地球物理学报  2019, Vol. 62 Issue (1): 104-114   PDF    
中国东北诺敏河火山岩石圈变形:来自剪切波分裂的证据
强正阳1,2, 吴庆举1,2     
1. 中国地震局地球物理研究所, 北京 100081;
2. 中国地震局地震观测与地球物理成像重点实验室, 北京 100081
摘要:中国东北新生代板内火山广泛发育,其中诺敏河火山由于上地幔结构研究的匮乏,火山成因尚不明确.利用布设在诺敏河火山周围的40个流动台站所记录到的远震剪切波数据,测量得到82对各向异性参数和219个无效分裂结果.结果表明,研究区快慢波延迟时间变化范围为0.4~1.4 s,平均0.78±0.21 s;各向异性快波方向范围为N77°W-N18°E,绝大多数快波方向集中在N6.9°W±9.87°,平行于中生代晚期岩石圈伸展变形方向,推测由残留在岩石圈中的化石各向异性所引起.同时,在火山中心及周边部分台站,只观测到无效分裂而没有观测到有效分裂结果,可能是由于残存在岩石圈内的古老形变被上涌的热地幔物质所侵蚀.
关键词: 诺敏河火山      剪切波分裂      地震各向异性      岩石圈变形     
Lithospheric deformation of the Nuomin River volcano in Northeast China: Evidence from shear wave splitting
QIANG ZhengYang1,2, WU QingJu1,2     
1. Institute of Geophysics, Chinese Earthquake Administration, Beijing 100081, China;
2. Key laboratory of Seismic Observation and Geophysical Imaging, Institute of Geophysics, China Earthquake Administration, Beijing 100081, China
Abstract: Cenozoic intraplate volcanoes are widely present in Northeast China, among which the Nuomin River volcano's causative mechanism is poorly understood due to the lack of detailed constraints on the upper mantle structure beneath this region. A total of 82 pairs of shear wave splitting measurements and 219 null measurements are obtained at 40 temporary seismic stations. These data suggest that delay times vary from 0.4 s to 1.4 s with an average value of 0.78±0.21 s; while fast directions trending N77°W to N18°E with a mean value of N6.9°W±9.87° at most of stations. Fossil anisotropy within lithosphere is considered to be the main origin of anisotropy since the fast directions are in line with extensional orientation of the Late Mesozoic lithosphere in this area. Meanwhile, solely null measurements are measured at 19 stations, implying possible lithospheric thermal erosion by hot mantle upwelling.
Keywords: Nuomin River volcano    Shear-wave splitting    Seismic anisotropy    Lithosphere deformation    
0 引言

板内火山与板间火山不同,其形成与板块边界和板块运动速度没有直接因果联系,成因一直备受争议,主要观点包括地幔柱或是热点模式、大陆裂谷模式、弧后伸展模式、岩石圈拆沉减薄模式等(Chen et al., 2007; Hoernle et al., 2006; King and Ritsema, 2000; Koppers et al., 2003; Lei and Zhao, 2005; Tatsumi et al., 1990).位于中亚造山带东部的中国东北地区,受挟于西伯利亚克拉通、中朝克拉通和西太平洋板块(Şengör et al., 1993),新生代板内火山普遍发育,例如长白山火山、五大连池火山、阿尔山火山和诺敏河火山等,使其成为研究板内火山成因机制的绝佳场所.

由于大兴安岭森林覆盖,交通不便,前人对隐匿其中的诺敏河火山地球物理的观测十分匮乏,火山及周边地区上地幔结构约束不足,火山形成机制也尚不明确.地震层析成像结果显示,长白山和阿尔山火山上地幔存在明显低速异常并一直延伸到上地幔过渡带(Lei and Zhao, 2005; Zhao et al., 2009);而诺敏河火山与五大连池火山低速异常较浅,局限于100 km之内(张风雪等, 2013, 2014).同时,地球化学研究表明,中国东北地区板内火山化学成分存在较大差异.其中,诺敏河火山岩属于钾质系列火山,与相邻约160 km五大连池火山具有亲缘性,但是与同属兴蒙造山带的阿尔山钠质火山截然不同(白志达等, 2005; 邵济安等, 2008, 2009; Fan et al., 2012).这些火山化学成分和物理属性的差异,暗示着它们可能具有不同形式的软流圈和岩石圈变形特征.因此,研究诺敏河火山深部结构,为理解东北地区新生代板内火山活动提供了必要的观测证据,具有重要的科学意义.

地震波各向异性是研究地幔流动和岩石圈变形最有效的常规手段之一(Gao et al., 2010; Savage, 1999; Silver, 1996; 郑斯华和高原, 1994).在剪切力作用下,上地幔橄榄石晶体沿a轴定向排列(lattice preferred orientations, LPO),且排列方向往往与流动方向一致(Bystricky, 2000; Tommasi et al., 2000; Zhang and Karato, 1995).由于剪切波分裂的快波方向(φ)平行于晶体a轴方向(Silver and Chan, 1991),所以其与地幔流动(Fouch et al., 2000; Vinnik et al., 1989)、熔体或液体的定向排列(Blackman and Kendall, 1997)或是化石各向异性(Bastow et al., 2007; Silver and Chan, 1988; Vauchez and Nicolas, 1991)密切相关.在本次研究中,如果诺敏河火山下方存在地幔柱或是地幔物质的垂向运动,那么各向异性晶体a轴将竖直排列,垂直入射的剪切波不会产生分裂;如果火山下方存在水平地幔流动,那么快波方向φ会与流动方向平行.

本文中,我们使用了覆盖诺敏河火山群的43个流动台站资料,挑选PKS、SKS、SKKS三种剪切波震相(以下简称XKS震相)进行了剪切波分裂研究,并结合前人各向异性测量结果以及其他地球物理学证据分析各向异性与上地幔变形之间的关系,为研究火山成因提供必要约束.

1 数据与方法

2015年7月至2017年5月,在国家自然科学基金委的资助下,中国地震局地球物理研究所以诺敏河火山为中心布设了43套间距约30 km的宽频带地震台(图 1). 我们利用美国地质调查局公布的地震事件目录,选取震级高于M5.0的地震事件,并在震中距80°~180°范围寻找SKS和SKKS震相,在120°~180°挑选PKS震相,以期得到高信噪比XKS震相进行剪切波分裂.共计挑选出46个地震事件进行各向异性的测量,其中PKS震相4个,SKS震相27个,SKKS震相15个(图 2).

图 1 研究区域周边情况及台站分布图 蓝色的三角表示流动地震台的位置,黑色实线和虚线分别代表活动断裂和缝合线(邓起东等, 2002),灰色粗线表示了南北重力梯度带位置,粉色区域为新生代玄武岩(Guo et al., 2016).右下角附图为研究区在大比例尺地图中的位置,绿色实线框表示研究区位置,粉色曲线表示太平洋板块俯冲等深线. Fig. 1 Topographic map of the study area showing seismic stations used in the study (blue triangles) North South Gravity lineament is indicated by wide grey solid line, and suture zones and active faults are represented by black dash and solid lines, respectively. Pink area denotes the distribution of the Cenozoic basalts (Guo et al., 2016). The bottom-right insect shows the study area on a large scale, in which the green solid rectangle outlines the study area, and the isobaths curve of the subducting Pacific plate is marked by pink lines.
图 2 用于XKS分裂的地震事件震中分布图 Fig. 2 Spatial distribution map of earthquakes used in XKS splitting

XKS震相在核幔边界发生P-S波的转换,由于液态外核的滤波作用,台站接收端一侧的S转换波只有径向分量,没有切向分量.当地幔中存在各向异性介质时,S波就会分裂成为近乎正交的快波和慢波,进而在切向分量产生明显能量.反之,如果切向分量没有明显能量,则为无效分裂结果(null).不存在明显的水平各向异性,或是事件后方位角与快波或慢波方向平行,亦或是复杂各向异性结构的存在都可能产生无效分裂(Savage, 1999).基于这一特征,前人发展了切向最小能量法(Transverse Component Minimization Method, SC)和最小特征值法(Eigenvalue Method, EV),前者搜索最优各向异性参数使得剪切波被还原为分裂之前的单一径向分量,后者搜索最优各向异性参数使得校正之后的协方差矩阵第二特征值最小(Silver and Chan, 1991).此外,考虑到快慢波的同源性,Bowman和Ando(1987)Fukao(1984)相继发展了旋转相关法(Rotation-Correlation Method, RC),搜索最优各向异性参数使得旋转时移之后的径向和切向最为相关.

本研究使用基于MATLAB的SplitLab程序包(Wüstefeld et al., 2008),它集合了以上三种最为常用的剪切波分裂方法,利用它们各自的特点,可以验证分裂结果的有效性并判定无效分裂结果(Wüstefeld and Bokelmann, 2007).图 3展示了利用SplitLab程序进行剪切波分裂的实例.对于最终结果,我们在检查原始波形的信噪比、等值线极值的收敛程度和校正前后质点的运动轨迹的基础上参照Wüstefeld等(2008)提出的结果判定标准,将所得分裂结果进行质量评价,选取fair和good的结果.最终,SC方法计算的分裂参数被用于结果分析,RC和EV方法的计算结果被用于无效分裂的识别以及分裂结果的质量评定.

图 3 SplitLab程序测量剪切波分裂示例(A),SplitLab软件测量无效分裂参数示例(B) 图中a1为校正之前的原始地震波形:径向和切向波形分量分别用虚线和实线表示,灰色阴影区域表示分裂计算时窗,a2显示地震事件信息和三种剪切波分裂方法所得的各向异性参数,a3显示结果的水平投影.RC方法所得结果显示在中间一行(a4—a7), SC方法所得结果展示在最后一行(a8—a11). 图 3B参数同图 3A. Fig. 3 Example of a XKS splitting measurement performed using SplitLab (A), Example of a null measurement using the SplitLab package (B) Original seismograms are shown in a1 panel: radial and transverse component are marked as dashed and solid line, respectively. The selected calculation window is highlighted in Light grey. Header (a2) presents information of teleseismic event and splitting parameters. Stereoplot of the result is shown in a3 panel. The results from RC method after correction for anisotropy are displayed in center panels (a4—a7). The results from SC method after correction for anisotropy are displayed in lower panels (a8—a11). Caption in Fig. 3B is same as Fig. 3A′s.
2 剪切波分裂结果

使用前文所述方法,我们对诺敏河火山周围43个台站为期2年的XKS数据进行了剪切波分裂研究.除去3个台站(XM19、XM37、XM41)发生仪器故障,在21个台站共计得到82对各向异性参数(48对good,34对fair),其中包含70个SKS震相分裂结果,11个SKKS震相分裂结果,1个PKS震相分裂结果(表 1).同时,在36个台站获得了219个无效分裂结果(199个good,20个fair),其中SKS结果163个,SKKS结果35个,PKS结果21个.

表 1 研究区内XKS震相分裂测量结果 Table 1 The XKS splitting parameters for stations beneath study area

统计结果表明(图 4),快慢波延迟时间变化范围为0.4~1.4 s,平均0.78±0.21 s.假设4%的各向异性程度,那么该延迟时间对应88±23.6 km各向异性厚度(Silver, 1996).快波方向为N77°W~N18°E,有75个快波方向平均值为N6.9°W±9.9°,其余7个快波方向集中在N67.3°W±8.1°,总体与前人在这一区域测量结果一致(Huang et al., 2011; Li and Niu, 2010; 强正阳和吴庆举, 2015).此外,从各向异性参数空间分布(图 5)可以看出,平均延迟时间小于0.6 s的台站有3个(XM24、XM11和XM36),集中在研究区中心区域;大于1.0 s的台站有2个(XM17和XM43),接收到来自N和NW方向的事件,快波方向一致朝向NW-SE方向,与周围台站结果存在差异(图 6).同时,位于研究区中心的2个台站(XM23和XM24)接收到同一事件(event_2016.249_M5.9),计算所得到的延时时间较小,方向也与前人在EH41台站周围所测量的结果有较大偏差(强正阳和吴庆举,2015).

图 4 研究区XKS分裂延迟时间δt(a)和快波方向φ(b)直方图 Fig. 4 Histograms of XKS splitting delay times (a) and fast directions (b)
图 5 各向异性参数空间分布图(a),无效分裂结果空间分布图(b) 短棒的方向代表各向异性方向,短棒的长度代表各向异性大小;其中黑色为本次研究结果,蓝色为前人研究结果(Huang et al., 2011; Li and Niu, 2010; 强正阳和吴庆举, 2015).十字线表示事件后方位角的方向,且红色十字线表示台站只测量到无效分裂结果而没有测量到有效分裂. Fig. 5 Individual splitting measurements plotted at each station (a); The black and blue bars denote splitting results in this and previous studies (Huang et al., 2011; Li and Niu, 2010; Qiang and Wu, 2015), respectively. Crosses plotted at station represent Null measurements, with their bars indicating backazimuth of the analyzed seismic event (b). Solely null measurements are marked as red crosses.
图 6 六个台站各向异性参数测量结果 Fig. 6 Splitting parameters of six staions

值得注意的是,在测量到无效分裂的36个台站之中,有19个台站没有测量到任何有效分裂结果(solely null).这些台站中有近半数(9个台站)集中在研究区中心,并且向东北部延伸.这些无效分裂事件后方位角差异平均为18°,其中有9个台站事件后方位角差异超过20°.

3 讨论 3.1 各向异性深度

由于剪切波分裂纵向分辨率不足,各向异性深度的确定比较困难.普遍认为上地壳表现为脆性,其各向异性主要受到水平主压应力控制,来源于液体对裂隙的填充(Crampin, 1994),因而快波方向平行于构造走向.从图 7中我们可以看到,新林—喜桂图缝合线横穿整个研究区呈NE-SW走向,与其周围台站测量到的快波方向之间呈高角度正交;此外,位于研究区南部的活动构造(邓起东等,2002)走向也与各向异性的快波方向存在差异.由该区域发生的震源深度23.5 km的一个地震反演得到的区域主压应力方向为NE-SW (Heidbach et al., 2010),与快波方向近乎垂直.综上,我们推测上地壳各向异性很小,不是本研究测量到各向异性的主要来源.这也得到前人地壳各向异性研究的支持,认为中国东北地区地壳各向异性延迟时间不大于0.3 s (吴晶等, 2007; 张广成等, 2013),这远小于本研究中得到的0.78±0.21 s的平均结果,推测各向异性主要存在于地幔中.

图 7 研究区台站下方各向异性参数综合分析图 绿色箭头代表水平主压应力(Heidbach et al., 2010),橘色和蓝色的箭头分别为热点参考系HS3模型和无旋参考系NNR模型下绝对板块运动速度(Argus et al., 2011; Gripp and Gordon, 2002),它们与各向异性快波方向的夹角统计图显示在右下角. Fig. 7 Comprehensive analysis diagram of the measured fast directions and splitting times The horizontal principal compressive stress is dedicated by green arrows, and the orange and blue arrows are APM velocity under HS3 model (Gripp and Gordon, 2002) and NNR model (Argus et al., 2011). The bottom-right insect is the angular difference between fast direction and APM velocity.

另一方面,岩石圈被认为是刚性的,并漂浮在相对静止的软流圈上,当它们之间发生差异运动,就会产生与绝对板块运动(Absolute Plate Movement, APM)速度方向一致的各向异性(Vinnik et al., 1992).热点参考系下的HS3-Nuvel1A板块运动模型(Gripp and Gordon, 2002),计算得到研究区APM速度约为N65°W, 19.9 mm·a-1;无旋参考系下的NNR-Morvel56板块运动模型计算得到研究区APM速度大致为N122°E, 23.6 mm·a-1(Argus et al., 2011),分别用橘色和蓝色的箭头在每一个台站表示出来(图 7).我们统计了共计40个台站两种APM速度与XKS分裂快波方向之间的偏差,发现在HS3和NNR模型下,都只有9个台站偏差小于30°,4个台站大于60°,其余台站的偏差都集中在40~50°,暗示APM方向与各向异性快波方向存在较大差异,不支持各向异性是由岩石圈与软流圈之间的差异运动所产生.此外(Zhang et al., 2014)利用S波接收函数得到研究区岩石圈厚度约为100 km,与前文我们所估计的88±23.6 km各向异性厚度相当,而研究区地壳平均厚度只有~35 km(谢振新等, 2018),因此我们认为,研究区地壳太薄无法单独产生我们所测量到的各向异性,各向异性的主要来源为岩石圈地幔.

需要注意的是,在研究区附近的HIA固定台,前人研究发现XKS分裂延迟时间δt随地震事件后方位角呈现规律变化,认为可能存在双层各向异性(Liu et al., 2008).在本次研究中,由于流动台站观测时间短,加之地震事件分布不均匀,研究区台站接收到的远震事件后方位角覆盖相较全球其他区域明显不足(Becker et al., 2012),因而无法对双层各向异性模型进行有效约束.此外,虽然绝对板块运动速度和各向异性快波方向存在较大偏差,但是考虑到本次研究区域较小,而绝对板块运动速度是大尺度测量结果,因此不排除研究区下方存在局部地幔对流的可能性(Makeyeva et al., 1992).

3.2 岩石圈变形

本次研究中,地震各向异性可能反映岩石圈最新一次构造变形.瞬时最大剪切方向在纯剪切变形条件下与有限应变最大伸展方向一致,因而各向异性快波方向平行于构造伸展方向(Savage, 1999).白垩纪之前,中国东北地区岩石圈在西太平洋板块持续俯冲下挤压增厚;但是,板块俯冲方向在早白垩纪时期发生变化,东北地区岩石圈经历了挤压环境向拉张环境的转变(Wang et al., 2006).同时,中国东北地区这一时期的NNW-SSE向拉伸环境也被A型花岗岩和变质核杂岩研究所证实(Allen et al., 1997; Wu et al., 2005).由此可见,中生代晚期研究区岩石圈经历拉张形变(Ren et al., 2002),伸展方向与各向异性快波偏振方向较为一致,推测是岩石圈中古老变形是各向异性的首要成因.

此外,正如第2节所提到的,绝大部分纯无效分裂结果都集中在了研究区中心区域A(图 8),虽然大部分台站的无效分裂结果受限于地震事件的分布,不能区分是因为这些区域没有方位各向异性,或是地震事件后方位角恰好与各向异性快波或慢波方向平行,但是考虑到有各别台站的事件方位角覆盖较好,例如XM05、XM31和XM32,可以基本排除是由于事件分布所造成的无效分裂结果,暗示该区域存在岩石圈拆沉或地幔热物质的垂向运动(Long et al., 2010; Qiang et al., 2017; Walker et al., 2005).这一推测也得到了利用同期地震观测数据体波有限频率成像结果的支持(张风雪等,投稿中).100 km深度P波成像结果在纯无效分裂比较集中的区域A表现为低速异常,同时在区域C也表现出不同程度的低速异常,尤其在事件后方位角覆盖较好的XM05台站附近,显示出明显的低速异常.另一方面,区域A内的两个台站(XM23和XM24)延迟时间较小,我们认为这一区域岩石圈由于热地幔物质上涌发生减薄,使得残留在岩石圈中的化石各向异性减弱;而环火山东部区域B基本呈现出高速异常,包括了延迟时间大于1.0 s的2个台站(XM17和XM43)和8个无效分裂台站(XM10、XM16、XM25、XM34、XM38、XM39、XM40和XM44).我们推测这一区域岩石圈底部没有直接受到上地幔热物质侵蚀作用,进而保存了化石各向异性.

图 8 XKS分裂平均结果叠加100 km P波成像结果 Fig. 8 Average splitting measurements superimposed on a map of P-wave tomography at depth of 100 km
4 结论

通过测量位于中国东北诺敏河火山周边40个地震台站的剪切波分裂数据,约束了该区域岩石圈变形.结果显示,各向异性平均延迟时间为0.78±0.21 s,快波方向为NNW-SSE,平行于研究区中生代晚期岩石圈伸展变形方向,可能反映岩石圈中残存的古老形变;火山中心以及北部地区测量到纯无效分裂结果,推测该区域存在热地幔物质上涌,并侵蚀了残存在岩石圈中的化石各向异性.

致谢  感谢参与到野外台站勘选、布设和维护中的所有人员.两位匿名专家的意见使得本文更加严谨、流畅.文中部分图件使用GMT制作(Wessel and Smith, 1998).
References
Allen M B, Macdonald D I M, Xun Z, et al. 1997. Early Cenozoic two-phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China. Marine and Petroleum Geology, 14(7-8): 951-972. DOI:10.1016/S0264-8172(97)00027-5
Argus D F, Gordon R G, DeMets C. 2011. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems, 12(11): Q11001. DOI:10.1029/2011GC003751
Bai Z D, Tian M Z, Wu F D, et al. 2005. Yanshan, Gaoshan-two active volcanos of the volcanic cluster in Arshan, Inner Mongolia. Earthquake Research in China (in Chinese), 21(1): 113-117.
Bastow I D, Owens T J, Helffrich G, et al. 2007. Spatial and temporal constraints on sources of seismic anisotropy:Evidence from the Scottish highlands. Geophysical Research Letters, 34(5): L05305. DOI:10.1029/2006GL028911
Becker T W, Lebedev S, Long M D. 2012. On the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography. Journal of Geophysical Research:Solid Earth, 117(B1): B01306. DOI:10.1029/2011JB008705
Blackman D K, Kendall J M. 1997. Sensitivity of teleseismic body waves to mineral texture and melt in the mantle beneath a mid-ocean ridge. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 355(1723): 217-231. DOI:10.1098/rsta.1997.0007
Bowman J R, Ando M. 1987. Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophysical Journal International, 88(1): 25-41. DOI:10.1111/j.1365-246x.1987.tb01367.x
Bystricky M. 2000. High shear strain of olivine aggregates:rheological and seismic consequences. Science, 290(5496): 1564-1567. DOI:10.1126/science.290.5496.1564
Chen Y, Zhang Y X, Graham D, et al. 2007. Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos, 96(1-2): 108-126. DOI:10.1016/j.lithos.2006.09.015
Crampin S. 1994. The fracture criticality of crustal rocks. Geophysical Journal International, 118(2): 428-438. DOI:10.1111/j.1365-246X.1994.tb03974.x
DePlaen R S M, Bastow I D, Chambers E L, et al. 2014. The development of magmatism along the Cameroon Volcanic Line:Evidence from seismicity and seismic anisotropy. Journal of Geophysical Research:Solid Earth, 119(5): 4233-4252. DOI:10.1002/2013JB010583
Deng Q D, Zhang P Z, Ran Y K, et al. 2003. Basic characteristics of active tectonics of China. Science in China Series D:Earth Sciences, 46(4): 356-372.
Fan Q C, Zhao Y W, Sui J L, et al. 2012. Studies on Quaternary volcanism stages of Nuomin river area in the Great Xing'an Range:Evidence from petrology, K-Ar dating and volcanic geology features. Acta Petrologica Sinica (in Chinese), 28(4): 1092-1098.
Fouch M J, Fischer K M, Parmentier E M, et al. 2000. Shear wave splitting, continental keels, and patterns of mantle flow. Journal of Geophysical Research:Solid Earth, 105(B3): 6255-6275. DOI:10.1029/1999JB900372
Fukao Y. 1984. Evidence from core-reflected shear waves for anisotropy in the Earth's mantle. Nature, 309(5970): 695-698. DOI:10.1038/309695a0
Gao S S, Liu K H, Abdelsalam M G. 2010. Seismic anisotropy beneath the Afar Depression and adjacent areas:Implications for mantle flow. Journal of Geophysical Research:Solid Earth, 115(B2): B12330. DOI:10.1029/2009JB007141
Gripp A E, Gordon R G. 2002. Young tracks of hotspots and current plate velocities. Geophysical Journal International, 150(2): 321-361. DOI:10.1046/j.1365-246X.2002.01627.x
Guo P Y, Niu Y L, Sun P, et al. 2016. The origin of Cenozoic basalts from central Inner Mongolia, East China:The consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone. Lithos, 240-243: 104-118. DOI:10.1016/j.lithos.2015.11.010
Heidbach O, Tingay M, Barth A, et al. 2010. Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics, 482(1-4): 3-15. DOI:10.1016/j.tecto.2009.07.023
Hoernle K, White J D L, Van Den Bogaard P, et al. 2006. Cenozoic intraplate volcanism on New Zealand:Upwelling induced by lithospheric removal. Earth and Planetary Science Letters, 248(1-2): 350-367. DOI:10.1016/j.epsl.2006.06.001
Huang Z C, Wang L S, Zhao D P, et al. 2011. Seismic anisotropy and mantle dynamics beneath China. Earth and Planetary Science Letters, 306(1-2): 105-117. DOI:10.1016/j.epsl.2011.03.038
King S D, Ritsema J. 2000. African hot spot volcanism:small-scale convection in the upper mantle beneath cratons. Science, 290(5494): 1137-1140. DOI:10.1126/science.290.5494.1137
Koppers A A P, Staudigel H, Pringle M S, et al. 2003. Short-lived and discontinuous intraplate volcanism in the South Pacific:Hot spots or extensional volcanism?. Geochemistry, Geophysics, Geosystems, 4(10): 1089. DOI:10.1029/2003GC000533
Lei J S, Zhao D P. 2005. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics, 397(3-4): 281-295. DOI:10.1016/j.tecto.2004.12.009
Li J, Niu F L. 2010. Seismic anisotropy and mantle flow beneath northeast China inferred from regional seismic networks. Journal of Geophysical Research:Solid Earth, 115(B12): B12327. DOI:10.1029/2010JB007470
Liu K H, Gao S S, Gao Y, et al. 2008. Shear wave splitting and mantle flow associated with the deflected Pacific slab beneath northeast Asia. Journal of Geophysical Research:Solid Earth, 113(B1): B01305. DOI:10.1029/2007JB005178
Long M D, Benoit M H, Chapman M C, et al. 2010. Upper mantle anisotropy and transition zone thickness beneath southeastern North America and implications for mantle dynamics. Geochemistry, Geophysics, Geosystems, 11(10): Q10012. DOI:10.1029/2010GC003247
Makeyeva L I, Vinnik L P, Roecker S W. 1992. Shear-wave splitting and small-scale convection in the continental upper mantle. Nature, 358(6382): 144-147. DOI:10.1038/358144a0
Qiang Z Y, Wu Q J.. 2005. Upper mantle anisotropy beneath the north of northeast China and its dynamic significance. Chinese Journal of Geophysics (in Chinese), 58(10): 3540-3552. DOI:10.6038/cjg20151010
Qiang Z Y, Wu Q J, Li Y H, et al. 2017. Complicated seismic anisotropy beneath south-central Mongolia and its geodynamic implications. Earth and Planetary Science Letters, 465: 126-133. DOI:10.1016/j.epsl.2017.02.035
Ren J Y, Tamaki K, Li S T, et al. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344(3-4): 175-205. DOI:10.1016/S0040-1951(01)00271-2
Savage M K. 1999. Seismic anisotropy and mantle deformation:What have we learned from shear wave splitting?. Reviews of Geophysics, 37(1): 65-106. DOI:10.1029/98RG02075
Şengör A M C, Natal'in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307. DOI:10.1038/364299a0
Shao J A, Zhang W L, Zhang C. 2008. Mantle enrichment of Wudalianchi volcanic rock belt. Acta Petrologica Sinica (in Chinese), 24(11): 2485-2494.
Shao J A, Zhang W L, Zhou X H, et al. 2009. Discovery of Xiaogulihe perpotassic basic and ultrabasic volcanic rock in the north-west Heilongjiang province, China. Acta Petrologica Sinica (in Chinese), 25(10): 2642-2650.
Silver P G, Chan W W. 1988. Implications for continental structure and evolution from seismic anisotropy. Nature, 335(6185): 34-39. DOI:10.1038/335034a0
Silver P G, Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research:Solid Earth, 96(10): 16429-16454. DOI:10.1029/91JB00899
Silver P G. 1996. Seismic anisotropy beneath the continents:probing the depths of geology. Annual Review of Earth and Planetary Sciences, 24: 385-432. DOI:10.1146/annurev.earth.24.1.385
Tatsumi Y, Maruyama S, Nohda S. 1990. Mechanism of backarc opening in the Japan Sea:role of asthenospheric injection. Tectonophysics, 181(1-4): 299-306. DOI:10.1016/0040-1951(90)90023-2
Tommasi A, Mainprice D, Canova G, et al. 2000. Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations:implications for the upper mantle seismic anisotropy. Journal of Geophysical Research:Solid Earth, 105(B4): 7893-7908. DOI:10.1029/1999JB900411
Vauchez A, Nicolas A. 1991. Mountain building:strike-parallel motion and mantle anisotropy. Tectonophysics, 185(3-4): 183-201. DOI:10.1016/0040-1951(91)90443-V
Vinnik L P, Farra V, Romanowicz B. 1989. Azimuthal anisotropy in the Earth from observations of SKS at Geoscope and NARS broadband stations. Bulletin of the Seismological Society of America, 79(5): 1542-1558.
Vinnik L P, Makeyeva L I, Milev A, et al. 1992. Global patterns of azimuthal anisotropy and deformations in the continental mantle. Geophysical Journal International, 111(3): 433-447. DOI:10.1111/j.1365-246X.1992.tb02102.x
Wüstefeld A, Bokelmann G. 2007. Null detection in shear-wave splitting measurements. Bulletin of the Seismological Society of America, 97(4): 1204-1211. DOI:10.1785/0120060190
Wüstefeld A, Bokelmann G, Zaroli C, et al. 2008. SplitLab:a shear-wave splitting environment in Matlab. Computers & Geosciences, 34(5): 515-528. DOI:10.1016/j.cageo.2007.08.002
Walker K T, Bokelmann G H R, Klemperer S L, et al. 2005. Shear-wave splitting around the Eifel hotspot:evidence for a mantle upwelling. Geophysical Journal International, 163(3): 962-980. DOI:10.1111/j.1365-246X.2005.02636.x
Wang F, Zhou X H, Zhang L C, et al. 2006. Late Mesozoic volcanism in the Great Xing'an Range (NE China):Timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science Letters, 251(1-2): 179-198. DOI:10.1016/j.epsl.2006.09.007
Wessel P, Smith W H F. 1998. New, improved version of generic mapping tools released. Eos, Transactions American Geophysical Union, 79(47): 579-579. DOI:10.1029/98EO00426
Wu F Y, Lin J Q, Wilde S A, et al. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119. DOI:10.1016/j.epsl.2005.02.019
Wu J, Gao Y, Chen Y T, et al. 2007. Seismic anisotropy in the crust in northwestern capital area of China. Chinese Journal of Geophysics (in Chinese), 50(1): 210-221. DOI:10.1002/cjg2.v50.1
Xie Z X, Wu Q J, Zhou S Y, et al. 2018. Study of crustal thickness and VP/VS ratio beneath the Nuomin River volcanoes. Chinese Journal of Geophysics (in Chinese), 61(12): 4805-4816. DOI:10.6038/cjg2018M0197
Zhang F X, Wu Q J, Li Y H. 2013. The traveltime tomography study by teleseismic P wave data in the Northeast China area. Chinese Journal of Geophysics (in Chinese), 56(8): 2690-2700. DOI:10.6038/cjg20130818
Zhang F X, Wu Q J, Li Y H. 2014. A traveltime tomography study by teleseismic S wave data in the Northeast China area. Chinese Journal of Geophysics (in Chinese), 57(1): 88-101. DOI:10.6038/cjg20140109
Zhang G C, Wu Q J, Li Y H, et al. 2013. An investigation on crustal anisotropy of Northeast China using Moho Ps converted phase. Acta Seismologica Sinica (in Chinese), 35(4): 485-497.
Zhang R Q, Wu Q J, Sun L, et al. 2014. Crustal and lithospheric structure of Northeast China from S-wave receiver functions. Earth and Planetary Science Letters, 401: 196-205. DOI:10.1016/j.epsl.2014.06.017
Zhang S Q, Karato S I. 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375(6534): 774-777. DOI:10.1038/375774a0
Zhao D P, Tian Y, Lei J S, et al. 2009. Seismic image and origin of the Changbai intraplate volcano in East Asia:Role of big mantle wedge above the stagnant Pacific slab. Physics of the Earth and Planetary Interiors, 173(3-4): 197-206. DOI:10.1016/j.pepi.2008.11.009
Zheng S H, Gao Y. 1994. Azimuthal anisotropy in lithosphere on the Chinese mainland from observations of SKS at CDSN. Acta Seismologica Sinica, (7): 177-186.
白志达, 田明中, 武法东, 等. 2005. 焰山、高山-内蒙古阿尔山火山群中的两座活火山. 中国地震, 21(1): 113-117. DOI:10.3969/j.issn.1001-4683.2005.01.012
邓起东, 张培震, 冉勇康, 等. 2002. 中国活动构造基本特征. 中国科学(D辑), 32(12): 1020-1030.
樊祺诚, 赵勇伟, 隋建立, 等. 2012. 大兴安岭诺敏河第四纪火山岩分期:岩石学, 年代学与火山地质特征. 岩石学报, 28(4): 1092-1098.
强正阳, 吴庆举. 2015. 中国东北地区北部上地幔各向异性及其动力学意义. 地球物理学报, 58(10): 3540-3552. DOI:10.6038/cjg20151010
邵济安, 张文兰, 张聪. 2008. 五大连池火山岩带的地幔富集作用. 岩石学报, 24(11): 2485-2494.
邵济安, 张文兰, 周新华, 等. 2009. 黑龙江西北部小古里河过钾质基性, 超基性火山岩的发现. 岩石学报, 25(10): 2642-2650.
吴晶, 高原, 陈运泰, 等. 2007. 首都圈西北部地区地壳介质地震各向异性特征初步研究. 地球物理学报, 50(1): 209-220. DOI:10.3321/j.issn:0001-5733.2007.01.027
谢振新, 吴庆举, 周仕勇, 等. 2018. 兴蒙造山带诺敏河火山群地壳厚度与波速比研究. 地球物理学报, 61(12): 4805-4816. DOI:10.6038/cjg2018M0197
张风雪, 吴庆举, 李永华. 2013. 中国东北地区远震P波走时层析成像研究. 地球物理学报, 56(8): 2690-2700. DOI:10.6038/cjg20130818
张风雪, 吴庆举, 李永华. 2014. 中国东北地区远震S波走时层析成像研究. 地球物理学报, 57(1): 88-101. DOI:10.6038/cjg20140109
张广成, 吴庆举, 李永华, 等. 2013. 利用莫霍面PS震相研究中国东北地区地壳各向异性. 地震学报, 35(4): 485-497. DOI:10.3969/j.issn.0253-3782.2013.04.004
郑斯华, 高原. 1994. 中国大陆岩石层的方位各向异性. 地震学报, 16(2): 131-140.