发育和变化规律,它反映出沉积环境、岩浆动力学状态、构造变形强度和方向等地质作用信息(Sagnotti,2011).

自上世纪50年代,Graham(1954)将AMS作为快速无损的岩石组构测量方法已有近60年的时间.AMS因其高精度、高敏感度、代表性好、经济省时以及快速无损测量等优点,在地学各领域的应用研究迅速发展.AMS及相关技术已经成为解决地质问题和环境研究的有力工具,广泛应用于构造学、岩浆岩石学、沉积地质学、第四纪地质学、及水文、环境、石油地质等领域(Tarling and Hrouda, 1993; 阎桂林,1996; 潘永信和朱日祥,1998; 张拴宏和周显强,1999; Martin-Hern and ez et al., 2004;Cañón-Tapia,2007;Sagnotti,2011).

1 AMS概述

岩石的磁学性质随方向改变的现象,称为磁各向异性,主要包括磁化率各向异性(AMS)、非磁滞剩磁各向异性(Anisotropy of Anhysteretic Remanent Magnetization,AARM)和等温剩磁各向异性(Anisotropy of Isothermal Remanent Magnetization,AIRM)等.其中,AMS测量最为方便,应用也最为广泛.

一个岩石样品的磁化率可用一个对称的二阶张量表示,由3个主特征向量(K1、K2和K3)组成,K1>K2>K3分别代表最大、中间和最小磁化率主轴,即形成了一个磁化率量值椭球(图 1).

图 1 磁化率量值椭球示意图(Lanza and Meloni, 2006) Fig. 1 The magnetic susceptibility ellipsoid(Lanza and Meloni, 2006)

磁化率各向异性的常用参数如下:

体积磁化率;磁线理;磁面理; 矫正磁化率各向异性度

; 椭球形状参数时,磁组构椭球形状为扁球型;-1≤Tj≤0时,磁组构椭球形状为长球型.

岩石的AMS主要受控于铁磁性、顺磁性和逆磁性矿物的优选定向.大部分造岩矿物为顺磁性,平均磁化率为5×10-4[SI]量级,如橄榄石、辉石、角闪石、阳起石、石榴石和堇青石、富铁的云母类如黑云母等等.而铁磁性矿物如磁铁矿、钛磁铁矿、赤铁矿、磁赤铁矿、铁的硫化物和氢氧化物等往往作为副矿物出现.Borradaile(1988)Hrouda和Kahan(1991)提出,少量的铁磁性矿物(~1 vol%)足以主导岩石的磁学性质,包括体积磁化率.对于体积磁化率高于5×10-3[SI]的强磁性岩石,顺磁性和逆磁性矿物对磁化率的贡献可忽略不计,AMS受控于铁磁性组分;对于体积磁化率低于5×10-4[SI]的弱磁性岩石,其铁磁性矿物含量通常很少,AMS受控于顺磁性矿物,逆磁性矿物的贡献可忽略;对于体积磁化率低于5×10-5[SI]的极弱磁性岩石,则不能忽略逆磁性组分的贡献;体积磁化率在5×10-4~5×10-3[SI]之间的岩石,其AMS受铁磁性和顺磁性矿物的共同控制(Tarling and Hrouda, 1993).当AMS同时受控于铁磁性和顺磁性矿物时,就有必要分离出铁磁性组分的AMS和顺磁性组分的AMS(Hrouda,2002).另外,如有必要,也应当分离不同的铁磁性组分.Hrouda(2002)指出,多畴(MD)铁磁性矿物控制的磁组构可以通过体积磁化率随外加磁场的变化特征而分离出来,只有多畴钛磁铁矿、磁黄铁矿和赤铁矿对外加磁场具有依赖性.

产生岩石磁化率各向异性的因素(Hrouda,1982)主要有:

(1)形状各向异性:即由铁磁性颗粒形态决定的磁各向异性,一般是强磁性矿物,如磁铁矿或钛磁铁矿;

(2)磁晶各向异性:磁晶各向异性颗粒沿不同结晶轴向表现出磁化率不同;

(3)分布各向异性(Hargraves et al., 1991):由磁性颗粒的带状排列造成;

(4)磁畴各向异性:磁畴排列情况;

(5)应力引起的各向异性;

(6)交换各向异性(Banerjee and Stacey, 1967; Berkowitz and Takano, 1999):产生于两个不同的磁有序相之间的超交换反应.控制天然岩石磁各向异性最重要的因素是前两项(Stacey,1960).当AMS的携磁矿物为含铁的顺磁性硅酸盐类矿物、(含钛)赤铁矿或磁黄铁矿时,AMS产生于这些矿物的磁晶各向异性(Tarling and Hrouda, 1993);当AMS的携磁矿物为含钛磁铁矿或磁铁矿时,AMS产生自磁性矿物颗粒的分布各向异性(Hargraves et al., 1991),或形状各向异性以及磁性颗粒之间的相互作用(Cañón-Tapia et al., 1996).

早在上世纪50年代,AMS技术就开始应用于沉积岩的岩石组构研究以及构造变形研究.在沉积岩中,AMS用于研究沉积环境及介质条件、指示古水流向及风向、区域新构造运动等等.在变形岩石中,AMS是岩石应变的指示器,可估计应变椭球的形状与排列方向(Borradaile,1991;Borradaile and Henry, 1997; Borradaile and Jackson, 2004; 罗良等,2013).相对于沉积岩和构造变形研究,AMS在火成岩中的应用历史则短得多,在20世纪70年代之后才真正开始发展起来.随着时间的推移,火成岩的AMS逐渐显示出多样性,成为磁组构的热点研究领域之一.

2 AMS在火成岩中的应用

火成岩的磁组构是在有结晶体和流体共存的条件下形成的,反映的是岩石内部铁磁性矿物颗粒形状的定向排列和具有磁晶各向异性晶体晶格的定向排列.其中,形状各向异性限于磁铁矿-钛尖晶石系列,磁晶各向异性限于赤铁矿和磁黄铁矿系列,而顺磁性和逆磁性矿物的形状各向异性可以忽略(Hrouda et al., 1988).大部分火成岩的铁磁性矿物基本都是Fe-Ti氧化物,至少占1 vol%,因而全岩的体积磁化率普遍超过10-2[SI].因此,这些岩石中其他矿物对AMS的贡献基本可以忽略.也有一些花岗岩、硅含量很高的熔岩流或穹窿以及火山碎屑流的体积磁化率低.解释AMS常常需要考虑所有存在的矿物(Cañón-Tapia,2004).

在火成岩中,喷出岩和侵入岩有着不同的侵位模式,受控于重力、岩浆流或火山碎屑流以及同侵位应力.大部分岩浆岩由于岩浆流动和侵位期间的应力作用,或者是侵位期间或期后发育与区域构造变形同步的组构,岩石中的矿物颗粒会呈现某种优选定向(Elming and Mattsson, 2001).因此,岩浆岩的磁组构能提供岩浆上升侵位过程和区域变形史等信息.

2.1 AMS在喷出岩中的应用 2.1.1 AMS在熔岩中的应用

AMS能提供熔岩流动力学、变形机制以及相对剪切速率等方面的信息(Cañón-Tapia,2004).早期研究发现一些熔岩流的AMS主轴遵循Jeffrey对扁长型颗粒在流体中的运动模式,即长轴垂直流动方向(Khan,1962).Halvorsen(1974)则保守提出K3主轴垂直岩浆流面.而Symons(1975)对加拿大西岸的Aiyansh碱性玄武质熔岩流的AMS研究发现,根据流线理得到的熔岩流向与K1主轴最吻合.然而,这些研究推断的熔岩流向都是依据某磁化率主轴,且结果缺少可靠性和确定性.直到90年代中期,一些学者根据熔岩流的AMS研究(Cañón-Tapia et al., 19961997)和实验结果(Cañón-Tapia and Pinkerton, 2000)提出,AMS与熔岩流的剪切历史有关,并可指示岩浆流向.Cañón-Tapia等(19961997)提出了利用AMS推断流向的一系列准则,应同时利用两种图件来推断熔岩流向,即磁化率主轴置信圆的等面积投影和磁化率主轴的密度等值线图.熔岩流不同位置的磁化率主轴方向存在系统性的变化.结合两种图件的分布特点和规律,确定利用哪类主轴代表熔岩不同部位的流向.特别是出现磁化率主轴或磁面理的叠瓦状对称性分布,可较准确的推断出明确的岩浆流向.图 2给出的例子(Cañón-Tapia,2004)中,图 2a中的主轴分布形成了近南北向的直立的圆弧带,而图 2b中置信圆形成一个近水平的圆弧带.这个差异说明这个熔岩流中的不同位置有着共同的变形史.为了推断流向,非常有必要在岩熔流的顶部和底部采样.图中,底部熔岩流的K1指向南方,顶部的K1指向北方,形成了对称性叠瓦,指示流向从南向北.若未找到对称叠瓦,可借助古地表坡度、下伏沉积物的倾角等信息来排除流向方位180°的误差.

图 2 磁化率主轴对称叠瓦推断熔岩流向 (Cañón-Tapia,2004) Fig. 2 Example of a lava flow displaying an opposed imbrications of principal susceptibility axes. Both types of diagrams are equal area projections of the lower hemisphere. The arrow on the upper-left diagram indicates the inferred flow direction for this flow(Cañón-Tapia,2004)

熔岩流的AMS随深度和流态变化.因此,必须通过分析相同侵位环境下不同深度和不同流段的大量样品,识别流向的系统变化.只有细致研究同一熔岩流单元内的AMS特征,才能获得正确的相关侵位动力学的信息.

侵位动力学信息确定之后,据熔岩流的流向可进一步确定火山口的位置(Zhu et al., 2003; Plenier et al., 2005).对于侵位期后发生倾斜乃至褶皱的火山岩,AMS可提供变形程度等信息(Zhang et al., 2011).不同类型的熔岩有各自典型的居里点,根据居里点和体积磁化率的不同,则可判别熔岩类型(Cañón-Tapia,2004).

2.1.2 AMS在火山碎屑岩中的应用

对科罗拉多圣胡安山脉中部一系列熔结凝灰岩的AMS研究发现,磁面理基本都是近水平的,其倾角并不随着熔结程度发生显著变化,它是沉积压实作用和重力影响下垂向熔结作用的结果,是侵位期间层流和片流产生的真实流面(Palmer and Macdonald, 1999).其中集中的K1主轴指示凝灰岩的物源(Ellwood,1982).随后一些学者也进行了类似研究,倾向于用磁面理推断流向.几十年来,AMS广泛应用于推断火山喷发的碎屑物质运移过程,进而确定火山口的位置(Wang et al., 2001; Ort et al., 2003; Pioli et al., 2008; Sohn et al., 2009; Cas et al., 2011).

近年来,AMS用于研究火山碎屑流距火山口远近有关的运移和沉积过程(Palmer and Macdonald, 1999; Valentini et al., 2008; Giordano et al., 2008),通常来说,火山碎屑流的沉积系统受运移系统和地形之间的复杂关系控制.AMS研究表明火山碎屑流的沉积体系更多受地形控制,而不是运移系统.运移系统只在近源区位置对流向起主要控制作用,可以确定源区的位置.火山碎屑流并不是按严格统一的方向流动,因而火山口位置的推断不能简单根据单一采点的AMS数据,更应考虑火山碎屑流迂回流动的影响(Laberge et al., 2009).通常,熔结凝灰岩中单个流体单元的基底部分的AMS数据质量最好,在研究熔结凝灰岩时,非常有必要在不同层位进行采样,以全方位评估磁性颗粒优选定向的情况. 2.2 AMS在侵入岩中的应用

AMS可用于研究侵入岩的内部结构,确定其岩浆侵入通道、侵位方式,以及揭示构造应变史.

侵入岩的磁各向异性度变化范围很大,Pj值可以从很低的值一直到高达2以上均可出现(Hrouda,1982).一般来说,低磁各向异性的岩石的磁组构可能是原生的岩浆流动磁组构,而磁各向异性度越高,是变形磁组构的可能性越大.原生流动磁组构和变形磁组构在最终组构中占的比重取决于侵位期间的构造历史.判断磁组构是原生的流动磁组构还是叠加了后期改造的次生磁组构有几个方法:

(1)具有原生流动磁组构的侵入岩其磁各向异性度Pj值往往小于1.2,而受后期改造则Pj值通常大于1.2(Hrouda,1982);

(2)岩石显微结构观察分析是否有岩浆期后改造形成的塑性变形或动力重结晶和碎裂等固态变形特征(Paterson et al., 1998);

(3)比较侵入岩和围岩的定向构造和磁组构主轴方向之间是否一致,如果不一致,那么可以认为侵入岩体的构造是岩体内部作用的结果,磁组构是原生的流动磁组构.

2.2.1 AMS在深成岩体中的应用

Graham(1954)Khan(1962)最初的研究开始,AMS广泛用于揭示深成岩内部的结构,主要是针对具顺磁性和铁磁性的花岗岩类岩石(Bouchez,2000).研究深成岩体的内部结构能提供其侵位期间或期后的构造事件的相关信息.对岩体的内部结构进行详细的定量研究是构造研究中很重要的一部分内容.可是,很多深成岩体尤其是花岗岩体通常不发育肉眼可见的面理和线理等中观结构,使得构造研究具有一定的难度.而AMS技术以其高敏感度的优势,可用于揭示深成岩体的结构状态,进而探讨岩体的侵位动力学和构造演化.

深成岩体的侵位机制比喷出岩复杂得多,其岩石组构与岩浆侵位有关,受岩浆流、岩浆粘度变化和完全结晶前遭受的有限变形影响,也可与同构造或构造期后的区域变形有关,或者是这两者的混合,即形成同构造体制(Paterson et al., 1998).

快速固结且未受构造变形影响的深成岩体,最易保存岩浆流动相关组构.这类磁组构的特点是,各向异性度相当低,暗示岩浆流动过程中只产生微弱的磁性矿物择优取向;根据岩浆流的局部性质不同,磁组构的形状从扁圆型到拉长型变化;磁面理通常平行流面,磁线理平行流向.这类岩体的AMS研究可以揭示岩体内部构造特征,推断岩体侵位时的岩浆流动型式.Trubac等(2009)对波西米亚地块 花岗岩体进行了构造学和AMS(图 3a,b)研究发现,岩体边部同心的陡倾磁面理和近平行于岩体边界呈圆周分布的小倾角磁线理,以及岩体中心陡倾的磁线理记录了岩浆在陡立的通道中右旋型螺旋式上升,上升的岩浆流由于黏度差异分成两部分,在岩体中心因粘度低而垂直向上流,在岩体边部因粘度高而呈螺旋状流(图 3c).Raposo和Gastal(2009)发现巴西南部Lavras do Sul侵入杂岩中次圆形的花岗岩体的AMS和AARM是共轴的,且岩体和围岩的磁组构完全不同,另外岩体缺少固态和亚固态变形,因此提出该花岗岩体的磁组构是岩浆成因的,在岩石结晶固化时获得,反映了岩浆的穹窿式侵位.

图 3 波西米亚花岗岩体的磁面理(a)、磁线理(b)分布和侵位方式示意图(c)(Trubac et al., 2009). Fig. 3 Map of magnetic foliations(a),lineations(b) and emplacement block-diagram(c) of the pluton(Trubac et al., 2009).

原生的岩浆流动磁组构易被岩浆侵位期间或期后的塑性应变改造.在这个过程中,原先的岩浆流动磁组构会被变形磁组构叠加甚至破毁.此时磁化率各向异性度通常较高,磁面理和磁线理方向会向主应力方向偏斜.通常,应力强度和磁化率各向异性度Pj值之间呈正相关关系(Tarling and Hrouda, 1993; Borradaile and Henry, 1997),但需要注意的是,当Pj值与体积磁化率Km有关时,说明Pj值取决于岩石中矿物组分,而不是应力强度(Borradaile and Jackson, 2004).当岩石的矿物组分相对简单,而岩体的磁面理/线理平行区域构造面理/线理,那么这种磁组构就很可能与区域构造变形有关(Tarling and Hrouda, 1993).韩国西南部的南元花岗岩体的AMS的磁面理和磁线理的走向右旋地汇聚于岩体西部北北东向的Sunhang剪切带,结合岩体具有的固态变形特征,说明该岩体的磁组构反映了其同构造侵位的岩浆流动模式,且受Sunchang剪切带右旋的塑性剪切的影响(Otoh et al., 1999).同构造花岗岩体的研究现在比较受关注,用于揭示岩体侵位和冷却期间的构造体制和动力学(Benn et al., 1998; Gleizes et al., 2006).对罗马尼亚西南部同构造Cherbelezu岩体的AMS(图 4a)和显微结构分析表明岩体西部是一个岩浆供给区,岩浆由此向北部螺旋状上侵,一部分向南流动(图 4b).另外,磁面理/线理和岩浆面理/线理的分布特征指示Cherbelezu岩体的侵位和冷凝主要受左旋走滑挤压的Corbu 糜棱岩带控制(图 4c)(Plissart et al., 2012).

图 4 Cherbelezu岩体的磁面理、磁线理分布(a)和同构造侵位方式示意图(b,c)(Plissart et al., 2012). Fig. 4 Map of magnetic foliations(a),lineations(b) and syntectonic emplacement block-diagram(c)of the Cherbelezu pluton(Plissart et al., 2012).
2.2.2 AMS在浅成侵入体中的应用

AMS在浅成侵入体中的应用主要集中在板状侵入体如岩墙和岩席中.自从Ellwood(1978)开创性地进行了AMS指示岩墙岩浆流向的研究,其后大量相关研究涌现出来(Dragoni et al., 1997; Raposo and D'Agrella-Filho,2000; Callot et al., 2001; Callot and Geoffroy, 2004; Creixell et al., 2006; Aubourg et al., 2008; Creixell et al., 2009; Cañón-Tapia and Herrero-Bervera, 2009; Airoldi et al., 2011; Hastie et al., 2011; Gil-Imaz et al., 2012; Airoldi et al., 2012).Knight and Walker(1988)对夏威夷Ohau的Koolau Complex中镁铁质岩墙的AMS研究发现K1主轴与宏观线理的夹角小于25°,表明了磁化率椭球主轴的方向和岩浆流动构造之间具有一致性.另外,岩墙冷凝边对拉长型颗粒的粘滞力影响使样品的K1主轴呈现对称性叠瓦状分布,这种叠瓦状分布的K1主轴与岩墙壁形成的夹角可指示岩浆流向(图 5).然而,在冰岛岩墙中,发现K2主轴指示流向.其中61条岩墙和熔岩管中,有4条的岩浆流向更平行于K2主轴(Knight and Walker, 1988).很多对玄武质岩墙的定量研究发现,K1和代表岩浆流向的主要矿物相(长石微斑晶)的定向之间存在很大的差异,磁线理可以平行岩浆流向,也可以垂直岩浆流向(Dragoni et al., 1997; Knight and Walker, 1988).而且,在很多例子中都发现同一岩墙不同位置采点存在磁化率主轴分布的变化(Hrouda et al., 2002).另外,磁面理的交叉也可以导致一个明显的磁线理(Callot and Guichet, 2003).

图 5 垂直(a)和水平(b)侵位的岩墙造成的 理想化AMS主轴定向(Hastie et al., 2011). Fig. 5 Schematic diagrams of a vertical,north-south striking dyke indicating idealized fabric orientation

resulting from(a)vertical intrusion of magma and the resultant AMS ellipsoid and (b)a lateral intrusion of magma and the resultant AMS ellipsoid(Hastie et al., 2011).

磁组构有正常磁组构和异常磁组构之分(Rochette et al., 1991; Rochette et al., 1992; Tauxe and Gee, 1998).正常磁组构的特征是K3主轴近垂直于岩墙壁,而磁面理(K1-K2面)近平行于岩墙壁.异常磁组构分为中间磁组构和倒转磁组构.中间磁组构的特征是K1和K2发生调换或K2和K3发生调换.倒转磁组构相对于正常磁组构则是K1和K3发生互换.产生异常磁组构的原生成因可能是粘性流体中颗粒的自由旋转(Dragoni et al., 1997)、湍流、形状不同的磁性颗粒的混合(如拉长型磁铁矿和压扁型磁黄铁矿(Airoldi et al., 2012))、尺寸不同的磁铁矿颗粒(如多畴和单畴颗粒)的混合或岩石矿物组分中单畴磁铁矿颗粒(<0.1 μm)占主导.次生成因可能是遭受侵位后的改造,如重结晶或热液改造作用、变质作用以及构造应力(Ellwood,1978).笔者在浙江省嵊泗主岛的小田岙发现了呈倒转磁组构的辉绿岩墙(图 6a),经分析可能与岩墙转弯造成的湍流有关,并得到野外流面剥离面的验证(图 6b).

图 6 嵊泗小田岙辉绿岩墙的倒转组构(a)及K1偏角和岩浆湍流关系示意图(b)(石林权等,2012). Fig. 6 Schematic diagrams of inverse magnetic fabric of diabase dyke in Shengsi Isl and (a) and distribution of K1 axes caused by turbulent flow(b)(Shi et al., 2012).

前人论证了只有正常磁组构才能用于推断岩浆流向(Rochette et al., 1991; Rochette et al., 1992).另外,侵位期后的岩浆分异作用或晚期热液蚀变作用会使岩墙中部的磁组构变得复杂.因此,为了提高利用磁组构数据解释岩浆流向的可靠性,Tauxe等(1998)建议AMS样品的采集应集中在距岩墙壁10 cm内,并提出推断流向的条件为:

(1)存在对称的叠瓦状磁组构分布;

(2)磁组构椭球的形状不是非常的扁圆状;

(3)叠瓦角度<30°.

为了避免因选择K1,K2或其他任何磁面理的中间方向来推断岩浆流向产生的质疑,Geoffroy等(2002)Callot等(2001)提出了一种新的模式,既利用磁面理和岩墙壁之间对称的叠瓦角度来推断岩浆流向(图 7).图 7中的岩墙近于直立且南北向走向,岩墙壁两侧的K1方向呈对称叠瓦状分布.这可避免因选择K1或K2作为岩浆流向而产生的疑惑.这个方法被广泛接受并用于推断世界各地岩墙的岩浆流向.笔者也利用这个方法推断了浙江省嵊泗主岛广泛发育的晚白垩世辉绿岩墙群(潘小青等,2011)和海南万宁中三叠世辉绿岩脉(Pan et al., 2012)的岩浆流向和侵位机制(图 8).

图 7 岩墙两壁磁面理叠瓦角度推断岩浆流向示意图(Geoffroy et al., 2002) Fig. 7 Theoretical sketches and corresponding stereoplots of flow-vector(Fv) determination(Geoffroy et al., 2002)

图 8 嵊泗主岛黄沙村辉绿岩墙群的磁化率主轴等面积投影图(下半球投影)和 流向推断(以五角星表示)(潘小青等,2011) Fig. 8 AMS axes of different diabase dykes at Huangsha Village in geographic coordinates. The star indicates the sense of flow inferred from the imbrications of magnetic foliation(Pan et al., 2011)

根据AMS推断的岩浆流向,可以进一步探讨岩墙侵位机制及岩浆源的位置.Curtis等(2008)据AMS研究结果提出南极洲毛德皇后地西部中生代岩墙群的侵位模式为,临近岩浆源区,岩浆为垂直地向上流动,而远离岩浆源区则越来越侧向流动.这种流向型式也发现于与地幔柱以及局部小岩浆源有关的巨型岩墙群中,如元古代McKenzie岩墙群(Ernst and Baragar, 1992),或东格陵兰火山边缘的岩墙(Callot et al., 2001).Archanjo等(2000)对巴西东北部中生代镁铁质岩墙群的AMS研究结果表明,岩墙群中心为向上直立的岩浆流,而靠近边部为向外的岩浆流向.磁线理呈扇形型式,向岩浆供给区汇聚.Kissel等(2010)对冰岛东部新近纪玄武质岩墙的AMS研究发现了正常磁组构和倒转磁组构,倒转磁组构在加热500 ℃后即变为正常磁组构,表现出原生流动磁组构,它们一致指示10 Myr以前冰岛东部火山活动期间,岩浆垂直向上侵位的过程.

岩墙的AMS研究也可指示岩墙侵位时的区域应力状态.若磁面理/磁线理与岩墙壁高角度相交,呈不对称组构,通常是受构造应力影响的结果(Creixell et al., 2006).Gil-Imaz等(2012)对比利牛斯Panticosa岩墙群的AMS研究提出了这些辉绿岩墙和煌斑岩墙的侵位方式由3个阶段组成(图 9),首先是钙碱性岩浆侵入于先存NW-SE和NNE-SSE向裂隙中(早二叠世),岩墙两壁对称的磁面理说明其未受构造应力影响;第二阶段的钙碱性岩墙侵位因受N-S向拉伸应力的影响(早二叠世),磁线理呈N-S向展布;第三阶段为碱性岩墙切穿钙碱性岩墙(中-晚二叠世),此阶段磁线理也为N-S向,说明岩墙在整个侵位期间均遭受了东西向挤压应力的影响,形成了典型的分段式几何形态.

图 9 比利牛斯Panticosa岩墙群的侵位方式(Gil-Imaz et al., 2012) Fig. 9 Proposed kinematic model of dyke emplacement and general sketches of the kinematic context. Insets represent the rose diagrams for the calc-alkaline and the alkaline dykes(Gil-Imaz et al., 2012)
3 小 结

火成岩的AMS反映岩石内部铁磁性矿物颗粒形状的定向排列和具有磁晶各向异性晶体晶格的定向排列.根据各磁性参数和岩石学等证据判别原生和次生磁组构是AMS地质应用的前提.不论在喷出岩还是侵入岩中,AMS不仅是分析岩石结构、推断岩浆流向、确定侵位方式和岩浆源的有力手段,更可以用于分析岩石在侵位期间及期后经受的应力作用.AMS以其特有的优势得到了越来越广泛的应用.

然而,单独的AMS解释往往会产生不确定的结果.遭受侵位期后改造作用的磁组构很较难定量地分离出原生和次生磁组构.AMS的应用需详细分析各类磁学参数,并且设计优良的采样方案,注意采集岩石靠边界的样品(如熔岩流的横向或垂向两端,侵入体与围岩的接触带),应尽可能包括经历了不同变形史的区域.对于喷出岩来说,可以是岩熔流域单元的底部(首选)、中间或上部,而在板状侵入体中可以是侵入体的两边部和中部.更重要的是,AMS应该结合传统岩石组构分析方法、区域地质和地形地貌等多方面资料加以综合考虑,才能更好地解决特定的地质问题.

致 谢 本研究得到浙江省自然科学基金项目(LY12D02002)的资助.评审专家提出的意见对提高论文质量起了重要作用,在此致以诚挚谢意.
参考文献
[1] Airoldi G, Muirhead J D, White J D L, et al. 2011. Emplacement of magma at shallow depth: insights from field relationships at Allan Hills, south Victoria Land, East Antarctica[J]. Antarctic Science, 23(3): 281-296.
[2] Airoldi G, Muirhead J D, Zanella E, et al. 2012. Emplacement process of Ferrar Dolerite sheets at Allan Hills (South Victoria Land, Antarctica) inferred from magnetic fabric[J]. Geophysical Journal International, 188(3): 1046-1060.
[3] Archanjo C J, Trindade R I, Macedo J W P, et al. 2000. Magnetic fabric of a basaltic dyke swarm associated with Mesozoic rifting in northeastern Brazil[J]. Journal of South American Earth Sciences, 13(3): 179-189.
[4] Aubourg C, Tshoso G, Le Gall B, et al. 2008. Magma flow revealed by magnetic fabric in the Okavango giant dyke swarm, Karoo igneous province, northern Botswana[J]. Journal of Volcanology and Geothermal Research, 170(3-4): 247-261.
[5] Banerjee S K, Stacey F D. 1967. The high-field torque-meter method of measuring magnetic anisotropy of rocks[C]. Amsterdam: Elsevier, 470-476.
[6] Benn K, Ham and N M, Pignotta G S, et al. 1998. Emplacement and deformation of granites during transpression: magnetic fabrics of the Archean Sparrow pluton, Slave Province, Canada[J]. Journal of Structural Geology, 20(9-10): 1247-1259.
[7] Berkowitz A E, Takano K. 1999. Exchange anisotropy-a review[J]. Journal of Magnetism and Magnetic Materials, 200(1-3): 552-570.
[8] Borradaile G J, Henry B. 1997. Tectonic applications of magnetic susceptibility and its anisotropy[J]. Earth-Science Reviews, 42(1-2): 49-93.
[9] Borradaile G J, Jackson M. 2004. Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks[C]. Geological Society, London, Special Publications, 238: 299-360.
[10] Borradaile G J. 1988. Magnetic susceptibility, petrofabrics and strain[J]. Tectonophysics, 156(1-2): 1-20.
[11] Borradaile G J. 1991. Correlation of strain with anisotropy of magnetic susceptibility(AMS)[J]. Pure and Applied Geophysics, 135(1): 15-29.
[12] Bouchez J L. 2000. Anisotropie de susceptibilité magnétique et fabrique des granites[J]. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 330(1): 1-14.
[13] Callot J P, Geoffroy L, Aubourg C, et al. 2001. Magma flow directions of shallow dykes from the East Greenland volcanic margin inferred from magnetic fabric studies[J]. Tectonophysics, 335(3-4): 313-329.
[14] Callot J P, Geoffroy L. 2004. Magma flow in the East Greenland dyke swarm inferred from study of anisotropy of magnetic susceptibility: magmatic growth of a volcanic margin[J]. Geophysical Journal International, 159(2): 816-830.
[15] Callot J P, Guichet X. 2003. Rock texture and magnetic lineation in dykes: a simple analytical model[J]. Tectonophysics, 366(3-4): 207-222.
[16] Cañón-Tapia E, Herrero-Bervera E. 2009. Sampling strategies and the anisotropy of magnetic susceptibility of dykes[J]. Tectonophysics, 466(1-2): 3-17.
[17] Cañón-Tapia E, Pinkerton H. 2000. The anisotropy of magnetic susceptibility of lava flows: an experimental approach[J]. Journal of Volcanology and Geothermal Research, 98(1-4): 219-233.
[18] Cañón-Tapia E, Walker G P L, Herrero-Bervera E. 1996. The internal structure of lava flows-insights from AMS measurements I: near-vent a'a[J]. Journal of Volcanology and Geothermal Research, 70(1-2): 21-36.
[19] Cañón-Tapia E, Walker G P L, Herrero-Bervera E. 1997. The internal structure of lava flows-insights from AMS measurements II: Hawaiian pahoehoe, toothpaste lava and 'a'ā[J]. Journal of Volcanology and Geothermal Research, 76(1-2): 19-46.
[20] Cañón-Tapia E. 2004. Anisotropy of magnetic susceptibility of lava flows and dykes: a historical account [C]. Geological Society, London, Special Publications, 238: 205-225.
[21] Cañón-Tapia E. 2004. Flow direction and magnetic mineralogy of lava flows from the central parts of the Peninsula of Baja California, Mexico[J]. Bulletin of Volcanology, 66(5): 431-442.
[22] Cañón-Tapia E. 2007. Magnetic susceptibility, anisotropy, rock fabric[C]. New York: Springer, 564-566.
[23] Cas R A F, Wright H M N, Folkes C B, et al. 2011. The flow dynamics of an extremely large volume pyroclastic flow, the 2.08-Ma Cerro Galán Ignimbrite, NW Argentina, and comparison with other flow types[J]. Bulletin of Volcanology, 73(10): 1583-1609.
[24] Creixell C, Parada M A, Morata D, et al. 2009. The genetic relationship between mafic dike swarms and plutonic reservoirs in the mesozoic of central chile (30°-33° 45'S): insights from AMS and geochemistry[J]. International Journal of Earth Sciences, 98(1): 177-201.
[25] Creixell C, Parada M á, Roperch P, et al. 2006. Syntectonic emplacement of the Middle Jurassic Concón Mafic Dike Swarm, Coastal Range, central Chile (33° S)[J]. Tectonophysics, 425(1-4): 101-122.
[26] Curtis M L, Riley T R, Owens W H, et al. 2008. The form, distribution and anisotropy of magnetic susceptibility of Jurassic dykes in H.U. Sverdrupfjella, Dronning Maud Land, Antarctica. implications for dyke swarm emplacement[J]. Journal of Structural Geology, 30(11): 1429-1447.
[27] Dragoni M, Lanza R, Tallarico A. 1997. Magnetic anisotropy produced by magma flow: theoretical model and experimental data from Ferrar dolerite sills (Antarctica)[J]. Geophysical Journal International, 128(1): 230-240.
[28] Ellwood B B. 1978. Flow and emplacement direction determined for selected basaltic bodies using magnetic susceptibility anisotropy measurements[J]. Earth and Planetary Science Letters, 41(3): 254-264.
[29] Ellwood B B. 1982. Estimates of flow direction for calc-alkaline welded tuffs and paleomagnetic data reliability from anisotropy of magnetic susceptibility measurements: Central San Juan Mountains, southwest Colorado[J]. Earth and Planetary Science Letters, 59(2): 303-314.
[30] Elming S A, Mattsson H. 2001. Post Jotnian basic Intrusions in the Fennoscandian Shield, and the break up of Baltica from Laurentia: a palaeomagnetic and AMS study[J]. Precambrian Research, 108(3-4): 215-236.
[31] Ernst R E, Baragar W R A. 1992. Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm[J]. Nature, 356(6369): 511-513.
[32] Geoffroy L, Callot J P, Aubourg C, et al. 2002. Magnetic and plagioclase linear fabric discrepancy in dykes: a new way to define the flow vector using magnetic foliation[J]. Terra Nova, 14(3): 183-190.
[33] Gil-Imaz A, José M L S, Galé C, et al. 2012. The Permian mafic dyke swarm of the Panticosa pluton (Pyrenean Axial Zone, Spain): simultaneous emplacement with the late-Variscan extension[J]. Journal of Structural Geology, 42: 171-183.
[34] Giordano G, Porreca M, Musacchio P, et al. 2008. The Holocene Secche di Lazzaro phreatomagmatic succession (Stromboli, Italy): evidence of pyroclastic density current origin deduced by facies analysis and AMS flow directions[J]. Bulletin of Volcanology, 70(10): 1221-1236.
[35] Gleizes G, Crevon G, Asrat A, et al. 2006. Structure, age and mode of emplacement of the Hercynian Borderes-Louron pluton (Central Pyrenees, France)[J]. International Journal of Earth Sciences, 95(6): 1039-1052.
[36] Graham J W. 1954. Magnetic susceptibility anisotropy, an unexploited petrofabric element[J]. Bull. Geol. Soc. Am., 65: 1257-1258.
[37] Halvorsen E. 1974. The magnetic fabric of some dolerite intrusions, northeast Spitsbergen; implications for their mode of emplacement[J]. Earth and Planetary Science Letters, 21(2): 127-133.
[38] Hargraves R B, Johnson D, Chan C Y. 1991. Distribution anisotropy: the cause of AMS in igneous rocks? [J]. Geophysical Research Letters, 18(12): 2193-2196.
[39] Hastie W W, Watkeys M K, Aubourg C. 2011. Significance of magnetic and petrofabric in Karoo-feeder dykes, northern Lebombo[J]. Tectonophysics, 513(1-4): 96-111.
[40] Hrouda F, Chlupacova M, Novak J K. 2002. Variations in magnetic anisotropy and opaque mineralogy along a kilometer deep profile within a vertical dyke of the syenogranite porphyry at Cinovec (Czech Republic)[J]. Journal of Volcanology and Geothermal Research, 113(1-2): 37-47.
[41] Hrouda F, Jacko S, Hanák J. 1988. Parallel magnetic fabrics in metamorphic, granitoid and sedimentary rocks of the Branisko and C ˇ ierna hora Mountains (E Slovakia) and their tectonometamorphic control[J]. Physics of the Earth and Planetary Interiors, 51(4): 271-289.
[42] Hrouda F, Kahan S. 1991. The magnetic fabric relationship between sedimentary and basement nappes in the High tatra Mountains, N. Slovakia[J]. Journal of Structural Geology, 13(4): 431-442.
[43] Hrouda F. 1982. Magnetic anisotropy of rocks and its application in geology and geophysics[J]. Geophysical Surveys, 5(1): 37-82.
[44] Hrouda F. 2002. The use of the anisotropy of magnetic remanence in the resolution of the anisotropy of magnetic susceptibility into its ferromagnetic and paramagnetic components[J]. Tectonophysics, 347(4): 269-281.
[45] Khan M A. 1962. The anisotropy of magnetic susceptibility of some igneous and metamorphic rocks[J]. Journal of Geophysical Research, 67(7): 2873-2885.
[46] Kissel C, Laj C, Sigurdsson H, et al. 2010. Emplacement of magma in Eastern Iceland dikes: insights from magnetic fabric and rock magnetic analyses[J]. Journal of Volcanology and Geothermal Research, 191(1-2): 79-92.
[47] Knight M D, Walker G P L. 1988. Magma flow directions in dikes of the Koolau Complex, Oahu, determined from magnetic fabric studies[J]. Journal of Geophysical Research, 93(B5): 4301-4319.
[48] Laberge R D, Porreca M, Mattei M, et al. 2009. Meandering flow of a pyroclastic density current documented by the anisotropy of magnetic susceptibility (AMS) in the quartz latite ignimbrite of the Pleistocene Monte Cimino volcanic centre (central Italy)[J]. Tectonophysics, 466(1-2): 64-78.
[49] Lanza R, Meloni A. 2006. The Earth's Magnetism[M]. New York, Berlin: Springer, 1-278.
[50] Luo L, Qi J F, Jia D, et al. 2013. Magnetic fabric investigation in Tianquan-Leshan section in front of Longmenshan fold-thrust belt and its indicative significance for the Cenozoic deformation[J]. Chinese J. Geophys. (in Chinese), 56(2): 558-566.
[51] Martin-Hernandez F, Luneburg C M, Aubourg C, et al. 2004. Magnetic fabric methods and applications[C]. Geological Society, London, Special Publications, 238: 1-7.
[52] Ort M H, Orsi G, Pappalardo L, et al. 2003. Anisotropy of magnetic susceptibility studies of depositional processes in the Campanian Ignimbrite, Italy[J]. Bulletin of Volcanology, 65(1): 55-72.
[53] Otoh S, Jwa Y J, Nomura R, et al. 1999. A preliminary AMS (anisotropy of magnetic susceptibility) study of the Namwon granite, southwest Korea[J]. Geosciences Journal, 3(1): 31-41.
[54] Palmer H C, Macdonald W D. 1999. Anisotropy of magnetic susceptibility in relation to source vents of ignimbrites: empirical observations[J]. Tectonophysics, 307(1-2): 207-218.
[55] Pan X Q, Shen Z Y, Chen N H, et al. 2011. Emplacement mechanism of diabase dyke swarms in Shengsi island: evidence from magnetic anisotropies[J]. Chinese J. Geophys. (in Chinese), 54(12): 3269-3279.
[56] Pan X Q, Shen Z Y, Dong C W, et al. 2012. Magma flow inferred from magnetic fabrics in Wanning gabbro pluton and diabase dykes, Hainan[J]. Chin. Sci. Bull., 57(16): 1982-1989.
[57] Pan Y X, Zhu R X. 1998. The recent progress in magnetic fabrics[J]. Progress in Geophysics (in Chinese), 13(1): 52-59.
[58] Paterson S R, Fowler T K Jr, Schmidt K L, et al. 1998. Interpreting magmatic fabric patterns in plutons[J]. Lithos, 44(1-2): 53-82.
[59] Pioli L, Lanza R, Ort M, et al. 2008. Magnetic fabric, welding texture and strain fabric in the Nuraxi Tuff, Sardinia, Italy[J]. Bulletin of Volcanology, 70(9): 1123-1137.
[60] Plenier G, Camps P, Henry B, et al. 2005. Determination of flow directions by combining AMS and thin-section analyses: implications for Oligocene volcanism in the Kerguelen Archipelago (southern Indian Ocean)[J]. Geophysical Journal International, 160(1): 63-78.
[61] Plissart G, Diot H, Monnier C, et al. 2012. Relationship between a syntectonic granitic intrusion and a shear zone in the Southern Carpathian-Balkan area (Almj Mountains, Romania): implications for late Variscan kinematics and Cherbelezu granitoid emplacement[J]. Journal of Structural Geology, 39: 83-102.
[62] Raposo M I B, D'Agrella-Filho M S. 2000. Magnetic fabrics of dike swarms from SE Bahia State, Brazil: their significance and implications for Mesoproterozoic basic magmatism in the So Francisco Craton[J]. Precambrian Research, 99(3-4): 309-325.
[63] Raposo M I B, Gastal M C P. 2009. Emplacement mechanism of the main granite pluton of the Lavras do Sul intrusive complex, South Brazil, determined by magnetic anisotropies[J]. Tectonophysics, 466(1-2): 18-31.
[64] Rochette P, Jackson M, Auborg C. 1992. Rock magnetism and the interpretation of anisotropy of magnetic susceptibility[J]. Rev. Geophys., 30(3): 209-226.
[65] Rochette P, Jenatton L, Dupuy C, et al. 1991. Diabase dikes emplacement in the Oman ophiolite: a magnetic fabric study with reference to geochemistry[J]. Petrology and Structural Geology, 5: 55-82.
[66] Sagnotti L. 2011. Megnetic Anisotropy[C]. Springer, 717-729.
[67] Shi L Q, Pan X Q, Shen Z Y, et al. 2012. Discussion on emplacement of Shengsi diabase dyke swarms and the origin of reverse magnetic fabrics[J]. Scientific Journal of Earth Science (in Chinese), 2(1): 1-7.
[68] Sohn Y K, Son M, Jeong J O, et al. 2009. Eruption and emplacement of a laterally extensive, crystal-rich, and pumice-free ignimbrite (the Cretaceous Kusandong Tuff, Korea)[J]. Sedimentary Geology, 220(3-4): 190-203.
[69] Stacey F D. 1960. Magnetic anisotropy of igneous rocks[J]. Journal of Geophysical Research, 65(8): 2429-2442.
[70] Symons D T A. 1975. Age and flow direction from magnetic measurements on the historic Aiyansh flow, British Columbia[J]. Journal of Geophysical Research, 80(17): 2622-2626.
[71] Tarling D H, Hrouda F. 1993. The Magnetic Anisotropy of Rocks[M]. London: Chapman and Hall.
[72] Tauxe L, Gee J S, Staudigel H. 1998. Flow directions in dikes from anisotropy of magnetic susceptibility data: the bootstrap way[J]. Journal of Geophysical Research-Solid Earth, 103(B8): 17775-17790.
[73] Truba čJ, Žák J, Chlupá čová M, et al. 2009. Magnetic fabric of the Říčany granite, Bohemian Massif: a record of helical magma flow? [J]. Journal of Volcanology and Geothermal Research, 181(1-2): 25-34.
[74] Valentini L, Capaccioni B, Rossi P L, et al. 2008. Vent area and depositional mechanisms of the Upper Member of the Neapolitan Yellow Tuff (Campi Flegrei, Italy): new insights from directional fabric through image analysis[J]. Bulletin of Volcanology, 70(9): 1087-1101.
[75] Wang X, Roberts J, Schmidt P. 2001. Flow directions of Carboniferous ignimbrites, southern New England Orogen, Australia, using anisotropy of magnetic susceptibility[J]. Journal of Volcanology and Geothermal Research, 110(1-2): 1-25.
[76] Yan G L. 1996. The Applications of Anisotropy of Magnetic Susceptibility in Geoscience (in Chinese)[M]. Wuhan: China University of Geosciences Press.
[77] Zhang S H, Zhou X Q. 1999. A review of the application of anisotropy of susceptibility to Earth Science[J]. Geological Review (in Chinese), 45(6): 613-620.
[78] Zhang S W, Cañón-Tapia E, Walderhaug H J. 2011. Magnetic fabric and its significance in the sills and lava flows from Taimyr fold-belt, Arctic Siberia[J]. Tectonophysics, 505(1-4): 68-85.
[79] Zhu R X, Shi C D, Liu Q S. 2003. Anisotropy of magnetic susceptibility of Hannuoba basalt, northern China: constraints on the vent position of the lava sequences[J]. Geophys. Res. Lett., 30(2): 23-26.
[80] 罗良, 漆家福, 贾东,等. 2013. 龙门山南段山前天全-乐山剖面磁组构研究及其对新生代构造变形的指示意义. 地球物理学报, 56(2): 558-566.
[81] 潘小青, 沈忠悦, 陈宁华,等. 2011. 嵊泗岛辉绿岩墙群的侵位方式: 来自磁组构的证据[J]. 地球物理学报, 54(12): 3269-3279.
[82] 潘永信, 朱日祥. 1998. 磁组构研究现状[J]. 地球物理学进展, 13(1): 52-59.
[83] 石林权, 潘小青, 沈忠悦,等. 2012. 嵊泗辉绿岩墙群侵位分析和倒转组构成因探讨[J]. 地球科学期刊, 2(1): 1-7.
[84] 阎桂林. 1996. 岩石磁化率各向异性在地学中的应用[M]. 武汉: 中国地质大学出版社.
[85] 张拴宏, 周显强. 1999. 磁化率各向异性地学应用综述[J]. 地质论评, 45(6): 613-620.