[1] |
KANG H, ARYAL A C S, MARINI J C. Osteogenesis imperfecta: new genes reveal novel mechanisms in bone dysplasia[J]. Transl Res, 2017, 181: 27-48. DOI:10.1016/j.trsl.2016.11.005 |
[2] |
MARINI J C, FORLINO A, BÄCHINGER H P, BISHOP N J, BYERS P H, PAEPE A, et al. Osteogenesis imperfecta[J/OL]. Nat Rev Dis Primers, 2017, 3: 17053. doi: 10.1038/nrdp.2017.52.
|
[3] |
PALOMO T, VILAÇA T, LAZARETTI-CASTRO M. Osteogenesis imperfecta: diagnosis and treatment[J]. Curr Opin Endocrinol Diabetes Obes, 2017, 24: 381-388. DOI:10.1097/MED.0000000000000367 |
[4] |
GIL J A, DEFRODA S F, SINDHU K, GRUZ A I Jr, DANIELS A H. Challenges of fracture management for adults with osteogenesis imperfecta[J/OL]. Orthopedics, 2017, 40: e17-e22. doi: 10.3928/01477447-20161006-04.
|
[5] | |
[6] |
HALD J D, EVANGELOU E, LANGDAHL B L, RALSTON S H. Bisphosphonates for the prevention of fractures in osteogenesis imperfecta: meta-analysis of placebo-controlled trials[J]. J Bone Miner Res, 2015, 30: 929-933. DOI:10.1002/jbmr.2410 |
[7] |
TREJO P, FASSIER F, GLORIEUX F H, RAUCH F. Diaphyseal femur fractures in osteogenesis imperfecta: characteristics and relationship with bisphosphonate treatment[J]. J Bone Miner Res, 2017, 32: 1034-1039. DOI:10.1002/jbmr.3071 |
[8] |
UVEGES T E, KOZLOFF K M, TY J M, LEDGARD F, RAGGIO C L, GRONOWICZ G, et al. Alendronate treatment of the Brtl osteogenesis imperfecta mouse improves femoral geometry and load response before fracture but decreases predicted material properties and has detrimental effects on osteoblasts and bone formation[J]. J Bone Miner Res, 2009, 24: 849-859. DOI:10.1359/jbmr.081238 |
[9] |
BIGGIN A, MUNNS C F. Long-term bisphosphonate therapy in osteogenesis imperfecta[J]. Curr Osteoporos Rep, 2017, 15: 412-418. DOI:10.1007/s11914-017-0401-0 |
[10] |
LLOYD A A, GLUDOVATZ B, RIEDEL C, LUENGO E A, SAIYED R, MARTY E, et al. Atypical fracture with long-term bisphosphonate therapy is associated with altered cortical composition and reduced fracture resistance[J]. Proc Natl Acad Sci USA, 2017, 114: 8722-8727. DOI:10.1073/pnas.1704460114 |
[11] |
REGINSTER J Y, DEROISY R, JUPSIN I. Strontium ranelate: a new paradigm in the treatment of osteoporosis[J]. Drugs Today (Barc), 2003, 39: 89-101. DOI:10.1358/dot.2003.39.2.799416 |
[12] |
REGINSTER J Y, SEEMAN E, DE VERNEJOUL M C, ADAMI S, COMPSTON J, PHENEKOS C, et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study[J]. J Clin Endocrinol Metab, 2005, 90: 2816-2822. DOI:10.1210/jc.2004-1774 |
[13] |
MEUNIER P J, ROUX C, SEEMAN E, ORTOLANI S, BADURSKI J E, SPECTOR T D, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis[J]. N Engl J Med, 2004, 350: 459-468. DOI:10.1056/NEJMoa022436 |
[14] |
CHIPMAN S D, SWEET H O, MCBRIDE D J Jr, DAVISSON M T, MARKS S C Jr, SHULDINER A R, et al. Defective pro α2(Ⅰ) collagen synthesis in a recessive mutation in mice: a model of human osteogenesis imperfecta[J]. Proc Natl Acad Sci USA, 1993, 90: 1701-1705. DOI:10.1073/pnas.90.5.1701 |
[15] |
SHI C, HU B, GUO L, CAO P, TIAN Y, MA J, et al. Strontium ranelate reduces the fracture incidence in a growing mouse model of osteogenesis imperfecta[J]. J Bone Miner Res, 2016, 31: 1003-1014. DOI:10.1002/jbmr.2770 |
[16] |
SHI C, QI J, HUANG P, JIANG M, ZHOU Q, ZHOU H, et al. MicroRNA-17/20a inhibits glucocorticoid-induced osteoclast differentiation and function through targeting RANKL expression in osteoblast cells[J]. Bone, 2014, 68: 67-75. DOI:10.1016/j.bone.2014.08.004 |
[17] |
PEI Y, ZHENG K, SHANG G, WANG Y, WANG W, QIU E, et al. Therapeutic effect of strontium ranelate on bone in chemotherapy-induced osteopenic rats via increased bone volume and reduced bone loss[J]. Biol Trace Elem Res, 2019, 187: 472-481. DOI:10.1007/s12011-018-1401-3 |
[18] |
QUADE M, VATER C, SCHLOOTZ S, BOLTE J, LANGANKE R, BRETSCHNEIDER H, et al. Strontium enhances BMP-2 mediated bone regeneration in a femoral murine bone defect model[J/OL]. J Biomed Mater Res B Appl Biomater, 2019. doi: 10.1002/jbm.b.34376.
|
[19] | |
[20] |
BARBER L A, ABBOTT C, NAKHATE V, DO A N D, BLISSETT A R, MARINI J C. Longitudinal growth curves for children with classical osteogenesis imperfecta (types Ⅲ and Ⅳ) caused by structural pathogenic variants in type Ⅰ collagen[J]. Genet Med, 2019, 21: 1233-1239. DOI:10.1038/s41436-018-0307-y |
[21] |
WANG Y, AZAÏS T, ROBIN M, VALLÉE A, CATANIA C, LEGRIEL P, et al. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite[J]. Nat Mater, 2012, 11: 724-733. DOI:10.1038/nmat3362 |
[22] |
STANGE R, KRONENBERG D, TIMMEN M, EVERDING J, HIDDING H, ECKES B, et al. Age-related bone deterioration is diminished by disrupted collagen sensing in integrin α2β1 deficient mice[J]. Bone, 2013, 56: 48-54. DOI:10.1016/j.bone.2013.05.003 |
[23] |
TAKEUCHI Y, SUZAWA M, KIKUCHI T, NISHIDA E, FUJITA T, MATSUMOTO T. Differentiation and transforming growth factor-β receptor down-regulation by collagen-α2β1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells[J]. J Biol Chem, 1997, 272: 29309-29316. DOI:10.1074/jbc.272.46.29309 |
[24] |
LI H, JIANG X, DELANEY J, FRANCESCHETTI T, BILIC-CURCIC I, KALINOVSKY J, et al. Immature osteoblast lineage cells increase osteoclastogenesis in osteogenesis imperfecta murine[J]. Am J Pathol, 2010, 176: 2405-2413. DOI:10.2353/ajpath.2010.090704 |
[25] |
REGINSTER J Y, BRUYÈRE O, SAWICKI A, ROCES-VARELA A, FARDELLONE P, ROBERTS A, et al. Long-term treatment of postmenopausal osteoporosis with strontium ranelate: results at 8 years[J]. Bone, 2009, 45: 1059-1064. DOI:10.1016/j.bone.2009.08.004 |
[26] |
MEUNIER P J, SLOSMAN D O, DELMAS P D, SEBERT J L, BRANDI M L, ALBANESE C, et al. Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis—a 2-year randomized placebo controlled trial[J]. J Clin Endocrinol Metab, 2002, 87: 2060-2066. |
[27] |
PARK C S, HA T H, KIM M, RAJA N, YUN H S, SUNG M J, et al. Fast and sensitive near-infra red fluorescent probes for ALP detection and 3D printed calcium phosphate scaffold imaging in vivo[J]. Biosens Bioelectron, 2018, 105: 151-158. DOI:10.1016/j.bios.2018.01.018 |
[28] |
MARIE P J, HOTT M, MODROWSKI D, DE POLLAK C, GUILLEMAIN J, DELOFFRE P, et al. An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats[J]. J Bone Miner Res, 1993, 8: 607-615. |
[29] |
BARBARA A, DELANNOY P, DENIS B G, MARIE P J. Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells[J]. Metabolism, 2004, 53: 532-537. DOI:10.1016/j.metabol.2003.10.022 |
[30] |
BONNELYE E, CHABADEL A, SALTEL F, JURDIC P. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro[J]. Bone, 2008, 42: 129-138. DOI:10.1016/j.bone.2007.08.043 |
[31] |
NG P Y, BRIGITTE PATRICIA RIBET A, PAVLOS N J. Membrane trafficking in osteoclasts and implications for osteoporosis[J]. Biochem Soc Trans, 2019, 47: 639-650. DOI:10.1042/BST20180445 |