甲状腺癌是世界上最常见的内分泌恶性肿瘤,其发病率近年来不断上升[1-2]。甲状腺癌主要包括分化型甲状腺癌(differentiated thyroid cancer,DTC)、低分化甲状腺癌、间变性甲状腺癌和甲状腺髓样癌4种类型,其中最常见的是DTC。DTC在所有甲状腺肿瘤中约占90%,可分为甲状腺乳头状癌(papillary thyroid carcinoma,PTC)和甲状腺滤泡状癌。WHO 2017版甲状腺肿瘤分类将PTC分为惰性及侵袭性,侵袭性亚型包括高细胞型、柱状细胞型、鞋钉型、实性型,以及新近提出的神经营养性受体酪氨酸激酶(neurotrophic receptor tyrosine kinase,NTRK)基因重排甲状腺乳头状癌(NTRK-rearranged papillary thyroid carcinoma,NRPTC)[3]。PTC的进展与多种遗传变异、表观遗传改变及各种信号通路具有相关性,98%的PTC病例中存在肿瘤驱动基因改变[4],由B-Raf原癌基因丝氨酸/苏氨酸蛋白激酶(B-Raf proto-oncogene, serine/threonine kinase;BRAF)和大鼠肉瘤病毒癌基因同源物(rat sarcoma viral oncogene homolog,RAS)的激活突变以及Ret原癌基因酪氨酸蛋白激酶受体(Ret proto-oncogene, tyrosine kinase receptor;RET)/NTRK的重排导致的基因变异占PTC基因组畸变的70%~80%[5]。甲状腺癌的常规治疗方法包括手术、放射性碘治疗和促甲状腺激素抑制疗法,大多数患者通过常规治疗取得了良好的效果[6]。然而,对于晚期、转移性和/或碘难治性甲状腺癌患者,常规治疗往往不能令人满意[7]。
NRPTC具有浸润性、多结节、广泛淋巴管血管播散、易于淋巴结及远处转移等特点[8-9]。近年来,随着越来越多的肿瘤鉴定出NTRK融合基因及精准医学的进步,针对原肌球蛋白受体激酶(tropomyosin receptor kinase,TRK)酪氨酸激酶位点的小分子抑制剂相继被开发出来。NTRK靶向抑制剂拉罗替尼(larotrectinib)和恩曲替尼(entrectinib)已获得美国FDA批准,可用于远处转移的NRPTC的治疗[9]。许多研究探讨了NTRK基因融合在各种肿瘤中的表现[10-11],但少有描述NTRK基因融合在甲状腺癌中表现的研究。尽管NTRK基因融合在甲状腺癌中很少见,但鉴于甲状腺癌的高患病率,患者的绝对数量并不低。此外,NTRK基因融合的甲状腺癌患者病理特征和临床生物学行为尚不清楚,诊断和治疗方法缺乏标准化。本文综述了甲状腺癌中NTRK基因融合相关研究的最新进展。
1 NTRK基因的基本特征NTRK基因家族由NTRK1、NTRK2和NTRK3组成,分别编码TRKA、TRKB和TRKC蛋白。TRKA参与疼痛和体温调节,TRKB参与运动、记忆、认知、情绪、食欲和体重调节,TRKC与本体感觉有关[12]。TRK是由胞外配体结合域、跨膜结构域和激酶结构域组成的跨膜蛋白,是神经生长因子、脑源性神经营养因子、神经营养因子4和神经营养因子3等多种神经营养因子的高亲和力受体[13-14]。TRK与配体结合后,可激活RAS-MAPK、ERK、PI3K/Akt和磷脂酶Cγ(phospholipase Cγ,PLCγ)等通路,促进细胞增殖、分化和存活,并防止细胞凋亡,同时这些通路的异常激活与肿瘤发生有关[14-16]。NTRK基因融合是肿瘤的致癌驱动因素。染色体内或染色体间重排使NTRK基因的3'-区域(包含酪氨酸激酶结构域)与融合伙伴基因的5'-区域序列结合产生融合基因,编码的TRK嵌合蛋白不需要任何配体与受体蛋白结合即可激活下游信号通路,从而刺激肿瘤的发生和发展[17-19]。这些涉及TRK的致癌融合蛋白已在多种血液学肿瘤和实体肿瘤中被检测到[17, 20-22]。
NTRK基因融合存在于多种成人和儿童癌症中[13]。在一些罕见的癌症(包括唾液腺或乳腺的分泌性癌、先天性纤维肉瘤和先天性中胚叶细胞肾瘤)中NTRK基因融合非常普遍[23],而在常见的癌症(包括肉瘤、甲状腺癌、胃肠道癌症、非分泌性乳腺癌和肺癌)中却比较罕见[13]。在前一类癌症中,约90%的患者可以发现NTRK基因融合,使其几乎成为这些疾病状态的病理特征;在后一类癌症中,NTRK基因融合出现的频率各不相同(多数低于1%)[24]。Solomon等[25]在33 997例患者中发现87例(0.26%)存在NTRK基因融合,肺癌、胰腺癌、胆道癌和阑尾癌患者的NTRK基因融合检出率为0.3%~0.5%,甲状腺癌患者的NTRK基因融合检出率为2.28%。同样,Rosen等[24]在26 000多例患者中发现76例(0.28%)存在NTRK基因融合,在唾液腺肿瘤中发现12例(5.29%),在甲状腺癌中发现10例(2.22%),而多形性胶质母细胞瘤、阑尾癌、黑色素瘤、胆道癌、肠癌、胰腺癌、肺癌和浸润性乳腺癌患者NTRK基因融合检出率为0.08%~0.62%。相反,NTRK基因融合在罕见恶性肿瘤中的检出率非常高,90%的分泌性乳腺癌和婴儿纤维肉瘤以及79.68%的分泌性唾液腺癌中可以检查到NTRK基因融合[26]。有趣的是,一些血液系统恶性肿瘤如急性淋巴细胞白血病和急性髓系白血病也被证明存在NTRK基因融合[27]。
2 NTRK基因融合在甲状腺癌中的临床意义甲状腺癌患者NTRK基因融合的检出率较低(2.2%~2.3%)[24-25]。由于PTC预后较好、罕见复发、碘治疗耐受性高、NTRK基因融合率低,以及NTRK基因融合检测所需的检测费用高昂,常规开展NTRK基因融合检测的必要性往往被忽视,这将导致在大规模人群中对该指标的检测不足和研究人群的选择偏倚,因此PTC中NTRK基因融合检出率的波动范围可能较大。多项研究表明,ETS变异转录因子6(ETS variant transcription factor 6,ETV6)-NTRK3基因融合是甲状腺癌中最常见的NTRK基因融合类型[28-29]。不同的PTC由于特殊的遗传修饰表现出不同的组织学特征、生物活性、分化程度和预后,如常见的BRAF-V600E点突变与初次手术时的淋巴结转移、甲状腺外浸润、肿瘤分期较晚以及参与碘代谢的基因表达降低有关,并能独立预测肿瘤复发[30]。PTC中NTRK基因融合与更高的肿瘤分期有关[31],更常见于放射性碘难治性DTC、转移性甲状腺癌或晚期甲状腺癌患者[32-33],但国内类似的研究十分少见。
NTRK基因融合甲状腺癌的病理特征包括混合结构模式、多结节生长、广泛的淋巴血管浸润和慢性淋巴细胞性甲状腺炎[8-9, 29, 34-38]等。Chu等[9]在11例NTRK基因重排甲状腺癌患者中均发现颈部淋巴结转移。Pekova等[29]发现与NTRK3基因融合甲状腺癌相比,NTRK1基因融合甲状腺癌更常表现出多态性、远处转移和侵袭性。Viswanathan等[37]在一项对14个NTRK基因重排甲状腺癌样本的研究中,发现其细胞形态学特征包括纤维化(93%)、混合结构模式(79%)、嗜酸细胞质(43%)、液泡质(36%)等,还包括2例罕见的核内假包涵体。Kerr等[39]的研究也在NTRK基因重排甲状腺癌中发现了类似的特征,提示这些特征可能具有一定的诊断潜力。值得注意的是,该研究还描述了棘皮动物微管相关蛋白样蛋白4(echinoderm microtubule-associated protein-like 4,EML4)-NTRK3基因融合甲状腺癌中独特的玫瑰花状微管结构,其他研究者尚未描述过这种结构。Lee等[36]报道,NTRK基因融合甲状腺癌也表现出中间核特征(如凹槽、延伸和伪包膜)。既往研究报道NTRK1基因融合PTC多为混合性乳头和滤泡结构,而NTRK3基因融合PTC大多以滤泡结构为主;多结节性生长、甲状腺外侵犯、血管侵犯及远处转移更常见于NTRK1基因融合PTC[29]。与儿童BRAF基因突变PTC相比,儿童NRPTC肿瘤体积更大,更常见淋巴管血管内癌栓,可伴大量砂粒体形成[31, 40]。
此外,NTRK基因突变可能不会与其他的突变同时发生,有部分文献报道NRPTC多与BRAF-V600E突变互斥[35, 41-42]。这也许可以解释为什么Kong等[35]在BRAF野生型PTC中观察到NTRK基因融合的显著富集,当排除常见变异时,NTRK基因融合检出率升高。
目前很难确定NTRK融合蛋白在甲状腺癌中的细胞和组织特异性表达模式,可能是因为样本量的限制或NTRK融合蛋白的多样性。然而,当甲状腺癌表现为多结节生长、混合结构模式、广泛淋巴转移和某些罕见表现(如中间核和核内假包涵体)时,应评估NTRK基因融合状态,这些病理特征有助于诊断和预后评估。
3 NTRK基因融合的检测方法目前检测NTRK基因融合的方法包括二代测序(next generation sequencing,NGS)、PCR、荧光原位杂交(fluorescence in situ hybridization,FISH)、免疫组织化学(immunohistochemistry,IHC)等。由于FISH、NGS检测费用较高且耗时较长,而PCR需要使用特异性引物,因此NTRK基因融合检测可先采用IHC法进行初筛,对IHC结果可疑者再行分子检测进一步证实。
3.1 NGSNGS是检测NTRK基因融合最有效的方法,具有较高的灵敏度和特异度,并且可在同一个肿瘤样本中同时检测多个癌基因。其缺点是流程复杂、耗时较长、成本高。Solomon和Hechtman[43]发现,由于NTRK2和NTRK3基因中含有丰富的内含子,基于DNA的NGS检测NTRK3基因融合的灵敏度有限。因此,基于RNA的NGS目前被认为是检测NTRK基因融合的金标准,它避免了内含子的参与,可以识别融合伙伴、外显子和基因断点。同时评估RNA和DNA的NGS可以大大提高检测效率[25, 44-45]。NGS方法的主要限制因素是RNA质量,临床样本通常以甲醛溶液固定石蜡包埋(formalin-fixed paraffin-embedded,FFPE)形式保存,在FFPE组织中RNA经常严重降解,尤其是标本前处理不佳和存储时间延长会明显降低RNA片段的大小。基于DNA的NGS的另一个作用是监测继发性耐药[46-47],第1代TRK抑制剂治疗后可能引起获得性耐药,持续监测NTRK基因融合患者血浆中肿瘤基因组的变化,有助于及时发现耐药突变,调整治疗方案。
3.2 PCRPCR具有技术成熟、检测速度快、能够定量检测、成本普遍较低等特点,这种方法必须明确融合伴侣类型及其外显子断点,以设计5'端融合伴侣基因和3'端NTRK基因激酶结构域编码序列的特异性引物,反转录后通过PCR扩增基因组,检测融合转录本的存在。由于NTRK基因在大多数正常组织中不转录翻译,因此,当发生NTRK基因融合后,NTRK基因3'端激酶结构域的转录水平将远高于5'端细胞外结构域[48],比较NTRK基因两端表达的差异可以提供基因融合的间接证据。然而,该方法需要设计并合成针对患者的特异性引物,无法检测未知的融合基因,还可能存在与样本量相关的偏差[43]。上述缺点限制了PCR在NTRK基因融合检测中的应用。
3.3 FISHFISH是一种基于DNA的技术,长期以来一直是检测基因重排的金标准[24, 49]。它是大多数诊断实验室的既定方法,检测时间短,灵敏度高[25, 50]。在NTRK基因融合检测中,由于需要使用特定的FISH探针(分别用于NTRK1、NTRK2和NTRK3)进行3种不同的检测,因此增加了检测时间和成本[51]。此外,FISH检测NTRK基因融合缺乏统一的判断标准,阳性结果判断是观察细胞内红色和绿色荧光信号之间的距离,存在较强的主观性。
3.4 IHCIHC是一种快速且廉价的诊断筛查工具。有许多抗体可用于检测NTRK融合蛋白,包括针对常见羧基端序列(TRKA、TRKB和TRKC共有)的pan-TRK抗体和针对其他类型TRK蛋白的抗体[44]。pan-TRK抗体是一种广谱TRK抗体,应用最为广泛[52-54]。对于IHC检测NTRK融合蛋白的灵敏度和特异度,不同研究得出不同的结论。Hechtman等[55]研究表明,pan-TRK IHC检测NTRK融合蛋白的灵敏度和特异度分别为95.2%和100%。在另一项研究中,pan-TRK IHC检测甲状腺癌中NTRK融合蛋白的灵敏度和特异度分别为81.8%和100%[25]。还有其他一些研究也显示了类似的结果,即pan-TRK IHC对NTRK融合蛋白的检测具有高特异度和中等灵敏度[56-57]。这可能是因为pan-TRK抗体理论上可用于检测任何过表达的TRK蛋白,在生理上表达TRK蛋白的正常组织(如平滑肌、睾丸组织和神经成分)及神经或平滑肌分化的肿瘤中可能产生假阳性结果[55],其他可能的原因还包括背景信号引起的误读、与结构重排无关的TRK蛋白过表达、非特异性抗体反应或交叉反应等。至于pan-TRK IHC检测偶尔会在NTRK3融合蛋白患者中产生假阴性结果,目前很难找到合理解释。在Macerola等[58]的研究中,pan-TRK IHC检测没有显示出令人满意的特异度(89%)和灵敏度(85%),该研究认为基于IHC的检测并不是筛查甲状腺癌中NTRK基因重排的有效策略。
4 NTRK与甲状腺癌的靶向治疗自2018年以来,美国FDA已批准2种TRK抑制剂拉罗替尼和恩曲替尼用于治疗转移性NTRK基因融合阳性的实体瘤患者[9, 59-61]。拉罗替尼和恩曲替尼是第1代TRK抑制剂,在NTRK基因融合肿瘤中均可抑制MAPK、PI3K-Akt、PLCγ和STAT3通路[10],在成人和儿童恶性肿瘤治疗中显示出令人信服的功效,使NTRK基因融合患者获益[46]。
拉罗替尼是一种高活性TRK抑制剂,在TRK融合阳性实体瘤患者中具有良好的安全性。Hong等[62]对3项拉罗替尼治疗实体瘤的Ⅰ/Ⅱ期临床试验进行了汇总分析,结果显示24例NTRK基因融合甲状腺癌患者中有19例(79%)获得了缓解。Waguespack等[63]汇总分析了3项拉罗替尼Ⅰ/Ⅱ期临床试验(NCT02576431、NCT02122913和NCT02637687)的数据,发现拉罗替尼治疗NTRK基因融合甲状腺癌的客观缓解率(objective response rate,ORR)为71%,其中22例DTC患者的ORR为86%,13例既往接受治疗的DTC患者的ORR为92%。一项针对儿童NTRK基因融合实体瘤患者(包括2例NTRK基因融合甲状腺癌患者)的研究显示,ORR为93%[64]。此外,还有研究表明拉罗替尼可增强或恢复甲状腺癌组织对放射性碘的摄取[65]。
恩曲替尼是一种靶向TRK、肉瘤致癌因子1受体酪氨酸激酶(ROS proto-oncogene 1, receptor tyrosine kinase;ROS1)、间变性淋巴瘤激酶(anaplastic lymphoma kinase,ALK)和JAK2的多激酶抑制剂,是另一种被批准用于TRK融合阳性实体瘤的治疗方法,但仅限应用于12岁以上的患者[66]。恩曲替尼可以穿过血脑屏障[66]。Doebele等[67]对3项恩曲替尼治疗晚期或转移性NTRK基因融合实体瘤的Ⅰ/Ⅱ期临床试验进行了汇总分析,结果显示54例患者(包括5例甲状腺癌)的ORR为57%,中位缓解持续时间(duration of overall response,DOR)为10.4个月,中位无进展生存期(progression-free survival,PFS)为11.2个月;脑转移患者的ORR为54.5%。另一项汇总分析显示恩曲替尼治疗晚期或转移性NTRK基因融合实体瘤的ORR为61.2%,中位DOR为20.0个月,中位PFS为13.8个月;其中13例甲状腺癌患者的ORR为53.8%,中位DOR为13.2个月,中位PFS为19.9个月[68]。对恩曲替尼治疗晚期或转移性NTRK基因融合实体瘤的安全性分析显示,在总体安全性可评估人群(n=355)中,与治疗相关的不良事件导致剂量减少、剂量中断和治疗终止的发生率分别为27%、25%和4%[67]。
恩曲替尼和拉罗替尼之间的疗效差异可能与患者群体和研究设计的差异有关。在针对恩曲替尼的研究中,患者通常年龄较大,晚期疾病患者的比例较高。大多数接受TRK抑制剂治疗的患者出现1~2级不良事件,如肌痛、疲劳、头晕和肝转氨酶升高等,这些事件可以通过剂量调整来控制或逆转[62, 67]。
尽管恩曲替尼和拉罗替尼的疗效令人鼓舞,但也有对这2种药物产生耐药的报道[47, 69]。在NTRK基因融合肿瘤中,获得性耐药涉及靶内或脱靶机制,脱靶耐药也可能与获得性BRAF-V600E突变、间质-上皮转化因子(mesenchymal epithelial transition factor,MET)扩增和Kirsten大鼠肉瘤病毒癌基因同源物(Kirsten rat sarcoma viral oncogene homolog,KRAS)突变有关[70]。幸运的是,克服对酪氨酸激酶抑制剂的获得性耐药性的第2代TRK抑制剂已经在开发中,包括正处于临床试验阶段的赛利替尼(selitrectinib,LOXO-195)[71]和瑞普替尼(repotrectinib,TPX-0005)(NCT03215511),有望消除由获得性NTRK激酶结构域突变介导的靶向耐药性。
5 小结本文总结了NTRK基因融合甲状腺癌的临床病理特征、诊断方法及治疗策略。NTRK基因融合是许多实体瘤致癌的广泛驱动因素,是重要的临床生物标志物。NTRK基因融合甲状腺癌表现出独特的临床病理特征,这可能有助于识别潜在的患者,还有待在大规模临床试验中进一步验证。然而,目前缺乏经济有效的方法在人群中筛查潜在的NTRK基因融合,因此,建立NTRK基因融合甲状腺癌的标准化诊断和治疗程序极为重要。
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI:10.3322/caac.21660 |
[2] |
VIGNERI R, MALANDRINO P, RUSSO M. Is thyroid cancer increasing in incidence and aggressiveness?[J]. J Clin Endocrinol Metab, 2020, 105(7): dgaa223. DOI:10.1210/clinem/dgaa223 |
[3] |
BALOCH Z W, ASA S L, BARLETTA J A, et al. Overview of the 2022 WHO classification of thyroid neoplasms[J]. Endocr Pathol, 2022, 33(1): 27-63. DOI:10.1007/s12022-022-09707-3 |
[4] |
ULISSE S, BALDINI E, LAURO A, et al. Papillary thyroid cancer prognosis: an evolving field[J]. Cancers (Basel), 2021, 13(21): 5567. DOI:10.3390/cancers13215567 |
[5] |
SAN ROMÁN GIL M, POZAS J, MOLINA-CERRILLO J, et al. Current and future role of tyrosine kinases inhibition in thyroid cancer: from biology to therapy[J]. Int J Mol Sci, 2020, 21(14): 4951. DOI:10.3390/ijms21144951 |
[6] |
MIRIAN C, GRØNHØJ C, JENSEN D H, et al. Trends in thyroid cancer: retrospective analysis of incidence and survival in Denmark 1980-2014[J]. Cancer Epidemiol, 2018, 55: 81-87. DOI:10.1016/j.canep.2018.05.009 |
[7] |
FILETTI S, DURANTE C, HARTL D, et al. Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2019, 30(12): 1856-1883. DOI:10.1093/annonc/mdz400 |
[8] |
SEETHALA R R, CHIOSEA S I, LIU C Z, et al. Clinical and morphologic features of ETV6-NTRK3 translocated papillary thyroid carcinoma in an adult population without radiation exposure[J]. Am J Surg Pathol, 2017, 41(4): 446-457. DOI:10.1097/PAS.0000000000000814 |
[9] |
CHU Y H, DIAS-SANTAGATA D, FARAHANI A A, et al. Clinicopathologic and molecular characterization of NTRK-rearranged thyroid carcinoma (NRTC)[J]. Mod Pathol, 2020, 33(11): 2186-2197. DOI:10.1038/s41379-020-0574-4 |
[10] |
HAGOPIAN G, NAGASAKA M. Oncogenic fusions: targeting NTRK[J]. Crit Rev Oncol Hematol, 2024, 194: 104234. DOI:10.1016/j.critrevonc.2023.104234 |
[11] |
THEIK N W Y, MUMINOVIC M, ALVAREZ-PINZON A M, et al. NTRK therapy among different types of cancers, review and future perspectives[J]. Int J Mol Sci, 2024, 25(4): 2366. DOI:10.3390/ijms25042366 |
[12] |
MÄRKL B, HIRSCHBÜHL K, DHILLON C. NTRK-fusions-a new kid on the block[J]. Pathol Res Pract, 2019, 215(10): 152572. DOI:10.1016/j.prp.2019.152572 |
[13] |
COCCO E, SCALTRITI M, DRILON A. NTRK fusion-positive cancers and TRK inhibitor therapy[J]. Nat Rev Clin Oncol, 2018, 15(12): 731-747. DOI:10.1038/s41571-018-0113-0 |
[14] |
HUANG E J, REICHARDT L F. Trk receptors: roles in neuronal signal transduction[J]. Annu Rev Biochem, 2003, 72: 609-642. DOI:10.1146/annurev.biochem.72.121801.161629 |
[15] |
BOULLE F, KENIS G, CAZORLA M, et al. TrkB inhibition as a therapeutic target for CNS-related disorders[J]. Prog Neurobiol, 2012, 98(2): 197-206. DOI:10.1016/j.pneurobio.2012.06.002 |
[16] |
AMATU A, SARTORE-BIANCHI A, BENCARDINO K, et al. Tropomyosin receptor kinase (TRK) biology and the role of NTRK gene fusions in cancer[J]. Ann Oncol, 2019, 30(Suppl_8): viii5-viii15. DOI:10.1093/annonc/mdz383 |
[17] |
HSIAO S J, ZEHIR A, SIRECI A N, et al. Detection of tumor NTRK gene fusions to identify patients who may benefit from tyrosine kinase (TRK) inhibitor therapy[J]. J Mol Diagn, 2019, 21(4): 553-571. DOI:10.1016/j.jmoldx.2019.03.008 |
[18] |
LANNON C L, SORENSEN P H. ETV6-NTRK3: a chimeric protein tyrosine kinase with transformation activity in multiple cell lineages[J]. Semin Cancer Biol, 2005, 15(3): 215-223. DOI:10.1016/j.semcancer.2005.01.003 |
[19] |
VAISHNAVI A, LE A T, DOEBELE R C. TRKing down an old oncogene in a new era of targeted therapy[J]. Cancer Discov, 2015, 5(1): 25-34. DOI:10.1158/2159-8290.CD-14-0765 |
[20] |
CHAO M V. Neurotrophins and their receptors: a convergence point for many signalling pathways[J]. Nat Rev Neurosci, 2003, 4(4): 299-309. DOI:10.1038/nrn1078 |
[21] |
AMATU A, SARTORE-BIANCHI A, SIENA S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types[J]. ESMO Open, 2016, 1(2): e000023. DOI:10.1136/esmoopen-2015-000023 |
[22] |
SARTORE-BIANCHI A, ARDINI E, BOSOTTI R, et al. Sensitivity to entrectinib associated with a novel LMNA-NTRK1 gene fusion in metastatic colorectal cancer[J]. J Natl Cancer Inst, 2016, 108(1): djv306. DOI:10.1093/jnci/djv306 |
[23] |
GRIDELLI C, ROSSI A, CARBONE D P, et al. Non-small-cell lung cancer[J]. Nat Rev Dis Primers, 2015, 1: 15009. DOI:10.1038/nrdp.2015.9 |
[24] |
ROSEN E Y, GOLDMAN D A, HECHTMAN J F, et al. TRK fusions are enriched in cancers with uncommon histologies and the absence of canonical driver mutations[J]. Clin Cancer Res, 2020, 26(7): 1624-1632. DOI:10.1158/1078-0432.CCR-19-3165 |
[25] |
SOLOMON J P, LINKOV I, ROSADO A, et al. NTRK fusion detection across multiple assays and 33, 997 cases: diagnostic implications and pitfalls[J]. Mod Pathol, 2020, 33(1): 38-46. DOI:10.1038/s41379-019-0324-7 |
[26] |
FORSYTHE A, ZHANG W, PHILLIP STRAUSS U, et al. A systematic review and meta-analysis of neurotrophic tyrosine receptor kinase gene fusion frequencies in solid tumors[J]. Ther Adv Med Oncol, 2020, 12: 1758835920975613. DOI:10.1177/1758835920975613 |
[27] |
TAYLOR J, PAVLICK D, YOSHIMI A, et al. Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies[J]. J Clin Invest, 2018, 128(9): 3819-3825. DOI:10.1172/JCI120787 |
[28] |
PARK J C, ASHOK A, LIU C, et al. Real-world experience of NTRK fusion-positive thyroid cancer[J]. JCO Precis Oncol, 2022, 6: e2100442. DOI:10.1200/PO.21.00442 |
[29] |
PEKOVA B, SYKOROVA V, MASTNIKOVA K, et al. NTRK fusion genes in thyroid carcinomas: clinicopathological characteristics and their impacts on prognosis[J]. Cancers, 2021, 13(8): 1932. DOI:10.3390/cancers13081932 |
[30] |
XING M, WESTRA W H, TUFANO R P, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer[J]. J Clin Endocrinol Metab, 2005, 90(12): 6373-6379. DOI:10.1210/jc.2005-0987 |
[31] |
PRASAD M L, VYAS M, HORNE M J, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States[J]. Cancer, 2016, 122(7): 1097-1107. DOI:10.1002/cncr.29887 |
[32] |
ESZLINGER M, STEWARDSON P, MCINTYRE J B, et al. Systematic population-based identification of NTRK and RET fusion-positive thyroid cancers[J]. Eur Thyroid J, 2022, 11(1): e210061. DOI:10.1530/ETJ-21-0061 |
[33] |
MA Y, ZHANG Q, ZHANG K, et al. NTRK fusions in thyroid cancer: pathology and clinical aspects[J]. Crit Rev Oncol Hematol, 2023, 184: 103957. DOI:10.1016/j.critrevonc.2023.103957 |
[34] |
ABI-RAAD R, PRASAD M L, ADENIRAN A J, et al. Fine-needle aspiration cytomorphology of papillary thyroid carcinoma with NTRK gene rearrangement from a case series with predominantly indeterminate cytology[J]. Cancer Cytopathol, 2020, 128(11): 803-811. DOI:10.1002/cncy.22353 |
[35] |
KONG Y, BU R, PARVATHAREDDY S K, et al. NTRK fusion analysis reveals enrichment in Middle Eastern BRAF wild-type PTC[J]. Eur J Endocrinol, 2021, 184(4): 503-511. DOI:10.1530/EJE-20-1345 |
[36] |
LEE Y C, HSU C Y, LAI C R, et al. NTRK-rearranged papillary thyroid carcinoma demonstrates frequent subtle nuclear features and indeterminate cytologic diagnoses[J]. Cancer Cytopathol, 2022, 130(2): 136-143. DOI:10.1002/cncy.22522 |
[37] |
VISWANATHAN K, CHU Y H, FAQUIN W C, et al. Cytomorphologic features of NTRK-rearranged thyroid carcinoma[J]. Cancer Cytopathol, 2020, 128(11): 812-827. DOI:10.1002/cncy.22374 |
[38] |
OKUBO Y, TODA S, KADOYA M, et al. Clinicopathological analysis of thyroid carcinomas with the RET and NTRK fusion genes: characterization for genetic analysis[J]. Virchows Arch, 2024, 485(3): 509-518. DOI:10.1007/s00428-024-03777-w |
[39] |
KERR D A, GUTMANN E J, LIU X. Building on recent cytomorphologic descriptions of NTRK-rearranged thyroid carcinoma[J]. Cancer Cytopathol, 2021, 129(7): 566-567. DOI:10.1002/cncy.22413 |
[40] |
OTSUBO R, MUSSAZHANOVA Z, AKAZAWA Y, et al. Sporadic pediatric papillary thyroid carcinoma harboring the ETV6/NTRK3 fusion oncogene in a 7-year-old Japanese girl: a case report and review of literature[J]. J Pediatr Endocrinol Metab, 2018, 31(4): 461-467. DOI:10.1515/jpem-2017-0292 |
[41] |
NOZAKI Y, YAMAMOTO H, IWASAKI T, et al. Clinicopathological features and immunohistochemical utility of NTRK-, ALK-, and ROS1-rearranged papillary thyroid carcinomas and anaplastic thyroid carcinomas[J]. Hum Pathol, 2020, 106: 82-92. DOI:10.1016/j.humpath.2020.09.004 |
[42] |
LEE S E, LEE M S, BANG H, et al. NTRK fusion in a cohort of BRAF p.V600E wild-type papillary thyroid carcinomas[J]. Mod Pathol, 2023,, 36(8): 100180. DOI:10.1016/j.modpat.2023.100180 |
[43] |
SOLOMON J P, HECHTMAN J F. Detection of NTRK fusions: merits and limitations of current diagnostic platforms[J]. Cancer Res, 2019, 79(13): 3163-3168. DOI:10.1158/0008-5472.CAN-19-0372 |
[44] |
MARCHIÒ C, SCALTRITI M, LADANYI M, et al. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research[J]. Ann Oncol, 2019, 30(9): 1417-1427. DOI:10.1093/annonc/mdz204 |
[45] |
BEADLING C, WALD A I, WARRICK A, et al. A multiplexed amplicon approach for detecting gene fusions by next-generation sequencing[J]. J Mol Diagn, 2016, 18(2): 165-175. DOI:10.1016/j.jmoldx.2015.10.002 |
[46] |
DRILON A, LAETSCH T W, KUMMAR S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children[J]. N Engl J Med, 2018, 378(8): 731-739. DOI:10.1056/NEJMoa1714448 |
[47] |
RUSSO M, MISALE S, WEI G, et al. Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer[J]. Cancer Discov, 2016, 6(1): 36-44. DOI:10.1158/2159-8290.CD-15-0940 |
[48] |
SOLOMON J P, BENAYED R, HECHTMAN J F, et al. Identifying patients with NTRK fusion cancer[J]. Ann Oncol, 2019, 30(Suppl 8): viii16-viii22. DOI:10.1093/annonc/mdz384 |
[49] |
PENAULT-LLORCA F, RUDZINSKI E R, SEPULVEDA A R. Testing algorithm for identification of patients with TRK fusion cancer[J]. J Clin Pathol, 2019, 72(7): 460-467. DOI:10.1136/jclinpath-2018-205679 |
[50] |
DOEBELE R C, DAVIS L E, VAISHNAVI A, et al. An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101[J]. Cancer Discov, 2015, 5(10): 1049-1057. DOI:10.1158/2159-8290.CD-15-0443 |
[51] |
CHURCH A J, CALICCHIO M L, NARDI V, et al. Recurrent EML4-NTRK3 fusions in infantile fibrosarcoma and congenital mesoblastic nephroma suggest a revised testing strategy[J]. Mod Pathol, 2018, 31(3): 463-473. DOI:10.1038/modpathol.2017.127 |
[52] |
MANEA C A, BADIU D C, PLOSCARU I C, et al. A review of NTRK fusions in cancer[J]. Ann Med Surg (Lond), 2022, 79: 103893. DOI:10.1016/j.amsu.2022.103893 |
[53] |
STENZINGER A, VAN TILBURG C M, TABATABAI G, et al. Diagnosis and therapy of tumors with NTRK gene fusion[J]. Pathologe, 2021, 42(1): 103-115. DOI:10.1007/s00292-020-00864-y |
[54] |
WEISS L M, FUNARI V A. NTRK fusions and TRK proteins: what are they and how to test for them[J]. Hum Pathol, 2021, 112: 59-69. DOI:10.1016/j.humpath.2021.03.007 |
[55] |
HECHTMAN J F, BENAYED R, HYMAN D M, et al. Pan-TRK immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions[J]. Am J Surg Pathol, 2017, 41(11): 1547-1551. DOI:10.1097/pas.0000000000000911 |
[56] |
GATALICA Z, XIU J, SWENSEN J, et al. Molecular characterization of cancers with NTRK gene fusions[J]. Mod Pathol, 2019, 32(1): 147-153. DOI:10.1038/s41379-018-0118-3 |
[57] |
RUDZINSKI E R, LOCKWOOD C M, STOHR B A, et al. Pan-TRK immunohistochemistry identifies NTRK rearrangements in pediatric mesenchymal tumors[J]. Am J Surg Pathol, 2018, 42(7): 927-935. DOI:10.1097/PAS.0000000000001062 |
[58] |
MACEROLA E, PROIETTI A, POMA A M, et al. Limited accuracy of pan-TRK immunohistochemistry screening for NTRK rearrangements in follicular-derived thyroid carcinoma[J]. Int J Mol Sci, 2022, 23(13): 7470. DOI:10.3390/ijms23137470 |
[59] |
AL-SALAMA Z T, KEAM S J. Entrectinib: first global approval[J]. Drugs, 2019, 79(13): 1477-1483. DOI:10.1007/s40265-019-01177-y |
[60] |
SCOTT L J. Larotrectinib: first global approval[J]. Drugs, 2019, 79(2): 201-206. DOI:10.1007/s40265-018-1044-x |
[61] |
ADASHEK J J, KATO S, SICKLICK J K, et al. If it's a target, it's a pan-cancer target: tissue is not the issue[J]. Cancer Treat Rev, 2024, 125: 102721. DOI:10.1016/j.ctrv.2024.102721 |
[62] |
HONG D S, DUBOIS S G, KUMMAR S, et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials[J]. Lancet Oncol, 2020, 21(4): 531-540. DOI:10.1016/S1470-2045(19)30856-3 |
[63] |
WAGUESPACK S G, DRILON A, LIN J J, et al. Efficacy and safety of larotrectinib in patients with TRK fusion-positive thyroid carcinoma[J]. Eur J Endocrinol, 2022, 186(6): 631-643. DOI:10.1530/eje-21-1259 |
[64] |
LAETSCH T W, DUBOIS S G, MASCARENHAS L, et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study[J]. Lancet Oncol, 2018, 19(5): 705-714. DOI:10.1016/S1470-2045(18)30119-0 |
[65] |
LEE Y A, LEE H, IM S W, et al. NTRK and RET fusion-directed therapy in pediatric thyroid cancer yields a tumor response and radioiodine uptake[J]. J Clin Invest, 2021, 131(18): e144847. DOI:10.1172/JCI144847 |
[66] |
LIU D, OFFIN M, HARNICAR S, et al. Entrectinib: an orally available, selective tyrosine kinase inhibitor for the treatment of NTRK, ROS1, and ALK fusion-positive solid tumors[J]. Ther Clin Risk Manag, 2018, 14: 1247-1252. DOI:10.2147/TCRM.S147381 |
[67] |
DOEBELE R C, DRILON A, PAZ-ARES L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials[J]. Lancet Oncol, 2020, 21(2): 271-282. DOI:10.1016/S1470-2045(19)30691-6 |
[68] |
DEMETRI G D, DE BRAUD F, DRILON A, et al. Updated integrated analysis of the efficacy and safety of entrectinib in patients with NTRK fusion-positive solid tumors[J]. Clin Cancer Res, 2022, 28(7): 1302-1312. DOI:10.1158/1078-0432.CCR-21-3597 |
[69] |
DRILON A, LI G, DOGAN S, et al. What hides behind the MASC: clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC)[J]. Ann Oncol, 2016, 27(5): 920-926. DOI:10.1093/annonc/mdw042 |
[70] |
COCCO E, SCHRAM A M, KULICK A, et al. Resistance to TRK inhibition mediated by convergent MAPK pathway activation[J]. Nat Med, 2019, 25: 1422-1427. DOI:10.1038/s41591-019-0542-z |
[71] |
DRILON A, NAGASUBRAMANIAN R, BLAKE J F, et al. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion-positive solid tumors[J]. Cancer Discov, 2017, 7(9): 963-972. DOI:10.1158/2159-8290.CD-17-0507 |