深水褶皱冲断带(deepwater fold and thrust belts)是特指发育于深水区的一类褶皱冲断带,既可以发育于处于挤压背景下的活动陆缘也可以形成于处于伸展背景下的被动陆缘,前者主要是挤压俯冲背景下洋壳之上的原始沉积物在逆冲和拆离过程中形成的褶皱冲断带,其成因与陆上造山带发育的褶皱冲断带类似,而后者与水下沉积物的重力滑塌或滑动密切相关(Morley et al., 2011).深水油气勘探的实践表明深水褶皱冲断带与油气聚集关系极为密切,蕴含着丰富的油气资源,是深水油气发现的重要构造类型(Matthew et al., 2010; Morley et al., 2011;温志新等,2015).近年来对深水褶皱冲断带的研究,尤其是对尼日尔三角洲、墨西哥湾及西北婆罗洲等地区深水褶皱冲断带的研究(Grando and McClay, 2004; Rowan et al., 2004; Higgins et al., 2007, 2009; Hesse et al., 2009, 2010a, 2010b; Wu et al., 2015; Jolly et al., 2016),大大加深了对深水褶皱冲断带类型、构造变形特征、驱动机制及油气成藏规律的认识,推动了构造地质学的发展,提高了勘探成功率(Morley et al., 2011).这一方面表明深水褶皱冲断带是当前深水含油气盆地构造解析的热点问题之一,另一方面也证实了深水褶皱冲断带研究对于深水油气勘探开发具有重要意义.
文莱—沙巴盆地深水褶皱冲断带是发育于婆罗洲西北部、南海海槽东南缘的大型构造带(图 1),该构造带呈NE-SW向展布,由一系列逆冲块体组成,逆冲方向为NW向,为现今仍活跃的褶皱冲断带(Hesse et al., 2009; King et al., 2010).国外学者对该套深水褶皱冲断带体系开展了大量的研究(Hinz and Schlüter, 1985; Hinz et al., 1989; Hazebroek and, 1993; Ingram et al., 2004; Franke et al., 2008; Hesse et al., 2009, 2010a, 2010b; King et al., 2010; Cullen, 2010),初步揭示了其变形时期、变形样式及构造分段性等特征,但是关于其成因机制确存在着广泛争议,一种观点认为其成因与尼日尔三角洲深水褶皱冲断带类似,为三角洲向盆地进积时由于重力滑动和滑脱作用在坡脚形成的逆冲推覆体系(Hazebroek and Tan, 1993; Hutchison, 2004; Cullen, 2010),另一种观点指出区域挤压应力所引起的地壳缩短作用居主导地位(Hinz and Schlüter, 1985; Hinz et al., 1989; Ingram et al., 2004).由于我国在该地区的油气勘探进程严重落后于南海周边国家,与外方相比,我国对该构造带的研究相对比较薄弱(陈雪等,2002;韩冰等,2015),存在的主要问题是:(1)文莱—沙巴盆地发育的深水褶皱冲断带主要特征是什么?与其他典型深水褶皱冲断带相比是否存在差异性?(2)该构造带是否属于大型推覆构造?如果是,那么其成因机制是什么?(3)该构造带的发育对文莱—沙巴盆地深水区油气成藏有何影响?鉴于此,本文在前人的研究基础之上,从精细解剖构造特征入手,自盆地演化动力学特征着眼,探讨其构造变形机制及其对油气成藏的影响,旨在为推动我国在文莱—沙巴盆地深水区的战略选区提供参考依据.
|
图 1 文莱—沙巴盆地位置及深水褶皱冲断带构造纲要图(据Hesse et al., 2009; 韩冰等,2015修改) Fig. 1 Location of Brunei-Sabah Basin and structural map ofdeepwater fold and thrust belts (modified from Hesse et al., 2009; Han et al., 2015) |
南海是西太平洋最大的一个边缘海,中、新生代时期处于欧亚、印-澳和太平洋3大板块交汇处,整个区域动力学具有“北张南压,东挤西滑,南沙裂离”的特点(张功成等, 2015a, b),导致南海周缘形成不同类型的沉积盆地.而研究区文莱—沙巴盆地是位于南海南缘挤压背景下形成的大型含油气沉积盆地,盆地面积约10万km2,主要发育始新统以来地层(IHS,2012).区域构造位置上文莱—沙巴盆地位于婆罗洲西北部,南以左旋的西巴兰—廷贾断裂为界与曾母盆地分隔开,北抵巴拉巴克断裂(图 1),其形成与古南海的俯冲消亡和新南海扩张密切相关;同时,苏禄海(Sulu)和西里伯斯(Celebes)海的打开也影响其盆地形成演化过程.
白垩纪末期随着太平洋板块俯冲方向和速率的改变,区域构造应力场从挤压转为拉张,发生裂陷运动,南海北部陆块开始解体,整个南海进入边缘海构造旋回演化阶段(张功成等,2015a).晚白垩纪-早渐新世时期,位于华南陆块南缘的古南海开始俯冲消减,沿东南向俯冲至西北婆罗洲之下,俯冲位置分别位于卢帕尔缝合线和武吉米辛线,婆罗洲陆上普遍发育蛇绿岩带(Hutchison,2004),而始新世-早渐新世时期古南海的俯冲导致文莱—沙巴盆地内发育拉让—克罗克群增生楔(出露于克罗克山脉上,详细见Hutchison(1996a, b),并于增生楔前端发育少量深水浊积沉积(图 2a).晚渐新世-早中新世,由于地幔柱隆升,岩石圈高速体拉张减薄,地幔熔融物质沿减薄带上涌,加之简单剪切导致南北向构造拉张作用增强,从而促使南海洋壳出现(鲁宝亮等,2016),而随着新南海打开,南沙地块与华南陆块分离并向南漂移(Hinz and Schlüter, 1985; Hamilton, 1979; Holloway, 1981; Taylor and Hayes, 1983; Briais et al., 1993),古南海继续俯冲且自西向东开始关闭(图 2b),最终早中新世末南沙地块与婆罗洲地块碰撞,古南海洋壳完全消亡于婆罗洲之下.两大地块的碰撞标志着新南海扩张作用的终止(Li et al., 2015),使得早期深水浊积物普遍发生褶皱变形,南海南部各盆地均形成重要区域不整合面(姚永坚等,2013).深部的地球物理资料不仅揭示婆罗洲北部下伏古南海洋壳(Zahirovic et al., 2014;Hall and Breitfeld, 2017),且岩石圈速度结构特点显著,表现上地幔顶部速度低、盖层速度低、软流圈低速上升的特点,为古南海俯冲作用下地块碰撞的结果(黄忠贤和胥颐,2011).婆罗洲在碰撞过程中形成沙巴造山带,早期沉积地层经历褶皱变形,仰冲于南沙地块之上,且随着造山带剥蚀,三角洲开始发育(即梅丽干(Meligan)三角洲),但由于挤压负荷产生均衡补偿而发生弹性下拗,盆内仍以深水沉积为主(Sandal, 1996)(图 2c).中中新世-现今,南海扩张作用终止,盆地进入快速沉降阶段,而由于受周缘板块碰撞作用和苏禄海NW向弧后扩张的影响,婆罗洲北部陆区进一步受挤压作用而发生褶皱变形(Sandal, 1996; Morley et al., 2003; Back et al., 2005, 2008),造山带隆升遭受剥蚀,多期三角洲携带大量碎屑物质向盆地内推进,地震上见明显前积反射结构(Cullen,2010),深水区发育褶皱冲断带(图 2d).文莱—沙巴盆地这一特殊的俯冲-碰撞演化过程导致其深部结构(包括莫霍面深度、地壳结构、地热场特征等)明显不同于受伸展作用控制的南海北部陆缘及南沙地块(秦静欣等,2011;丘学林等,2011;赵长煜等,2014),且受深部结构影响,其新生代构造变形特征也更为复杂,不仅陆上发育多期增生造山作用形成的逆冲构造(Wang et al., 2016),深水区也发育褶皱冲断带.
|
图 2 文莱—沙巴盆地构造演化模式图 Fig. 2 Schematic tectonic model for theevolution of the Brunei-Sabah Basin |
文莱—沙巴盆地发育的大型深水褶皱冲断带具有复杂的构造变形特征,整体表现“垂向分期,平面分段”的特点,且发育多种逆冲断层相关褶皱,表明其形成演化是多构造应力多期叠加作用的结果.
2.1 剖面特征文莱—沙巴盆地深水褶皱冲断带在垂直构造走向方向的地震剖面上表现为多个叠瓦状逆冲构造的叠加,逆冲断层呈上陡下缓的铲式形状(图 3).该逆冲褶皱带发育多个突出的构造脊,为不对称背斜,均形成于逆冲断层上盘.大多数背斜在海底有显示,背斜之间逆冲顶部形成局部的沉积中心.此外,向陆方向逆冲断层之上通常上覆厚层沉积序列,而向盆地方向,外部的逆冲断层常收敛于底部的滑脱层,在构造变形前缘带滑脱层的深度在5~8 km之间(图 3和图 4),而到了沙巴陆架区滑脱层深度可达12 km (Franke et al., 2008; Hesse et al., 2009).
|
图 3 文莱—沙巴盆地深水褶皱冲断带典型地震剖面(剖面位置见图 1) Fig. 3 Typical seismic profile of deepwater fold and thrust belts in Brunei-Sabah Basin (see location in Fig. 1) |
|
图 4 文莱—沙巴盆地过深水褶皱冲断带典型区域地质剖面(剖面位置见图 1,据Sandal, 1996修改) Fig. 4 Typical regional geological profiles running through deepwater fold and thrust belts in Brunei-Sabah Basin (see location in Fig. 1, modified from Sandal, 1996) |
区域地质剖面揭示文莱—沙巴盆地深水褶皱冲断带垂向上具有分期性,以中中新统底界面为界可划分为下部逆冲褶皱冲断带和上部逆冲褶皱冲断带(图 4),其中下部逆冲褶皱冲断带活动时间为始新世-早中新新世,早期发育的拉让-克罗克群深海沉积地层普遍遭受强烈变形改造,各个逆冲块体被高角度逆冲断层分隔开,且逆冲断层根部收敛于底部滑脱层,推测该滑脱层为古南海俯冲于婆罗洲之下的残留洋壳.上部逆冲褶皱冲断带的活动时间主要为中中新世-现今,与冠军三角洲和巴兰三角洲发育时期相对应.与下部相比,上部逆冲褶皱冲断带逆冲断层角度较小,根部收敛于下伏的早中新世滑脱层,该滑脱层主要由深水泥质沉积组成.同时,该逆冲体系向陆方向发育调节性生长断层,为三角洲快速堆积下重力滑动作用的结果.
2.2 平面特征文莱—沙巴盆地深水褶皱冲断带平面上呈NE-SW向展布,倾向SE,延伸距离约250 km(Hinz et al., 1989; Morley, 2007a),整个褶皱带具有“南宽北窄”的特点,其中南部宽约110 km,发育3~5条叠瓦逆冲褶皱,向北部宽度减少至80 km,发育5~7条叠瓦逆冲褶皱(图 1).顺着构造带走向,以拉布安岛北部与皇路礁连线为界,两侧褶皱冲断带构造变形特征差异性显著,具明显的南北分段性特点(图 1,表 1).
|
|
表 1 文莱—沙巴盆地深水褶皱冲断带构造变形差异特征分析 Table 1 The difference of structural deformation of deepwater fold and thrust belts in Brunei-Sabah Basin |
(1) 深水褶皱冲断带北段:以发育窄翼角紧闭背斜褶皱为主,背斜褶皱之间距离短.该段逆冲断层倾角较陡,靠近深水构造变形前缘带倾角为30°,而向陆方向在陆架坡折带处倾角可达60°.同时,晚上新世以来,该段深水褶皱冲断带的地层缩短量明显大于陆架区生长断层的伸展量,两者之差在2~6 km之间(Hesse et al., 2009;图 5),这种差异性不同于典型被动大陆边缘挤压区收缩量与伸展区伸展量之间的关系,关于其成因后文将详述.
|
图 5 晚上新世以来陆架区地层伸展量与深水逆冲推覆地层缩短量对比(据Hesse et al., 2009修改) (a)地震测线位置与构造伸缩量分布;(b)构造伸缩量与距离陆地远近的关系. Fig. 5 Comparison of Late Pliocene to recent deepwater shortening and shelfal extention (modified from Hesse et al., 2009) |
(2) 深水褶皱冲断带南段:以发育宽翼角缓背斜褶皱为主,背斜褶皱之间距离相对较大.该段逆冲断层倾角相对较小,靠近深水构造变形前缘带倾角为15°,而向陆方向在陆架坡折处倾角可达40°,且靠近巴兰三角洲的东南缘,褶皱数量显著减少,翼角更小,并在靠近陆架方向发育大量生长断层(Morley, 2007a, 2009).此外,与北段相比,晚上新世以来,该段深水褶皱冲断带的地层缩短量与陆架区生长断层的伸展量相当,均介于4~6 km之间(Hesse et al., 2009;图 5).
2.3 逆冲断层相关构造样式逆冲断层在逆冲推覆的过程中,断层上盘岩层因受断层面形态约束或逆冲位移沿断层面的变化而发生褶皱变形,形成逆冲断层相关褶皱(Suppe, 1983).同时,多条逆冲断层及其相关的逆冲块体可发育一系列逆冲构造组合.本文通过对盆地深水褶皱冲断带地震和地质剖面的精细解释和构造分析,识别出断弯、断展、断滑褶皱等3种断层相关褶皱以及叠瓦扇和冲起构造2种逆冲构造组合(图 6),具体特征如下:
|
图 6 文莱—沙巴盆地深水褶皱冲断带典型断层相关构造样式(图c据IHS, 2012修改) Fig. 6 Typical fault-relatedstructural patterns of deepwater fold and thrust belts in Brunei-Sabah Basin (Fig.c, modified from reference(IHS, 2012)) |
(1) 断弯褶皱:为断坪-断坡台阶状逆断层及相关褶皱的最基本样式,是上盘断块沿台阶状断面滑移时由于断面弯曲而形成的褶皱(李智武等,2006).研究区逆冲断裂带主体部位发育的逆冲断层具有明显的断坪、断坡特征,在地震剖面上易识别,下盘断坡之上的逆断层活动导致发育断弯褶皱,并在海底形成隆起地形(图 6a).同时,逆冲断层上盘断块上覆厚层盖层,由于重力滑动作用导致发育一系列正断层,使得断弯褶皱被进一步复杂化.
(2) 断展褶皱:是研究区内最常见的一种断层相关褶皱样式,其基本特点是背斜形态不对称,前翼陡窄,后翼宽缓,且断层逆冲位移向上逐渐减小,其成因是上盘断块滑移过程中由于断面沿倾向终止并失去位移而形成,往往与盲冲断层相伴生(图 6b).
(3) 断滑褶皱:多发育于研究区深水褶皱冲断带前缘靠近南沙海槽处,是上覆地层沿底界面滑脱而形成的收缩背斜褶皱,其基本特征是底部发育泥岩滑脱层,核部发生加厚,且沿着逆冲方向,褶皱形态逐渐由紧闭型背斜向宽缓型背斜过渡,背斜幅度逐渐下降,反映向着南沙海槽方向挤压作用逐渐减弱、滑脱位移逐渐减小(图 6c).
(4) 叠瓦扇构造:为研究区最发育的一种逆冲构造组合,由一系列倾向东南的逆冲断层及夹于其间的逆冲岩席构成,各逆冲断层向下收敛于同一滑脱层,呈叠瓦状排列,且每个逆冲岩席中地层由东南向西北有规律的变化,前缘带时代较新,靠近陆地的根带时代较老(图 4和图 5).
(5) 冲起构造:是研究区褶皱冲断带的重要组成部分之一,其特征是倾向东南的逆冲断层与同时发育的反冲断层所围限的公共上盘因强烈挤压作用而形成隆起构造单元(图 6e).研究区多发育单一冲起构造,依据前人砂箱构造物理模拟实验的结果(万元博等,2016),从侧面反映了文莱—沙巴盆地深水褶皱冲断带前缘以前展式扩展变形为主的特点.
2.4 成因机制 2.4.1 构造特征差异性机制前人的研究表明发育于被动大陆边缘由三角洲前缘重力滑动所形成的深水褶皱冲断带其挤压收缩量与三角洲末端伸展区的伸展量相当或前者略小于后者(Tingay et al., 2005;King et al., 2010, Rouby et al., 2011).然而,研究区晚上新世以来发育的深水褶皱冲断带其挤压区收缩量与伸展区伸展量之间的关系在南北两段差异性明显(图 5),其中靠近巴兰三角洲的南段挤压区收缩量与伸展区伸展量相同,与被动陆缘类似,可用三角洲重力滑动模型来解释,但远离巴兰三角洲的北段挤压区收缩量明显大于伸展区伸展量,仅用三角洲重力滑动模型显然无法解释,综合分析认为苏禄海扩张造成的挤压效应主控南北段褶皱冲断带变形差异性,其证据主要有以下3点:
(1) 苏禄海扩张模式:前人的区域研究表明中中新世以来随着苏禄海NW-SE向的扩张(Hutchison,2004; Hall, 2013),对婆罗洲西北部产生一个NW向挤压应力,导致婆罗洲造山带隆升和文莱—沙巴盆地内深水褶皱冲断带进一步挤压变形(图 7).同时,受苏禄海扩张范围的影响,该挤压效应仅作用于研究区北段,而南段却不受影响,导致深水褶皱冲断带北段内地层挤压收缩量明显大于陆架伸展区伸展量.
|
图 7 苏禄海扩张模式及其对婆罗洲西北部挤压作用示意图(据Hutchison, 2004; Hall, 2013修改) Fig. 7 Schematic map of sea-floor spreading model of Sulu Sea and its compression influence to northwestern part of Borneo (modified from Hutchison, 2004; Hall, 2013) |
(2) 文莱—沙巴盆地陆架边缘迁移轨迹:自中中新世起,随着南沙地块与婆罗洲地块的全面碰撞,南海扩张作用终止,之后整个区域进入快速沉降阶段,三角洲迅速向盆地进积(图 2d).伴随三角洲向盆地推进,陆架边缘快速向盆内迁移,迁移距离约54~130 km(Cullen, 2010).陆架边缘迁移的结果表明其南北两段迁移轨迹发生明显转折,分析认为中中新世以来苏禄海扩张所造成的NW向挤压效应导致这一变化,北部受挤压作用强,陆架陡窄,而南段受挤压影响较小,陆架宽缓(图 8).
|
图 8 文莱—沙巴盆地中中新世以来陆架边缘迁移轨迹(据Cullen, 2010修改) Fig. 8 Shelf edges migration path of Brunei-Sabah Basin from Middle Miocene to recent (modified from Cullen, 2010) |
(3) 婆罗洲相对运动方向及速率:婆罗洲西北部多地区近10年的GPS观测数据显示(Simons et al., 2007),该地区相对于巽他古陆存在4~6 mm·a-1的移动速率,运动方向NW向(图 9),与深水褶皱冲断带逆冲方向一致,说明长期存在的NW向区域挤压应力与深水褶皱冲断带的发育存在一定的相关性.
|
图 9 婆罗洲相对巽他古陆运动的方向及速率GPS测量图(据Simons et al., 2007;King et al., 2010) Fig. 9 GPS measurements demonstrating the absolute plate motions across Borneo relative to Sundaland (from Simons et al., 2007; King et al., 2010) |
因此,综合上述证据表明苏禄海扩张造成的挤压应力将会传递到婆罗洲西北部并作用于文莱—沙巴盆地北部,最终导致深水褶皱冲断带南北两段构造变形特征差异显著.
2.4.2 逆冲推覆动力学机制关于文莱—沙巴盆地深水褶皱冲断带的动力学机制,大多数学者的基本认识相同,均认为是挤压应力作用下所形成的大型逆冲推覆构造,但是关于挤压作用的成因却存在着争议,有重力驱动、岩石圈应力驱动、近应力场驱动、远应力场驱动以及混合应力场驱动等多种不同观点(Hinz and Schlüter, 1985; Hinz et al., 1989; Ingram et al., 2004; Franke et al., 2008; Hesse et al., 2009, 2010a, 2010b; Cullen et al., 2010;Morley et al., 2011; 韩冰等,2015; 马良涛等,2015;Wang et al., 2016).本文研究认为文莱—沙巴盆地发育于活动大陆边缘,经历了俯冲增生和快速沉降两大演化阶段,其深水褶皱冲断带的形成与板块俯冲、重力滑动和苏禄海扩张造成的远程挤压效应作用密切相关.
前已述及,研究区褶皱冲断带垂向上具有分期性,两期逆冲推覆的动力学机制差异显著.下部逆冲褶皱冲断带的动力学成因为古南海洋壳向婆罗洲的俯冲作用,是在持续俯冲作用下形成的逆冲倾向与俯冲方向一致的混杂增生楔,该增生楔经历了多期构造挤压变形,地层褶皱强烈,逆冲断层倾角大、近于直立(图 4).中中新世以后,随着冠军和巴兰三角洲持续向海推进,上部逆冲褶皱冲断带开始发育,其中南段受重力滑动作用控制,深水区褶皱冲断带内地层收缩量与陆架区地层伸展量相当,而北段除受重力滑动作用影响外,苏禄海NW-SE向扩张对其施加NW向区域远程挤压应力,使得逆冲褶皱间距更小,深水区褶皱冲断带地层收缩量明显大于陆架区地层伸展量.
此外,值得注意的是不论是下部逆冲褶皱冲断带还是上部逆冲褶皱冲断带,沿垂直构造走向方向,逆冲地层时代均具有自陆向海逐渐变新的趋势(Tongkul, 1994; Hesse et al., 2010a).为此,本文建立了文莱—沙巴盆地深水褶皱冲断带的逆冲推覆模式(图 10),进一步深入揭示其形成的动力学特征,该模式表现为一种典型的前展式叠瓦状逆冲推覆体系,该推覆体系内每个逆冲推覆体在长期挤压作用下发生叠瓦状变形,当逆冲前缘变形程度超过地层最大塑性强度时,地层破裂错断,形成新的推覆体.文莱—沙巴盆地深水区正是在这种弹塑性周期推覆过程中,相继发育了多期叠瓦状逆冲推覆体,并伴生地层褶皱变形,形成大型深水褶皱冲断带.
|
图 10 文莱—沙巴盆地深水褶皱冲断带逆冲推覆模式 Fig. 10 Thrust model of deepwater fold and thrust belts in Brunei-Sabah Basin |
大量的勘探实践表明,深水褶皱冲断带不仅发育众多有利于油气聚集的构造圈闭,而且由于逆冲构造活动的影响,极大的改善了油气的运聚条件,易于形成大规模油气田(何登发和贾承造,2005),尼日尔和墨西哥湾地区深水褶皱冲断带内所发现的多个大中型油气田即是明证(Rowan et al., 2004; 邓荣敬等,2008).文莱—沙巴盆地位于南海南部挤压大陆边缘,油气地质条件优越(Zhang et al., 2017),且深水褶皱冲断带已发现多个大中型油气田(Ingram et al., 2004; Milton, 2006),显示了良好的勘探潜力.前述研究表明盆地深水区发育两期褶皱冲断带,但下部褶皱冲断带埋藏深、资料少、地震分辨率低,且露头揭示该套地层局部变质(Hutchison(1996a, 1996b)),因此非该区深水勘探首选,故下文将重点探讨上部深水褶皱冲断带成藏特征.
(1) 烃源岩:钻井证实文莱—沙巴盆地深水区发育中中新统、上中新统和上新统三套烃源岩,其中上中新统烃源岩是主力烃源岩(IHS,2012).干酪根类型以Ⅱ-Ⅲ型为主,TOC主要在0.15%~90%之间,生烃潜力指数范围变化较大,主要在0.1~60 mg·g-1之间,生烃潜力为差-好.生物标志化合物特征则表现较高的Pr/Ph(姥植比)、较高的三萜烷/甾烷值,具有中-高含量双杜松烷和奥利烷(Mazlan et al., 1999),指示深水区烃源岩有机质来源于陆生高等植物,为陆架区三角洲内部堆积的有机质(树脂、热带植物的蜡质角质层、红树林煤)经历再搬运作用的结果,于低位域期间进入深海环境(Anuar and Muhamad, 2000; Saller et al., 2006),因此深水褶皱冲断带上端陆架三角洲的发育程度将直接影响深水褶皱冲断内烃源岩的规模.中中新世以来,研究区深水褶皱冲断带南段受巴兰三角洲和冠军三角洲共同控制,北段仅受冠军三角洲影响(图 1),故受控于陆架区三角洲发育规模,南段烃源岩特征总体优于北段,且受三角洲推进距离的影响,深水褶皱冲断带近端烃源岩条件好于远端.
(2) 储层:文莱—沙巴盆地深水储层主要由浊积扇沉积的浊积砂岩组成,浊积砂岩储层年代从中中新世到早上新世,目前已发现不同时期、不同规模和样式的浊积扇,其中最重要的是最年轻的Lingan扇、Pink扇、Kamunsu扇、Kinarut扇和最老的Kebabangan扇(图 11)(Ingram et al., 2004).研究表明褶皱冲断带的构造活动对上述浊积扇的发育具有明显的控制作用,中中新世以来,逆冲构造活动强烈时,在相对海平面下降期间,三角洲携带大量沉积物推进到陆架边缘并通过峡谷水道向深水区搬运,在盆地内堆积多期高能富砂的浊积扇(Cullen,2010;Lambiase and Cullen, 2013).相反,逆冲构造活动较弱时,相对海平面下降并不能使整个陆架暴露,沉积物以低能富泥浊积扇体系的方式堆积于相对狭窄的陆架区.受陆架三角洲的控制,与烃源岩类似,研究区上部褶皱冲断带南段富砂浊积扇的规模大于北段.
|
图 11 文莱—沙巴盆地深水扇储层及圈闭发育特征(据Ingram et al., 2004修改) Fig. 11 The characteristics of reservoirs and traps of deepwater fans of Brunei-Sabah Basin (modified from Ingram et al., 2004) |
(3) 圈闭:世界深水勘探实践证实,深水褶皱冲断带的背斜或一侧的逆断层封闭是最可能的工业油气构造(Morley, 2011).研究区深水褶皱冲断带内由于逆冲断层活动,导致逆冲断层上部发育众多断层相关褶皱背斜,形成良好的构造圈闭(图 3和图 6),有利于油气的大规模聚集.从剖面上看自海向陆,背斜幅度逐渐增大、紧闭性逐渐增强,具有一种向陆逐渐变窄的趋势,这与向陆方向各背斜顶部构造分块性逐渐增强、微盆地特征更清楚相一致.但由于逆冲构造变形的差异性,南段形成的背斜圈闭普遍完整性好,背斜宽缓、面积大、幅度中等,而北段受挤压作用影响背斜紧闭、幅度大,但面积小,且逆冲块体局部可能会出露海底,破坏圈闭的完整性,产生高风险的顶部渗透,壳牌在沙巴东北部(即北段)深水褶皱冲断带内曾有过钻探失利的实例(图 11)(Ingram et al., 2004),表明圈闭有效性是研究区深水勘探的关键因素之一.
(4) 运移:褶皱冲断带内的构造活动对油气运移也会产生重要影响,逆冲断层活动条件下,由断层滑动引起的扩容作用会导致断层渗透性增强,使流体沿断层流动,断层就作为了油气运移的通道充注到早期形成的逆冲相关褶皱中.如果这些圈闭后期没有经过变形改造破坏,油气就地埋藏保存;一旦逆冲断层活动突破上覆盖层的限制,油气通过断裂再次运移,油气藏遭受破坏.研究区深水褶皱冲断带的持续变形对于油气运移和圈闭充注具有重要影响,前展式叠瓦状逆冲变形样式使得自海向陆靠近南沙海槽一侧断裂活动相对较弱,油气先沿滑脱面侧向运移,后沿断裂垂向充注至圈闭中聚集;而靠陆一侧除断裂活动外,受物源供给影响,底辟作用强烈,可作为油气运移的重要通道(图 3),且其上覆厚层沉积盖层,有利于油气保存;而两者之间的过渡区域由于断裂活动强烈,油气先沿主逆冲断裂运移至背斜圈闭聚集成藏外,后受背斜顶部次级断裂影响,继续向上运移,在浅层形成天然气水合物或留下明显流体逃逸的通道(Hesse, et al., 2010a; Paganoni et al., 2018),甚至局部地区逆冲断层断穿上覆地层,导致油气运移至海底遭受破坏,近年来在文莱—沙巴盆地深水区的海底地球化学取样结果就证实了这一点(Ingram et al., 2004).
(5) 盖层与保存:深水构造勘探最大的单一风险之一就是盖层的封闭性,在深水环境中,泥岩顶部封闭能够控制大型的烃柱高度(Kostenko et al., 2008),研究区南部褶皱冲断带其上陆坡区发育巨厚的上新世-第四纪地层,而北部相应的沉积却较少(Morley and Back, 2008),南部顶盖层封闭条件明显优于北部.然而需要注意的是,顶部盖层封闭性易被背斜脊部的流体柱和泥火山管道破坏(Deville et al., 2006;Morley,2009).同时,脊部的正断层也能够导致顶部封闭破坏(Morley, 2007b).研究区自海向陆在深水褶皱冲断带强烈逆冲活动区,推覆体前缘逆断层上盘背斜通常包含浅部和顶部伸展断层,且浅部隆起上覆层易遭受海底滑塌破坏,保存条件较差(图 11),而靠近陆坡的近端区及靠近南沙海槽的远端区顶部断层不发育,利于油气保存.Ingram等(2004)研究成果也表明文莱—沙巴盆地深水区油气发现主要集中于不活动的、埋藏的构造,其圈闭和封堵的完整性完好.在逆冲构造活动区,由于高的流体压力和顶部封盖水压破裂,圈闭完整性风险较大.
上述分析表明,文莱—沙巴盆地深水褶皱冲断带内油气成藏条件优越,虽存在一定的勘探风险,但潜力较大,这对目前浅水陆架区构造圈闭已基本钻探完毕,急需挺进深水的文莱—沙巴盆地具有非常重要的现实意义.同时,深水褶皱冲断带内已发现多个油气田,如Kikeh油田(4~7亿桶油当量)以及Gumusut-Kakap气田(2.2万亿立方英尺天然气储量)(图 1)(Ingram et al., 2004; Milton, 2006),极大的增强了在该构造带内勘探的信心.此外,综合考虑研究区深水褶皱冲断带构造变形特点、物源供给及油气地质条件,认为上部深水褶皱冲断带南段成藏条件要优于北段,且靠近陆坡的近端要优于远端,可作为勘探部署重点.
4 结论文莱—沙巴盆地深水褶皱冲断带是在多期NW向挤压应力作用下形成的大型逆冲推覆构造,以前展式向盆地扩展,在周期性推覆过程中,形成多期叠瓦状逆冲推覆体,导致发育断弯、断展、断滑褶皱等3种断层相关褶皱以及叠瓦扇和冲起构造两种逆冲构造组合.该褶皱冲断带具有“垂向分期、平面分段”的构造变形特征,垂向上,以中中新统底界面为界可划分为下部和上部两套逆冲褶皱冲断带,其中下部逆冲褶皱冲断带的形成与古南海的俯冲密切相关,上部逆冲褶皱冲断带是三角洲前缘重力滑动与苏禄海扩张造成的区域挤压应力远程效应共同作用的结果.依据逆冲构造背斜间距及变形强度,平面上可分为南北两段,其中北段背斜褶皱数量多、褶皱距离短、逆冲断层倾角陡,南段反之;且北段深水褶皱冲断带内地层缩短量大于陆架区伸展量,两者之差2~6 km,南段两者相当,苏禄海扩张造成的区域挤压应力远程效应主控深水褶皱冲断带内南北两段构造变形差异性,导致北段变形强于南段.此外,研究区深水褶皱冲断带发育众多构造圈闭,而逆冲断层的活动不仅有利于油气的运移,还改善了储层条件,导致该区发育优越的油气成藏条件,具有极好的勘探潜力,综合考虑研究区深水褶皱冲断带构造变形特点、物源供给及油气地质条件,认为上部深水褶皱冲断带南段成藏条件要优于北段,且靠近陆坡的近端要优于远端,可作为勘探部署重点.
致谢 论文在完成过程得到中国地质大学(武汉)任建业教授、佟殿军教授、中海油研究总院崔敏博士、马良涛博士后、广州海洋地质调查局韩冰同志的大力支持及帮助,中国科学院南海所卓海腾博士后对论文英文摘要进行了详细修改,外审专家及编辑部提出了许多宝贵修改意见,在此一并表示衷心感谢!
Anuar A, Muhamad A J. 2000. Case study on source rock deposition and preservation:NW Borneo deep water areas. AAPG ICE. Expanded Abstracts, 1398-1399.
|
Back S, Tioe H J, Tran X T, et al. 2005. Stratigraphic development of synkinematic deposits in a large growth-fault system, onshore Brunei Darussalam. Journal of the Geological Society London, 162(2): 243-258. DOI:10.1144/0016-764903-006 |
Back S, Strozyk F, Kukla P A, et al. 2008. Three-dimensional restoration of original sedimentary geometries in deformed basin fill, onshore Brunei Darussalam, NW Borneo. Basin Research, 20(1): 99-117. DOI:10.1111/bre.2008.20.issue-1 |
Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea:implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research, 98(B4): 6299-6328. DOI:10.1029/92JB02280 |
Chen X, Lin J F, Xu S G. 2002. Dynamic analysis of nappe structure region in the southern margin of the Nansha Trough. Acta Oceanologica Sinica (in Chinese), 24(1): 73-85. |
Cullen A B. 2010. Transverse segmentation of the Baram-Balabac Basin, NW Borneo:refining the model of Borneo's tectonic evolution. Petroleum Geoscience, 16(1): 3-29. DOI:10.1144/1354-079309-828 |
Deng R J, Deng Y H, Yu S, et al. 2008. Hydrocarbon geology and reservoir formation characteristics of Niger Delta Basin. Petroleum Exploration & Development (in Chinese), 35(6): 755-762. |
Deville E, Guerlais S H, Callec Y, et al. 2006. Liquefied vs stratified sediment mobilization processes:insight from the South of the Barbados accretionary prism. Tectonophysics, 428(1-4): 33-47. DOI:10.1016/j.tecto.2006.08.011 |
Franke D, Barckhausen U, Heyde I, et al. 2008. Seismic images of a collision zone offshore NW Sabah/Borneo. Marine and Petroleum Geology, 25(7): 606-624. DOI:10.1016/j.marpetgeo.2007.11.004 |
Grando G, McClay K. 2004. Structural evolution of the Frampton growth fold system, Atwater Valley-Southern Green Canyon area, deep water Gulf of Mexico. Marine and Petroleum Geology, 21(7): 889-910. DOI:10.1016/j.marpetgeo.2003.12.005 |
Hall R. 2013. Contraction and extension in northern Borneo driven by subduction rollback. Journal of Asian Earth Science, 76: 399-411. DOI:10.1016/j.jseaes.2013.04.010 |
Hall R, Breitfeld H. 2017. Nature and demise of the Proto-South China Sea. Bulletin of the Geological Society of Malaysia, 63(1):61-76.
|
Hamilton W. 1979. Tectonics of the Indonesian Region. Washington, D.C.: United States Government Printing Office.
|
Han B, Zhu B D, Wan L, et al. 2015. Deep-water fold and thrust tectonics in southeastern Nansha Trough. Geological Review (in Chinese), 61(5): 1061-1067. |
Hazebroek H P, Tan D N K. 1993. Tertiary tectonic evolution of the NW Sabah continental margin. Bulletin of the Geological Society of Malaysia, 33: 195-210. |
He D F, Jia C Z. 2005. Thrust tectonics and hydrocarbon accumulation. Petroleum Exploration & Development, 32(2): 55-62. |
Hesse S, Back S, Franke D. 2009. The deep-water fold-and-thrust belt offshore NW Borneo:gravity-driven versus basement-driven shortening. GSA Bulletin, 121(5-6): 939-953. DOI:10.1130/B26411.1 |
Hesse S, Back S, Franke D. 2010a. The structural evolution of folds in a deepwater fold and thrust belt-a case study from the Sabah continental margin offshore NW Borneo, SE Asia. Marine and Petroleum Geology, 27(2): 442-454. DOI:10.1016/j.marpetgeo.2009.09.004 |
Hesse S, Back S, Franke D. 2010b. Deepwater folding and thrusting offshore NW Borneo, SE Asia. Geological Society, London, Special Publications, 348(1): 169-185. DOI:10.1144/SP348.9 |
Higgins S, Davies R J, Clarke B. 2007. Antithetic fault linkages in a deep water fold and thrust belt. Journal of Structural Geology, 29(12): 1900-1914. DOI:10.1016/j.jsg.2007.09.004 |
Higgins S, Clarke B, Davies R J, et al. 2009. Internal geometry and growth history of a thrust-related anticline in a deep water fold belt. Journal of Structural Geology, 31(12): 1597-1611. DOI:10.1016/j.jsg.2009.07.006 |
Hinz K, Schlüter H U. 1985. Geology of the Dangerous Grounds, South China Sea, and the continental margin off Southwest Palawan:results of SONNE cruises SO-23 and SO-27. Energy, 10(3-4): 297-315. DOI:10.1016/0360-5442(85)90048-9 |
Hinz K, Fritsch J, Kempter E H K, et al. 1989. Thrust tectonics along the north-western continental margin of Sabah/Borneo. Geologische Rundschau, 78(3): 705-730. DOI:10.1007/BF01829317 |
Holloway N H. 1981. North Palawan Block, Philippines; its relation to Asian mainland and role in evolution of South China Sea. AAPG Bulletin, 66(9): 1355-1383. |
Huang Z X, Xu Y. 2011. S-wave velocity structure of South China Sea and surrounding regions from surface wave tomography. Chinese Journal of Geophysics (in Chinese), 54(12): 3089-3097. DOI:10.3969/j.issn.0001-5733.2011.12.010 |
Hutchison C S. 1996a. The 'Rajang accretionary prism' and 'Lupar Line' problem of Borneo.//Hall R, Blundell D eds. Tectonic Evolution of Southeast Asia. Geological Society, London, Oxford University Press.
|
Hutchison C S. 1996b. South-East Asian Oil, Gas, coal and Mineral Deposits. Oxford Monographs on Geology and Geophysics 36: 1-265. |
Hutchison C S. 2004. Marginal basin evolution:the southern South China Sea. Marine and Petroleum Geology, 21(9): 1129-1148. DOI:10.1016/j.marpetgeo.2004.07.002 |
IHS. 2012. North Luconia Province China, Malaysia, Vietnam, Brunei. Englewood: IHS Inc.
|
Ingram G M, Chisholm T J, Grant C J, et al. 2004. Deepwater North West Borneo:hydrocarbon accumulation in an active fold and thrust belt. Marine and Petroleum Geology, 21(7): 879-887. DOI:10.1016/j.marpetgeo.2003.12.007 |
Jolly B A, Lonergan L, Whittaker A C. 2016. Growth history of fault-related folds and interaction with seabed channels in the toe-thrust region of the deep-water Niger delta. Marine and Petroleum Geology, 70: 58-76. DOI:10.1016/j.marpetgeo.2015.11.003 |
King R, Backé G, Morley C K, et al. 2010. Balancing deformation in NW Borneo:quantifying plate-scale vs. gravitational tectonics in a delta and deepwater fold-thrust belt system. Marine and Petroleum Geology, 27(1): 238-246. |
Kostenko O V, Naruk S J, Hack W, et al. 2008. Structural evaluation of column-height controls at a toe-thrust discovery, deep-water Niger Delta. AAPG Bulletin, 92(12): 1615-1638. DOI:10.1306/08040808056 |
Lambiase J J, Cullen A B. 2013. Sediment supply systems of the Champion "Delta" of NW Borneo:implications for deepwater reservoir sandstones. Journal of Asian Earth Sciences, 76: 356-371. DOI:10.1016/j.jseaes.2012.12.004 |
Li C F, Lin J, Kulhanek D K, et al. 2015. Expedition 349 summary. In: Li C F, Lin J, Kulhanek D K, the Expedition 349 Scientists (Eds.), Proceedings of the International Ocean Discovery Program, 349, http://dx.doi.org/10.14379/iodp.proc.349.107.2015.
|
Li Z W, Liu S G, Luo Y H, et al. 2006. Structural style and deformational mechanism of southern Dabashan foreland fold-thrust belt in central China. Geotectonica et Metallogenia (in Chinese), 30(3): 294-304. |
Lu B L, Wang W Y, Zhang G C, et al. 2016. Overview of the deep processes and their coupling relationships with the petroliferous basins in the South China Sea. Progress in Geophysics (in Chinese), 31(3): 1342-1350. DOI:10.6038/pg20160357 |
Ma L T, Fan T E, Pan H P, et al. 2015. Structure feature and formation mechanism in Baram delta, NW Borneo. Marine Origin Petroleum Geology (in Chinese), 20(1): 10-16. |
Matthew O S, Won J, Udoekong G, et al. 2010. Resolving the structural complexities in the deepwater Niger-delta fold and thrust belt: a case study from the western lobe, Nigerian offshore depobelt. Search and Discovery #10289.
|
Mazlan B H M, Leong K M, et al. 1999. The petroleum geology and resources of Malaysia. Kuala Lumpur: Petroleum National Berhad, 499-542.
|
Milton C J. 2006. The Kikeh field, Sabah, East Malaysia.//AAPG International Conference and Exhibition, November 5-8, Technical Program. Perth, Australia.
|
Morley C K, Back S, Van Rensbergen P, et al. 2003. Characteristics of repeated, detached, Miocene-Pliocene tectonic inversion events, in a large delta province on an active margin, Brunei Darussalam, Borneo. Journal of Structural Geology, 25(7): 1147-1169. DOI:10.1016/S0191-8141(02)00130-X |
Morley C K. 2007a. Interaction between critical wedge geometry and sediment supply in a deep-water fold belt. Geology, 35(2): 139-142. DOI:10.1130/G22921A.1 |
Morley C K. 2007b. Development of crestal normal faults associated with deep-water fold growth. Journal of Structural Geology, 29(7): 1148-1163. DOI:10.1016/j.jsg.2007.03.016 |
Morley C K, Back S. 2008. Estimating Hinterland Exhumation from Late Orogenic Basin Volume, NW Borneo. Journal of the Geological Society, 165(1): 353-366. DOI:10.1144/0016-76492007-067 |
Morley C K. 2009. Growth of folds in a deep-water setting. Geosphere, 5(2): 59-89. DOI:10.1130/GES00186.1 |
Morley C K, King R, Hillis R, et al. 2011. Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity:a review. Earth-Science Reviews, 104(1-3): 41-91. DOI:10.1016/j.earscirev.2010.09.010 |
Paganoni M, Cartwright J A, Foschi M, et al. 2018. Relationship between fluid-escape pipes and hydrate distribution in offshore Sabah (NW Borneo). Marine Geology, 395: 82-103. DOI:10.1016/j.margeo.2017.09.010 |
Qin J X, Hao T Y, Xu Y, et al. 2011. The distribution characteristics and the relationship between the tectonic units of the Moho Depth in South China Sea and adjacent areas. Chinese Journal of Geophysics (in Chinese), 54(12): 3171-3183. DOI:10.3969/j.issn.0001-5733.2011.12.017 |
Qiu X L, Zhao M H, Ao W, et al. 2011. OBS survey and crustal structure of the Southwest Sub-basin and Nansha block, South China Sea. Chinese Journal of Geophysics (in Chinese), 54(12): 3117-3128. DOI:10.3969/j.issn.0001-5733.2011.12.012 |
Rouby D, Nalpas T, Jermannaud P, et al. 2011. Gravity driven deformation controlled by the migration of the delta front:The plio-Pleistocene of the eastern Niger delta. Tectonophysics, 513(1-4): 54-67. DOI:10.1016/j.tecto.2011.09.026 |
Rowan M G, Peel F J, Vendeville B C. 2004. Gravity-driven fold belts on passive margins.//McClay K R ed. Thrust Tectonics and Hydrocarbon Systems: AAPG Memoir 82. Tulsa: AAPG, 157-182.
|
Saller A H, Lin R, Dunham J B. 2006. Leaves in turbidite sands:the main source of oil and gas in the deepwater Kutei Basin, Indonesia. AAPG Bulletin, 90(10): 1585-1608. DOI:10.1306/04110605127 |
Sandal S T. 1996. The geology and hydrocarbon resources of negara brunei darussalam. Brunei Shell Petroleum/Brunei Museum, Syabas Bandar Seri Begawan, Brunei Darussalam, 1-243.
|
Simons W J F, Socquet A, Vigny C, et al. 2007. A decade of GPS in Southeast Asia:resolving Sundaland motion and boundaries. Journal of Geophysical Research, 112(B6). DOI:10.1029/2005JB003868 |
Suppe J. 1983. Geometry and kinematics of fault-bend folding. American Journal of Science, 283(7): 684-721. DOI:10.2475/ajs.283.7.684 |
Taylor B, Hayes D E. 1983. Origin and history of the South China Sea basin. //Hayes D E ed. The tectonic and geologic evolution of Southeast Asian Seas and islands:Part 2. Washington D C:AGU, Geophysical Monograph, 27: 23-56. |
Tingay M R P, Hillis R R, Morley C K, et al. 2005. Present day stress orientation in Brunei:a snapshot of 'prograding tectonics' in a Tertiary delta. Journal of the Geological Society, 162(1): 39-49. DOI:10.1144/0016-764904-017 |
Tongkul F. 1994. The geology of Northern Sabah, Malaysia:its relationship to the opening of the South China Sea Basin. Tectonophysics, 235(1-2): 131-137. DOI:10.1016/0040-1951(94)90021-3 |
Wan Y B, Li Z W, Deng B, et al. 2016. Pop-up structure in fold-and-thrust belt and its implications:an insight from analogue sandbox models of thrust wedge. Geoscience (in Chinese), 30(1): 110-121. |
Wang P C, Li S Z, Guo L L, et al. 2016. Mesozoic and Cenozoic accretionary orogenic processes in Borneo and their mechanisms. Geological Journal, 51(S1): 464-489. |
Wen Z X, Wang Z M, Song C P, et al. 2015. Structural architecture difference and petroleum exploration of passive continental margin basins in east Africa. Petroleum Exploration and Development (in Chinese), 42(5): 671-680. |
Wu J E, McClay K, Frankowicz E. 2015. Niger Delta gravity-driven deformation above the relict chain and Charcot oceanic fracture zones, Gulf of Guinea:Insights from analogue models. Marine and Petroleum Geology, 65: 43-62. DOI:10.1016/j.marpetgeo.2015.03.008 |
Yao Y J, Yang C P, Li X J, et al. 2013. The seismic reflection characteristics and tectonic significance of the tectonic revolutionary surface of mid-Miocene (T3 seismic interface) in the southern South China Sea. Chinese Journal of Geophysics (in Chinese), 56(4): 1274-1286. DOI:10.6038/cjg20130422 |
Zahirovic S, Seton M, Müller R D. 2014. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid Earth, 5(1): 227-273. DOI:10.5194/se-5-227-2014 |
Zhang G C, Qu H J, Liu S X, et al. 2015a. Tectonic cycle of marginal sea controlled the hydrocarbon accumulation in deep-water areas of South China Sea. Acta Petrolei Sinaica (in Chinese), 36(5): 533-545. |
Zhang G C, Wang P J, Wu J F, et al. 2015b. Tectonic cycle of marginal oceanic basin:a new evolution model of the South China Sea. Earth Science Frontiers (in Chinese), 22(3): 23-37. |
Zhang G C, Tang W, Xie X J, et al. 2017. Petroleum geological characteristics of two basin belts in southern continental margin in South China Sea. Petroleum Exploration and Development, 44(6): 899-910. DOI:10.1016/S1876-3804(17)30102-7 |
Zhao C Y, Song H B, Yang Z W, et al. 2014. Tectonic and thermal evolution modeling for the marginal basins of the southern South China Sea. Chinese Journal of Geophysics (in Chinese), 57(5): 1543-1553. DOI:10.6038/cjg20140518 |
陈雪, 林进峰, 许时耕. 2002. 南沙海槽南缘逆掩推复构造地区的动力学分析. 海洋学报, 24(1): 73-85. DOI:10.3321/j.issn:0253-4193.2002.01.010 |
邓荣敬, 邓运华, 于水, 等. 2008. 尼日尔三角洲盆地油气地质与成藏特征. 石油勘探与开发, 35(6): 755-762. DOI:10.3321/j.issn:1000-0747.2008.06.020 |
韩冰, 朱本铎, 万玲, 等. 2015. 南沙海槽东南缘深水逆冲推覆构造. 地质论评, 61(5): 1061-1067. |
何登发, 贾承造. 2005. 冲断构造与油气聚集. 石油勘探与开发, 32(2): 55-62. DOI:10.3321/j.issn:1000-0747.2005.02.013 |
黄忠贤, 胥颐. 2011. 南海及邻近地区面波层析成像和S波速度结构. 地球物理学报, 54(12): 3089-3097. DOI:10.3969/j.issn.0001-5733.2011.12.010 |
李智武, 刘树根, 罗玉宏, 等. 2006. 南大巴山前陆冲断带构造样式及变形机制分析. 大地构造与成矿学, 30(3): 294-304. DOI:10.3969/j.issn.1001-1552.2006.03.004 |
鲁宝亮, 王万银, 张功成, 等. 2016. 南海深部过程及与含油气盆地耦合关系研究进展. 地球物理学进展, 31(3): 1342-1350. DOI:10.6038/pg20160357 |
马良涛, 范廷恩, 潘海鹏, 等. 2015. 巴兰三角洲地区构造特征及其成因机制. 海相油气地质, 20(1): 10-16. DOI:10.3969/j.issn.1672-9854.2015.01.002 |
秦静欣, 郝天珧, 徐亚, 等. 2011. 南海及邻区莫霍面深度分布特征及其与各构造单元的关系. 地球物理学报, 54(12): 3171-3183. DOI:10.3969/j.issn.0001-5733.2011.12.017 |
丘学林, 赵明辉, 敖威, 等. 2011. 南海西南次海盆与南沙地块的OBS探测和地壳结构. 地球物理学报, 54(12): 3117-3128. DOI:10.3969/j.issn.0001-5733.2011.12.012 |
万元博, 李智武, 邓宾, 等. 2016. 前陆褶皱冲断带冲起构造发育特征:基于砂箱构造物理模拟实验研究. 现代地质, 30(1): 110-121. DOI:10.3969/j.issn.1000-8527.2016.01.012 |
温志新, 王兆明, 宋成鹏, 等. 2015. 东非被动大陆边缘盆地结构构造差异与油气勘探. 石油勘探与开发, 42(5): 671-680. |
姚永坚, 杨楚鹏, 李学杰, 等. 2013. 南海南部海域中中新世(T3界面)构造变革面地震反射特征及构造含义. 地球物理学报, 56(4): 1274-1286. DOI:10.6038/cjg20130422 |
张功成, 屈红军, 刘世翔, 等. 2015a. 边缘海构造旋回控制南海深水区油气成藏. 石油学报, 36(5): 533-545. |
张功成, 王璞君, 吴景富, 等. 2015b. 边缘海构造旋回:南海演化的新模式. 地学前缘, 22(3): 23-37. |
赵长煜, 宋海斌, 杨振武, 等. 2014. 南海南部边缘沉积盆地构造-热演化历史. 地球物理学报, 57(5): 1543-1553. DOI:10.6038/cjg20140518 |
2018, Vol. 61


