扩展功能
文章信息
- 付旭东, 王岩松
- FU XuDong, WANG YanSong
- 中国沙漠物源研究:回顾与展望
- Provenance Studies of Chinese Deserts:Review and Outlook
- 沉积学报, 2015, 33(6): 1063-1073
- ACTA SEDIMENTOLOGICA SINCA, 2015, 33(6): 1063-1073
- 10.14027/j.cnki.cjxb.2015.06.001
-
文章历史
- 收稿日期: 2014-07-14
- 收修改稿日期: 2014-11-27
世界干旱半干旱区约占地球陆地表面的1/3[1],主要分布于副热带高压带控制下的低纬度地区[2]。中国的干旱半干旱区分布于中纬度的温带内陆,它西与中亚干旱区相接,北与蒙古干旱区毗邻,区域内戈壁、沙漠、黄土呈有规律的空间分异[3],是全球粉尘排放的重要源区之一[4, 5]。戈壁、沙漠带的粉尘在大气环流的控制下经风力吹扬,被搬运至下风向处的山前盆地、山麓、河谷、平原等地形区堆积,形成沉积连续的黄土和黄土状沉积物,成为记录陆地环境变迁的良好信息载体[6, 7, 8, 9]。冰期时,气候冷干,强劲的风力使被搬运的粉尘颗粒变粗、排放通量增大;间冰期时,气候变得暖湿,风力的减弱使得搬运的粉尘颗粒变细、排放通量减少[10, 11, 12]。基于该假说,在过去几十年里,研究人员利用沉积在黄土高原、天山、昆仑山、盆地边缘、河谷等地貌单元内的黄土—古土壤沉积序列,结合年代学和各种物理化学生物指标,反演了中国黄土的形成过程与机制、古大气环流、古全球变化、亚洲内陆干旱化和中国沙漠的形成时间,取得一系列重要的研究进展[6, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]。然而,相对于成果丰硕的中国黄土研究,作为黄土和亚洲粉尘重要物源地的中国沙漠自身的物源研究则非常有限[3, 31, 32, 33, 34, 35, 36, 37, 38]。沙漠物源研究不仅在风沙地貌学上有重大理论和实践意义[39, 40, 41],而且对认识大气粉尘排放、黄土堆积、气候系统和海洋生物地球化学循环也有重要的理论价值[4, 42, 43, 44, 45, 46, 47]。
本文的目的是:①总结中国沙漠物源研究的理论、方法和已有成果;②评述目前国际上沉积物物源分析的主要趋向;③指出中国沙漠物源研究存在的问题和未来发展趋势。
1 中国沙漠的自然概况中国沙漠主要分布于35°~50° N,75°~125° E的范围内,它呈一条弧形绵亘于中国的西北、内蒙和东北西部,东西长4 000 km,南北宽600 km,面积达80.89×104 km2,约占整个国土总面积的8.4%[31, 39, 41]。中国主要的沙漠有14个,其中5个分布于沙漠带东部,分别是呼伦贝尔沙地、松嫩沙地、科尔沁沙地、浑善达克沙地和毛乌素沙地,它们的年降水量介于200~400 mm,干燥度为1.2~2.0,植被覆盖度较高,以固定半固定沙丘为主;其余分布在沙漠带西部,分别是库布齐、乌兰布和、腾格里、巴丹吉林、河西走廊的沙漠、柴达木盆地的沙漠、库姆塔格、古尔班通古特和塔克拉玛干沙漠,它们的年降水量为100~200 mm,有的甚至不足50 mm,干燥度为4.0~60.0,植被覆盖稀疏,除古尔班通古特沙漠外,主要以流动沙丘占优势[31, 41]。
2 中国沙漠物源研究的理论、方法与主要成果 2.1 中国沙漠研究的简要回顾新中国成立初期,根据局部地区营造防风固沙林带的需要,开展了一些小规模的沙漠研究,如毛乌素沙地南缘流动沙丘的研究、科尔沁沙地东南缘章古台和腾格里沙漠东南缘铁路沿线流沙的固定试验[48]。1959年中国科学院成立了860多人的治沙队,采用航空相片判读与野外考察的方法,对中国沙漠和戈壁进行了大规模综合考察,基本摸清了中国沙漠的自然条件与资源、沙丘特征与风沙运动规律[49, 50, 51],并建立了20多个沙漠试验站,为此后中国沙漠的研究奠定了坚实的基础[51, 52, 53]。1966—1976年间,中国沙漠研究受到影响,转入以治理沙害为中心的专题研究,如沙区的铁路修建、水土资源开发利用等[49, 53, 54]。1977年联合国荒漠化会议的召开,引起了全球对土地荒漠化问题的关注,为顺应新形势,中国沙漠研究的重点转入了以土地沙漠化问题为中心的综合研究,开展了干旱半干旱区土地沙漠化与半湿润地带风沙化问题的成因、过程、预测、整治研究[53, 54, 55],进行了土壤风蚀的风洞模拟实验,加强了风沙物理与风沙工程的理论与实验研究,同时也开拓了沙漠地区的第四纪研究工作[56]。近10多年以来,随着国家经济和科技投入的不断增加,中国沙漠研究开始以沙区长期野外试验站为平台,在不同时空尺度上对沙漠环境与风沙物理、沙漠形成演变与全球变化、沙漠化过程及其防治、沙漠化监测与信息系统等方面进行多学科的交叉集成研究[57, 58, 59, 60]。
2.2 中国沙漠物源研究的理论与方法沙漠地表最基本的特征是堆积了形态各异、大小不同的沙丘,它们是松散沉积物经风力搬运在一定条件下堆积形成的[40, 61]。这些沙丘沉积物的粒度、矿物组成、形态、颜色、地球化学、地质年龄等属性特征记录了母岩风化剥蚀、搬运和后期改造过程的信息,受区域地质构造、气候等因素控制。因此,沙漠物源研究的范畴属于地质学,它的理论基础是沉积学理论[62, 63]。在中国沙漠物源研究中,传统的方法是沙丘沉积物的粒度分析和重矿物分析,结合野外地貌调查、古地理与地质资料来推断沙漠的物源[31, 40]。近10多年来,为跟踪国外沉积物物源研究方法,开始尝试地球化学、环境磁学和单颗粒锆石定年的方法来探讨沙漠物源。如石英的氧同位素[32, 33]、电子自旋共振信号强度和结晶度[38]、释光灵敏度[3],沉积物的磁化率[64, 65]、Pb同位素[66]、Nd-Sr同位素和REE[36, 67, 68],单颗粒碎屑锆石的形态[69]、U-Pb年龄和Hf同位素[70]的研究。
2.3 中国沙漠物源研究的主要成果中国沙漠物源研究一直存在“就地起沙”和“外地来沙”的争论。20世纪50年代初,严钦尚[71]和罗来兴[72]对毛乌素沙地南缘陕北榆林、靖边、定边一带流动沙丘的考察和分析,提出了该地区沙源是由于人类不合理使用土地,破坏地表植被,使古沙翻新而成的,属“就地起沙”。20世纪60年代至80年代,在对中国沙漠大规模野外调查的基础上,结合地质地貌和古地理资料分析,朱震达等[31]确定中国沙漠物源具有近源性,并按成因将它们的物源归为4种类型,即河流冲积物、冲积—湖积物、洪积—冲积物和基岩风化的残积、坡积物,否定了沙漠物源的“外地来沙”。此后,对塔克拉玛干[73, 74, 75, 76]、古尔班通古特[77]、库姆塔格[78, 79]、柴达木[80]、巴丹吉林[81, 82]、腾格里[83, 84]、库布齐[85]、乌兰布和沙漠[86, 87]、毛乌素[88, 89]、浑善达克[90]、科尔沁[91]、松嫩[92]、呼伦贝尔沙地[93]的粒度或重矿物分析也支持这一观点。然而,近年来对中国沙漠带东部4大沙地边缘多个地层剖面的光释光(OSL)测年表明:末次冰盛期(LGM)时,这些沙地的东界和南界相对于全新世适宜期(HO)分别向东向南扩张了几百甚至上千公里[94],而中国沙漠带西部的沙漠在LGM和HO时一直存在活动沙丘[94, 95, 96]。考虑到戈壁、沙漠和黄土的同心圆状分布格局,可以推测冰期时中国沙漠带东部沙地有可能是其西部和北部沙漠不断扩展的产物[34],即这些沙地的沙源有可能是“外地来沙”。但随后对浑善达克、科尔沁和呼伦贝尔沙地的重矿物分析[34]、碎屑锆石U-Pb年龄和Hf同位素[70, 97]分析显示,西部沙漠对东部沙地沙源的贡献很小,从而否定了东部沙地“外地来沙”的推断。
总之,目前对中国沙漠的石英氧同位素、电子自旋共振信号强度和结晶度、释光灵敏度以及沙丘沉积物的磁化率、元素地球化学、同位素地球化学和单颗粒锆石U-Pb年龄的研究表明,各个沙漠的物源有显著的区域差异且具有近源性。这与以往传统的粒度分析、重矿物分析结合地质地貌资料推断的中国沙漠物源来自近源的观点基本一致。然而,各种成因的近源物质对各沙漠的供给比例有多大,为大气粉尘、中国黄土和海洋沉积物提供多少物源,仍缺乏定量的数据。此外,中国各沙漠中细颗粒物质的形成机制,是否具有近源性,是否存在“外地来沙”,以及它们对沙漠物源的贡献比例仍是一个尚未解答的问题。
3 沙漠物源定量分析存在的问题及发展趋向沙丘是沙漠地表最显著的特征,它们是由松散沉积物堆积而成的[40]。这些沉积物与其源区母岩并不是一对一的对应关系[114, 120],它们现今的属性特征反映的是母岩岩性及其被风化、再旋回、搬运、混合、沉积、成岩改造的全部历史[114]。沉积物与其源区之间复杂的网络关系很难被完全揭示,因为从“源”到“汇”的过程中,各种各样的因素都会改变母岩碎屑的成分和结构[121, 122, 123, 124, 125, 126, 127],造成源区母岩信息的大量丢失,这也是沉积物物源定量分析一直存在的主要障碍[114]。最近Weltje[115]提出的沉积物生成与物源定量研究的总体结构框架(图 1),代表了当前沉积物物源定量研究的最高水平和今后的发展方向。“源”与“汇”可通过正演模型和反演模型刻画,但正反演模型中的化学(C)、矿物(M)和岩石学(P)数据须通过CMP toolbox变换后才能输入模型中,图中的每个箭号代表了一系列的方法和过程。
在当前的沉积物物源分析中,绝大多数研究都属于反演模型(Inverse models),即通过三种主要方法(全岩组份的化学、岩矿分析,重矿物的选择性分析,单颗粒矿物的形态、化学和同位素分析)获取沉积物的各种属性数据,然后统计各种指标并制作图表,再依据先验知识推断物源[114]。这种研究范式在世界沙漠物源研究中得到广泛应用,如非洲的Sahara[128, 129]、Namib[130, 131, 132, 133]、Kalahari desert[134, 135],北美洲的Great basin[136, 137]、Mojave[138, 139]、Sonoran desert[140, 141]、Chihuahua desert[142],南美洲的Atacama[143, 144]、Patagonia desert[145, 146],大洋洲的澳大利亚沙漠[147, 148, 149],亚洲的Arabian desert[124]、Thar desert[150, 151]和中国沙漠[3, 31, 32, 33, 34, 35, 36, 37, 38, 64, 65, 66, 67, 68, 69, 70]。然而,目前这些基于沉积物组份属性统计的反演模型在数据获取与统计分析中,仍然存在几方面明显的问题:①沉积物取样与实验样品的代表性,如沉积物的随机取样是否能代表研究区域的整体水平,用量微少的化学、岩矿和同位素分析测试结果是否能代表每个实验样品的整体,单颗粒矿物的统计与分析需计数多少颗粒才能代表一个沉积物样品的整体[114],仍需要进一步的深入研究;②消除“粒级依赖”对沉积物组份的影响,由于母岩风化后的产物在搬运和沉积过程中的分选作用会造成某些粒级的物质优先富集,沉积物成分与粒级存在一定的函数关系[114]。例如,在细粒物质中SiO2/Al2O3的比值会随着粒级或结构成熟度的减小而减小;中国北方沙漠石英δ18O值随着粒级的减小有增大的趋势[32]。因此,选择恰当的沉积物粒级进行化学、岩矿和同位素分析对沉积物物源研究至关重要。尽管一些学者对沉积物的成分与粒级之间的关系进行了有益的探讨[125, 126, 127],但目前仍没有任何方法能消除粒级效应对成分的影响;③组份数据分析中的对数变换,组份数据常用百分比和含量来表示[115],但是为了消除数据间的“假相关”和“负偏置”问题,应该对组份数据进行等度量的对数变换处理[127];④Dickinson图解适用的前提和存在的问题[114, 115],目前某些沉积物物源研究只是简单的套用Dickinson图解,并未考虑其正确使用需满足的很多前提条件和问题。
基于沉积物生成过程的正演模型(Forward models)可预测属性明确的源区能生成沉积物的数量、成分和结构,然而这种实用的定量正演模型目前还不存在[115]。构建正演模型的最大障碍是缺乏母岩物理化学风化的机理和速率方面的定量数据,这些问题的解决既需要将母岩定量过程描述和强大的统计技术整合,还需要有充足的高质量数据校正和验证模型。恰当的数值方法和统计方法是未来定量正演模型发展的坚实基础[115]。
目前沉积物物源研究的案例主要集中于沉积物成分属性统计的反演模型,而对基于过程的沉积物生成模型的研究较少。正反演模型都不是完美无缺的,未来沉积物定量物源分析需要改进沉积物数据获取与处理方法,加快构建沉积物生成的正演模型研究。
4 中国沙漠物源研究的问题和未来展望中国沙漠物源研究基本上都是基于沉积物组份属性统计的反演模型,然而此类模型在属性数据的获取与处理方面仍然存在缺陷:①沙丘沉积物的取样设计并没有严格的统计学意义,沉积物组份的粒度、化学、矿物、同位素测试分析仅仅取用了采样样品的微小部分,这样的测试结果能否代表该样品的整体状况,其可靠性需要评估,用激光粒度仪分析沙丘沉积物的粒度存在很大误差,重矿物分析需要多少样品以及统计多少颗粒才能代表一个样品;②消除“粒级依赖”对沉积物成分的影响,对沉积物组份的化学、矿物、同位素分析时应该选用恰当的粒级,而不是使用全岩分析;③处理组份数据时,应进行对数变换,而不是直接使用含量或百分比。此外,在解释组份数据时,未能整合源区已有的地质构造、母岩、气候、地貌等数据资料,多数研究仍是定性的推断,缺乏定量物源研究的案例。
沉积物物源的研究需要沉积学、岩石学、矿物学、地球化学、构造地质学、地层学、数学地质和地貌学等学科的交叉研究。今后中国沙漠物源研究应做好以下几方面的工作:①采用大面积网格随机取样法对中国各个沙漠的沙丘沉积物进行系统采样;用筛析法分析每个沙漠的粒度组成,然后对不同粒级的沉积物颗粒分别进行矿物组成、地球化学、单颗粒锆石年代学属性的系统测试分析,建立每个沙漠沉积物组份的属性数据库;依据沉积物在搬运、沉积过程中遵守等效沉降原理,使用源岩平均密度指数(SRD)校正不同粒级沉积物组份的粒度、矿物和地球化学数据,消除“粒级依赖”对沉积物成分的影响;基于沉积物组份属性数据的等级结构(岩石→矿物→化学成分),建立化学成分—矿物—岩石之间定量的数学关系(CMP toolbox),将沉积物组份的岩石、矿物、地球化学属性间的关系用数学公式表达,从而定量地反演沙漠的物源。②选择若干典型沙漠,通过全球的地形、岩性、温度、降水和植被盖度图获取其沉积物源区的属性特征;通过室内实验和野外研究解决母岩和矿物的物理化学风化机制及其速率,建立母岩物理风化形成的矿物颗粒粒度分布模型;用CMP toolbox定量表达岩石—矿物—地球化学属性间的关系,定量模拟源区生成沉积物的数量、成分和结构,构建源区沉积物生成的正演模型,并用建成的沉积物组份属性数据库验证和校正模型;具体方法案例可参考文献[152, 153, 154, 155]。③研究中国各沙漠中细颗粒物质的形成机制,是否具有近源性以及它们对沙漠物源的贡献比例,对比研究中国沙漠与低纬度沙漠物源的形成机制,定量评估河流冲积物、冲积—湖积物、洪积—冲积物和基岩风化的残积、坡积物对中国各沙漠物源的贡献率以及它们的迁移路径,建立中国沙漠物源区划图,应用到防沙治沙的工程实践中。④基于山地构造抬升—气候—风化剥蚀的相互作用以及沉积物从陆地—大气—海洋迁移的内在联系,定量研究历史和地质时间尺度沙漠—黄土—深海沉积物物源的传输途径及其驱动因素,建立陆地—大气—海洋物质循环的机理模型,为深刻理解地球各圈层间物质交换与地表过程提供依据。
| [1] | Reynolds J F, Smith D M S, Lambin E F, et al. Global desertification:building a science for dryland development[J]. Science, 2007, 316(5826):847-851. |
| [2] | Goudie A S. Great Warm Deserts of the World:Landscapes and Evolution[M]. Oxford:Oxford University Press, 2002. |
| [3] | Lu T Y, Sun J M. Luminescence sensitivities of quartz grains from eolian deposits in northern China and their implications for provenance[J]. Quaternary Research, 2011, 76(2):181-189. |
| [4] | Choobari O A, Zawar-Reza P, Sturman A. The global distribution of mineral dust and its impacts on the climate system:A review[J]. Atmospheric Research, 2014, 138:152-165. |
| [5] | Goudie A S. Desert dust and human health disorders[J]. Environment International, 2014, 63:101-113. |
| [6] | Liu T S. Loess and the Environment[M]. Beijing:China Ocean Press, 1985. |
| [7] | Sun J M. Source regions and formation of the loess sediments on the high mountain regions of Northwestern China[J]. Quaternary Research, 2002, 58(3):341-351. |
| [8] | Song Y G, Chen X L, Qian L B, et al. Distribution and composition of loess sediments in the Ili Basin, Central Asia[J]. Quaternary International, 2014, 334-335:61-73. |
| [9] | Vasiljevic' D A, Markovic' S B, Hose T A, et al. Loess-palaeosol sequences in China and Europe:Common values and geoconservation issues[J]. Catena, 2014, 117:108-118. |
| [10] | Kukla G J. Pleistocene land-sea correlations I. Europe[J]. Earth-Science Reviews, 1977, 13(4):307-374. |
| [11] | McGee D, Broecker W S, Winckler G. Gustiness:The driver of glacial dustiness?[J]. Quaternary Science Reviews, 2010, 29(17/18):2340-2350. |
| [12] | Muhs D R. The geologic records of dust in the Quaternary[J]. Aeolian Research, 2013, 9:3-48. |
| [13] | Heller F, Liu T S. Magnetostratigraphical dating of loess deposits in China[J]. Nature, 1982, 300(5891):431-433. |
| [14] | Zhou L P, Oldfield F, Wintle A G, et al. Partly pedogenic origin of magnetic variations in Chinese loess[J]. Nature, 1990, 346(6286):737-739. |
| [15] | An Z S, Kukla G J, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130, 000 years[J]. Quaternary Research, 1991, 36(1):29-36. |
| [16] | An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833):62-66. |
| [17] | Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record[J]. Paleoceanography, 2002, 17(3):5-1-5-21, doi:10.1029/2001PA000725,2002. |
| [18] | Fang X M, Shi Z T, Yang S L, et al. Loess in the Tian Shan and its implications for the development of the Gurbantunggut Desert and drying of northern Xinjiang[J]. Chinese Science Bulletin, 2002, 47(16):1381-1387. |
| [19] | Fang X M, Lü L Q, Yang S L, et al. Loess in Kunlun Mountains and its implications on desert development and Tibetan Plateau uplift in west China[J]. Science in China(Series D), 2002, 45(4):289-299. |
| [20] | Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877):159-163. |
| [21] | Stevens T, Armitage S J, Lu H Y, et al. Sedimentation and diagenesis of Chinese loess:implications for the preservation of continuous, high-resolution climate records[J]. Geology, 2006, 34(10):849-852. |
| [22] | Sun J M, Liu T S. The age of the Taklimakan desert[J]. Science, 2006, 312(5780):1621. |
| [23] | Sun J M, Zhang Z Q, Zhang L Y. New evidence on the age of the Taklimakan Desert[J]. Geology, 2009, 37(2):159-162. |
| [24] | Sun J M, Ye J, Wu W Y, et al. Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior[J]. Geology, 2010, 38(6):515-518. |
| [25] | Yang S L, Fang X M, Shi Z T, et al. Timing and provenance of loess in the Sichuan Basin, southwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292(1/2):144-154. |
| [26] | Hao Q Z, Wang L, Oldfield F, et al. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability[J]. Nature, 2012, 490(7420):393-396. |
| [27] | Zhang H Y, Lu H Y, Jiang S Y, et al. Provenance of loess deposits in the Eastern Qinling Mountains(central China) and their implications for the paleoenvironment[J]. Quaternary Science Reviews, 2012, 43:94-102. |
| [28] | Miao Y F, Herrmann M, Wu F L, et al. What controlled Mid-Late Miocene long-term aridification in Central Asia?-Global cooling or Tibetan Plateau uplift:A review[J]. Earth-Science Reviews, 2012, 112(3/4):155-172. |
| [29] | Ge J Y, Dai Y, Zhang Z S, et al. Major changes in East Asian climate in the mid-Pliocene:Triggered by the uplift of the Tibetan Plateau or global cooling?[J]. Journal of Asian Earth Sciences, 2013, 69:48-59. |
| [30] | Lehmkuhl F, Schulte P, Zhao H, et al. Timing and spatial distribution of loess and loess-like sediments in the mountain areas of the northeastern Tibetan Plateau[J]. Catena, 2014, 117:23-33. |
| [31] | 朱震达,吴正,刘恕,等. 中国沙漠概论(修订版)[M]. 北京:科学出版社,1980.[Zhu Zhenda, Wu Zheng, Liu Shu, et al. An Outline of Chinese Deserts[M]. Beijing:Science Press, 1980.] |
| [32] | 付旭东,杨小平. 中国北方沙漠石英δ18O 值的初步测定与分析[J]. 第四纪研究,2004,24(2):243-243.[Fu Xudong, Yang Xiaoping. δ18O in the quartz grains of desert sand in northern China[J]. Quaternary Sciences, 2004, 24(2):243-243.] |
| [33] | Yang X P, Zhang F, Fu X D, et al. Oxygen isotopic compositions of quartz in the sand seas and sandy lands of northern China and their implications for understanding the provenances of aeolian sands[J]. Geomorphology, 2008, 102(2):278-285. |
| [34] | Xie J, Ding Z L. Compositions of heavy minerals in Northeastern China sandlands and provenance analysis[J]. Science China Earth Sciences, 2007, 50(11):1715-1723. |
| [35] | Stevens T, Palk C, Carter A, et al. Assessing the provenance of loess and desert sediments in northern China using U-Pb dating and morphology of detrital zircons[J]. Geological Society of America Bulletin, 2010, 122(7/8):1331-1344. |
| [36] | Rao W B, Chen J, Tan H B, et al. Sr-Nd isotopic and REE geochemical constraints on the provenance of fine-grained sands in the Ordos deserts, north-central China[J]. Geomorphology, 2011, 132(3/4):123-138. |
| [37] | Chen J, Li G J. Geochemical studies on the source region of Asian dust[J]. Science China Earth Sciences, 2011, 54(9):1279-1301. |
| [38] | Sun Y B, Chen H Y, Tada R, et al. ESR signal intensity and crystallinity of quartz from Gobi and sandy deserts in East Asia and implication for tracing Asian dust provenance[J]. Geochemistry Geophysics Geosystems, 2013, 14(8):2615-2627. |
| [39] | 王涛. 中国沙漠与沙漠化[M]. 石家庄:河北科学技术出版社,2003.[Wang Tao. Desert and Desertification in China[M]. Shijiazhuang:Hebei Science and Technology Press, 2003.] |
| [40] | 吴正. 风沙地貌与治沙工程学[M]. 北京:科学出版社,2003.[Wu Zheng. Geomorphology of Wind-drift Sands and Their Controlled Engineering[M]. Beijing:Science Press, 2003.] |
| [41] | 吴正. 中国沙漠及其治理[M]. 北京:科学出版社,2009.[Wu Zheng. Sandy Deserts and Its Control in China[M]. Beijing:Science Press, 2009.] |
| [42] | Chase B. Evaluating the use of dune sediments as a proxy for palaeo-aridity:A southern African case study[J]. Earth-Science Reviews, 2009, 93(1/2):31-45. |
| [43] | Maher B A, Prospero J M, Mackie D, et al. Global connections between Aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum[J]. Earth-Science Reviews, 2010, 99(1/2):61-97. |
| [44] | Crouvi O, Amit R, Enzel Y, et al. Active sand seas and the formation of desert loess[J]. Quaternary Science Reviews, 2010, 29(18):2087-2098. |
| [45] | Shao Y P, Wyrwoll K-H, Chappell A, et al. Dust cycle:An emerging core theme in Earth system science[J]. Aeolian Research, 2011, 2(4):181-204. |
| [46] | Vandenberghe J. Grain size of fine-grained windblown sediment:A powerful proxy for process identification[J]. Earth-Science Reviews, 2013, 121:18-30. |
| [47] | Serno S, Winckler G, Anderson R F, et al. Eolian dust input to the Subarctic North Pacific[J]. Earth and Planetary Science Letters, 2014, 387:252-263. |
| [48] | 朱震达. 三十年来中国沙漠研究的进展[J]. 地理学报,1979,34(4):305-314.[Zhu Zhenda. Thirty years in research works on Chinese sandy deserts[J]. Acta Geographica Sinica, 1979, 34(4):305-314.] |
| [49] | 朱震达. 中国沙漠化研究的进展[J]. 中国沙漠,1989,9(1):1-13.[Zhu Zhenda. Advance in desertification research in China[J]. Journal of Desert Research, 1989, 9(1):1-13.] |
| [50] | 吴正. 中国风沙地貌学研究的新进展——庆贺黄秉维教授80华诞[J]. 地理研究,1993,12(l):10-17.[Wu Zheng. New progresses in the geomorphological research of sand desert in China——Presented for the celebration of Professor Huang Bingwei's 80-year-old birthday[J]. Geographical Research, 1993, 12(l):10-17.] |
| [51] | 夏训诚,樊胜岳. 中国沙漠科学研究进展[J]. 科学通报,2000,45(18):1908-1912.[Xia Xuncheng, Fan Shengyue. Research progress of desert science in China[J]. Chinese Science Bulletin, 2000, 45(18):1908-1912.] |
| [52] | 董治宝,王涛,屈建军. 100 a来沙漠科学的发展[J]. 中国沙漠,2003,23(1):1-5.[Dong Zhibao, Wang Tao, Qu Jianjun. The history of desert science over the last 100 years[J]. Journal of Desert Research, 2003, 23(1):1-5.] |
| [53] | 王涛,赵哈林. 中国沙漠科学的五十年[J]. 中国沙漠,2005,25(2):145-165.[Wang Tao, Zhao Halin. Fifty-year history of China desert science[J]. Journal of Desert Research, 2005, 25(2):145-165.] |
| [54] | 王涛. 我国沙漠与沙漠化科学发展的战略思考[J]. 中国沙漠,2008,28(1):1-7.[Wang Tao. Strategic consideration on desert and desertification sciences development in China[J]. Journal of Desert Research, 2008, 28(1):1-7.] |
| [55] | 吴正. 中国沙漠与治理研究50年[J]. 干旱区研究,2009,26(l):1-7.[Wu Zheng. Deserts in China and their management over the last 50 years[J]. Arid Zone Research, 2009, 26(1):1-7.] |
| [56] | 董光荣. 中国沙漠形成演化气候变化与沙漠化研究[M]. 北京:海洋出版社,2002.[Dong Guangrong. Study on the Formation and Evolution, Climate Change and Desertification in Deserts of China[M]. Beijing:China Ocean Press, 2002.] |
| [57] | 慈龙骏. 中国的荒漠化及其防治[M]. 北京:高等教育出版社,2005.[Ci Longjun. Desertification and Its Control in China[M]. Beijing:Higher Education Press, 2005.] |
| [58] | 王涛,陈广庭,赵哈林,等. 中国北方沙漠化过程及其防治研究的新进展[J]. 中国沙漠,2006,26(4):507-516.[Wang Tao, Chen Guangting, Zhao Halin, et al. Research progress on aeolian desertification process and controlling in north of China[J]. Journal of Desert Research, 2006, 26(4):507-516.] |
| [59] | 王涛. 干旱区绿洲化、荒漠化研究的进展与趋势[J]. 中国沙漠,2009,29(1):1-9.[Wang Tao. Review and prospect of research on oasification and desertification in arid regions[J]. Journal of Desert Research, 2009, 29(1):1-9.] |
| [60] | 王涛,宋翔,颜长珍,等. 近35a来中国北方土地沙漠化趋势的遥感分析[J]. 中国沙漠,2011,31(6):1351-1356.[Wang Tao, Song Xiang, Yan Changzhen, et al. Remote sensing analysis on Aeolian desertification trends in Northern China during 1975-2010[J]. Journal of Desert Research, 2011, 31(6):1351-1356.] |
| [61] | McKee E D. A Study of Global Sand Seas[M]. Washington:United States Government Printing Office, 1979. |
| [62] | Friedman G M, Sanders J E. Principles of Sedimentology[M]. New York:Wiley, 1978. |
| [63] | Pettijohn F J, Potter P E, Siever R. Sand and Sandstone. 2nd ed[M]. New York:Springer-Verlag, 1987. |
| [64] | Maher B A, Mutch T J, Cunningham D. Magnetic and geochemical characteristics of Gobi Desert surface sediments:Implications for provenance of the Chinese Loess Plateau[J]. Geology, 2009, 37(3):279-282. |
| [65] | Li C, Yang S Y, Zhang W G. Magnetic properties of sediments from major rivers, aeolian dust, loess soil and desert in China[J]. Journal of Asian Earth Sciences, 2012, 45:190-200. |
| [66] | 李锋. 中国北方沙尘源区铅同位素分布特征及其示踪意义的初步研究[J]. 中国沙漠,2007,27(5):738-744.[Li Feng. Distribution characteristics of lead isotope in dust source areas and its trace significance in the north of China[J]. Journal of Desert Research, 2007, 27(5):738-744.] |
| [67] | Chen J, Li G J, Yang J D, et al. Nd and Sr isotopic characteristics of Chinese deserts:Implications for the provenances of Asian dust[J]. Geochimica et Cosmochimica Acta, 2007, 71(15):3904-3914. |
| [68] | Rao W B, Chen J, Tan H B, et al. Nd-Sr isotopic and REE geochemical compositions of Late Quaternary deposits in the desert-loess transition, north-central China:Implications for their provenance and past wind systems[J]. Quaternary International, 2014, 334-335:197-212. |
| [69] | 张瀚之,鹿化煜,弋双文,等. 中国北方沙漠/沙地锆石形态特征及其对物源的指示[J]. 第四纪研究,2013,33(2):334-344.[Zhang Hanzhi, Lu Huayu, Yi Shuangwen, et al. Zircon typological analysis of the major deserts/sand fields in northern China and its implication for identifying sediment source[J]. Quaternary Sciences, 2013, 33(2):334-344.] |
| [70] | 谢静,吴福元,丁仲礼. 浑善达克沙地的碎屑锆石U-Pb 年龄和Hf 同位素组成及其源区意义[J]. 岩石学报,2007,23(2):523-528.[Xie Jing, Wu Fuyuan, Ding Zhongli. Detrital zircon composition of U-Pb ages and Hf isotope of the Hunshandake sandland and implications for its provenance[J]. Acta Petrologica Sinica, 2007, 23(2):523-528.] |
| [71] | 严钦尚. 陕北榆林定边间流动沙丘及其改造[J]. 科学通报,1954(11):28-34.[Yan Qinshang. Mobile sand dune and its control along Yuling and Dingbian, Shanbei[J]. Chinese Science Bulletin, 1954(11]:28-34.] |
| [72] | 罗来兴. 陕北榆林靖边间的风沙问题[J]. 科学通报,1954,11:40-46.[Luo Laixing. Aeolian sand dune along Yuling and Jingbian, Shanbei[J]. Chinese Science Bulletin, 1954, 11:40-46.] |
| [73] | 朱震达,陈治平,吴正,等. 塔克拉玛干沙漠风沙地貌研究[M]. 北京:科学出版社,1981.[Zhu Zhenda, Chen Zhiping, Wu Zheng, et al. A Study on the Sand Dune Geomorphology of Taklimakan Desert[M]. Beijing:Science Press, 1981.] |
| [74] | 钱亦兵,吴兆宁,石井武政,等. 塔克拉玛干沙漠沙物质成分特征及其来源[J]. 中国沙漠,1993,13(4):32-38.[Qian Yibing, Wu Zhaoning, Ishii T, et al. The constituent cheracteristics of sand materials and sand sources of the Taklamakan desert[J]. Journal of Desert Research, 1993, 13(4):32-38.] |
| [75] | Honda M, Shimizu H. Geochemical, mineralogical and sedimentological studies on the Taklimakan Desert sands[J]. Sedimentology, 1998, 45(6):1125-1143. |
| [76] | Wang X M, Dong Z B, Zhang J W, et al. Grain size characteristics of dune sands in the central Taklimakan Sand Sea[J]. Sedimentary Geology, 2003, 161(1/2):1-14. |
| [77] | Qian Y B, Zhou X J, Wu Z N, et al. Multi-sources of desert sands for the Junggar Basin[J]. Journal of Arid Environments, 2003, 53(2):241-256. |
| [78] | Xu Z W, Lu H Y, Zhao C F, et al. Composition, origin and weathering process of surface sediment in Kumtagh Desert, Northwest China[J]. Journal of Geographical Sciences, 2011, 21(6):1062-1076. |
| [79] | Liu B L, Qu J J, Ning D H, et al. Grain-size study of aeolian sediments found east of Kumtagh Desert[J]. Aeolian Research, 2014, 13:1-6. |
| [80] | Fang X M, Zhang W L, Meng Q Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258(1/2):293-306. |
| [81] | Yang X P. Landscape evolution and precipitation changes in the Badain Jaran Desert during the last 30, 000 years[J]. Chinese Science Bulletin, 2000, 45(11):1042-1047. |
| [82] | Dong Z B, Qian G Q, Lv P, et al. Investigation of the sand sea with the tallest dunes on Earth:China's Badain Jaran Sand Sea[J]. Earth-Science Reviews, 2013, 120:20-39. |
| [83] | 哈斯. 腾格里沙漠东南缘格状沙丘粒度特征与成因探讨[J]. 地理研究,1998,17(2):178-184.[Hasi. Grain-size characteritics and mechanism of network dune in the southeastern Tengger desert[J]. Geographical Research, 1998, 17(2):178-184.] |
| [84] | Li Z J, Sun D H, Chen F H, et al. Chronology and paleoenvironmental records of a drill core in the central Tengger Desert of China[J]. Quaternary Science Reviews, 2014, 85:85-98. |
| [85] | Fan Y X, Chen X L, Fan T L, et al. Sedimentary and OSL dating evidence for the development of the present Hobq desert landscape, northern China[J]. Science China Earth Sciences, 2013, 56(12):2037-2044. |
| [86] | Fan Y X, Chen F H, Fan T L, et al. Sedimentary documents and Optically Stimulated Luminescence(OSL) dating for formation of the present landform of the northern Ulan Buh Desert, northern China[J]. Science China Earth Sciences, 2010, 53(11):1675-1682. |
| [87] | Chen F H, Li G Q, Zhao H, et al. Landscape evolution of the Ulan Buh Desert in northern China during the Late Quaternary[J]. Quaternary Research, 2014, 81(3):476-487. |
| [88] | Sun J M. Origin of eolian sand mobilization during the past 2300 years in the Mu Us desert, China[J]. Quaternary Research, 2000, 53(1):78-88. |
| [89] | Stevens T, Carter A, Watson T P, et al. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2013, 78:355-368. |
| [90] | 李孝泽,董光荣. 浑善达克沙地的形成时代与成因初步研究[J]. 中国沙漠,1998,18(1):16-21.[Li Xiaoze, Dong Guangrong. Preliminary studies on formative age and causes of Otindag sandy land in China[J]. Journal of Desert Research, 1998, 18(1):16-21.] |
| [91] | 裘善文. 试论科尔沁沙地的形成与演变[J]. 地理科学,1989,9(4):317-328.[Qiu Shanwen. Study on the formation and evolution of Horqin sandy land[J]. Scientia Geographica Sinica, 1989, 9(4):317-328.] |
| [92] | 李取生. 松嫩沙地的形成与环境变迁[J]. 中国沙漠,1991,11(3):36-43.[Li Qusheng. The formation of Songnen sandy land and the changes of the environment[J]. Journal of Desert Research, 1991, 11(3):36-43.] |
| [93] | 韩广,张桂芳,杨文斌. 呼伦贝尔沙地沙丘砂来源的定量分析——逐步判别分析(SDA)在粒度分析方面的应用[J]. 地理学报,2004,59(2):189-196.[Han Guang, Zhang Guifang, Yang Wenbin. A quantitative analysis for the provenance of dune sand in the Hulun Buir sandy land:Application of stepwise discriminant analysis to granulometric data[J]. Acta Geographica Sinica, 2004, 59(2):189-196.] |
| [94] | Sun J M, Ding Z L, Li T S. Desert distributions during the glacial maximum and climatic optimum:Example of China[J]. Episodes, 1998, 21(1):28-31. |
| [95] | Li S H, Sun J M, Zhao H. Optical dating of dune sands in the north-eastern deserts of China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2002, 181(4):419-429. |
| [96] | Lu H Y, Yi S W, Xu Z W, et al. Chinese deserts and sand fields in Last Glacial Maximum and Holocene Optimum[J]. Chinese Science Bulletin, 2013, 58(23):2775-2783. |
| [97] | Xie J, Yang S L, Ding Z L. Methods and application of using detrital zircons to trace the provenance of loess[J]. Science China Earth Sciences, 2012, 55(11):1837-1846. |
| [98] | Ono Y, Naruse T, Ikeya M, et al. Origin and derived courses of eolian dust quartz deposited during marine isotope stage 2 in East Asia, suggested by ESR signal intensity[J]. Global Planetary Change, 1998, 18(3/4):129-135. |
| [99] | Murata K J, Norman M B. An index of crystallinity for quartz[J]. American Journal of Science, 1976, 276(9):1120-1130. |
| [100] | Nagashima K, Tada R, Tani A, et al. Contribution of aeolian dust in Japan Sea sediments estimated from ESR signal intensity and crystallinity of quartz[J]. Geochemistry Geophysics Geosystems, 2007, 8(2):Q02Q04. doi:10.1029/2006GC001364. |
| [101] | Sun Y B, Tada R, Chen J, et al. Distinguishing the sources of Asian dust based on electron spin resonance signal intensity and crystallinity of quartz[J]. Atmospheric Environment, 2007, 41(38):8537-8548. |
| [102] | Sun Y B, Tada R, Chen J, et al. Tracing the provenance of fine-grained dust deposited on the central Chinese loess plateau[J]. Geophysical Research Letters, 2008, 35(1):L01804, doi:10.1029/2007GL031672. |
| [103] | Fitzsimmons K. An assessment of the luminescence sensitivity of Australian quartz with respect to sediment history[J]. Geochronometria, 2011, 38(3):199-208. |
| [104] | Li S H, Chen Y Y, Li B, et al. OSL dating of sediments from deserts in northern China[J]. Quaternary Geochronology, 2007, 2(1-4):23-28. |
| [105] | Zheng C X, Zhou L P, Qin J T. Difference in luminescence sensitivity of coarse-grained quartz from deserts of northern China[J]. Radiation Measurements, 2009, 44(5/6):534-537. |
| [106] | Tsukamoto S, Nagashima K, Murray A S, et al. Variations in OSL components from quartz from Japan sea sediments and the possibility of reconstructing provenance[J]. Quaternary International, 2011, 234(1/2):182-189. |
| [107] | Pettke T, Halliday A N, Rea D K. Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3[J]. Paleoceanography, 2002, 17:1031. doi:1010.1029/2001PA000673. |
| [108] | Sun J M, Zhu X K. Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8 Ma:Implications for provenance change[J]. Earth and Planetary Science Letters, 2010, 290(3/4):438-447. |
| [109] | Grousset F E, Biscaye P E. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes[J]. Chemical Geology, 2005, 222(3/4):149-167. |
| [110] | Rao W B, Yang J D, Chen J, et al. Sr-Nd isotope geochemistry of eolian dust of the arid-semiarid areas in China:implications for loess provenance and monsoon evolution[J]. Chinese Science Bulletin, 2006, 51(12):1401-1412. |
| [111] | Yang J D, Li G J, Rao W B, et al. Isotopic evidence for provenance of East Asian dust[J]. Atmospheric Environment, 2009, 43(29):4481-4490. |
| [112] | Chen Z, Li G J. Evolving sources of eolian detritus on the Chinese Loess Plateau since Early Miocene:Tectonic and climatic controls[J]. Earth and Planetary Science Letters, 2013, 371-372:220-225. |
| [113] | Ferrat M, Weiss D J, Strekopytov S, et al. Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the eastern Tibetan Plateau[J]. Geochimica et Cosmochimica Acta, 2011, 75(21):6374-6399. |
| [114] | Weltje G J, von Eynatten H. Quantitative provenance analysis of sediments:review and outlook[J]. Sedimentary Geology, 2004, 171(1/2/3/4):1-11. |
| [115] | Weltje G J. Quantitative models of sediment generation and provenance:State of the art and future developments[J]. Sedimentary Geology, 2012, 280:4-20. |
| [116] | Fedo C M, Sircombe K N, Rainbird R H. Detrital zircon analysis of the sedimentary reord[J]. Reviews in Mineralogy and Geochemistry,2003,53(1):277-303. |
| [117] | Xiao G, Zong K, Li G, et al. Spatial and glacial-interglacial variations in provenance of the Chinese Loess Plateau[J]. Geophysical Research Letters, 2012, 139(20):L20715, doi:10.1029/2012GL053304. |
| [118] | Pullen A, Kapp P, McCallister A T, et al. Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications[J]. Geology, 2011, 39(11):1031-1034. |
| [119] | Che X D, Li G J. Binary sources of loess on the Chinese Loess Plateau revealed by U-Pb ages of zircon[J]. Quaternary Research, 2013, 80(3):545-551. |
| [120] | Cox R, Lowe D R. A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover[J]. Journal of Sedimentary Research, 1995, 65(1A):1-12. |
| [121] | Morton A C, Hallsworth C R. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1994, 90(3/4):241-256. |
| [122] | Morton A C, Hallsworth C R. Processes controlling the composition of heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1999, 124(1/2/3/4):3-29. |
| [123] | Amorosi A, Zuffa G G. Sand composition changes across key boundaries of siliciclastic and hybrid depositional sequences[J]. Sedimentary Geology, 2011, 236(1/2):153-163. |
| [124] | Garzanti E, Vermeesch P, Andò S, et al. Provenance and recycling of Arabian desert sand[J]. Earth-Science Reviews, 2013, 120:1-19. |
| [125] | Garzanti E, Andò S, Vezzoli G. Settling equivalence of detrital minerals and grain-size dependence of sediment composition[J]. Earth and Planetary Science Letters, 2008, 273(1/2):138-151. |
| [126] | Garzanti E, Andò S, Vezzoli G. Grain-size dependence of sediment composition and environmental bias in provenance studies[J]. Earth and Planetary Science Letters, 2009, 277(3/4):422-432. |
| [127] | Tolosana-Delgado R. Uses and misuses of compositional data in sedimentology[J]. Sedimentary Geology, 2012, 280:60-79. |
| [128] | Schuster M, Duringer P, Ghienne J-F, et al. The age of the Sahara desert[J]. Science, 2006, 311(5762):821. |
| [129] | Muhs D R, Roskin J, Tsoar H, et al. Origin of the Sinai-Negeverg, Egypt and Israel:mineralogical and geochemical evidence for the importance of the Nile and sea level history[J]. Quaternary Science Reviews, 2013, 69:28-48. |
| [130] | Lancaster N. Grain size characteristics of Namib Desert linear dunes[J]. Sedimentology, 1981, 28(1):115-122. |
| [131] | White K, Walden J, Gurney S D. Spectral properties, iron oxide content and provenance of Namib dune sands[J]. Geomorphology, 2007, 86(3/4):219-229. |
| [132] | Vermeesch P, Fenton C R, Kober F F, et al. Sand residence times of one million years in the Namib Sand Sea from cosmogenic nuclides[J]. Nature Geoscience, 2010, 3:862-865. |
| [133] | Garzanti E, Andò S, Vezzoli G, et al. Petrology of the Namib Sand Sea:Long-distance transport and compositional variability in the wind-displaced Orange Delta[J]. Earth-Science Reviews, 2012, 112(3/4):173-189. |
| [134] | Lancaster N. Grain-size characteristics of linear dunes in the southwestern Kalahari[J]. Journal of Sedimentary Research, 1986, 56(3):395-400. |
| [135] | Thomas D S G, Knight M, Wiggs G F S. Remobilization of southern African desert dune systems by twenty-first century global warming[J]. Nature, 2005, 435(7046):1218-1221. |
| [136] | Muhs D R. Mineralogical maturity in dunefields of North America, Africa and Australia[J]. Geomorphology, 2004, 59(1/2/3/4):247-269. |
| [137] | Hanson P R, Arbogast A F, Johnson W C, et al. Megadroughts and Late Holocene dune activation at the eastern margin of the Great Plains, north-central Kansas, USA[J]. Aeolian Research, 2010, 1(3/4):101-110. |
| [138] | Kocurek G, Lancaster N. Aeolian system sediment state:theory and Mojave Desert Kelso dune field example[J]. Sedimentology, 1999, 46(3):505-515. |
| [139] | Bateman M D, Bryant R G, Foster I D L, et al. On the formation of sand ramps:A case study from the Mojave Desert[J]. Geomorphology, 2012, 161-162:93-109. |
| [140] | Roy P D, Caballero M, Lozano S, et al. Provenance of sediments deposited at paleolake San Felipe, western Sonora Desert:Implications to regimes of summer and winter precipitation during last 50 cal kyr BP[J]. Journal of Arid Environments, 2012, 81:47-58. |
| [141] | Ortega B, Schaaf P, Murray A, et al. Eolian deposition cycles since AD 500 in Playa San Bartolo lunette dune, Sonora, Mexico:Paleoclimatic implications[J]. Aeolian Research, 2013, 11:1-13. |
| [142] | Castiglia P J, Fawcett P J. Large Holocene lakes and climate change in the Chihuahuan Desert[J]. Geology, 2006, 34(2):113-116. |
| [143] | Dunai T J, González López G A, Juez-Larré J. Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms[J]. Geology, 2005, 33(4):321-324. |
| [144] | Garreaud R D, Molina A, Farias M. Andean uplift, ocean cooling and Atacama hyperaridity:A climate modeling perspective[J]. Earth and Planetary Science Letters, 2010, 292(1/2):39-50. |
| [145] | Potter P E. Modern sands of South America:composition, provenance and global significance[J]. Geologische Rundschau, 1994, 83(1):212-232. |
| [146] | Tripaldi A, Ciccioli P L, Alonso M S, et al. Petrography and geochemistry of Late Quaternary dune fields of western Argentina:Provenance of aeolian materials in southern South America[J]. Aeolian Research, 2010, 2(1):33-48. |
| [147] | Pell S D, Chivas A R, Williams I S. The Great Victoria Desert:development and sand provenance[J]. Australian Journal of Earth Sciences, 1999, 46(2):289-299. |
| [148] | Pell S D, Chivas A R, Williams I S. The Simpson, Strzelecki and Tirari Deserts:development and sand provenance[J]. Sedimentary Geology, 2000, 130(1/2):107-130. |
| [149] | Fitzsimmons K E, Magee J W, Amos K J. Characterisation of aeolian sediments from the Strzelecki and Tirari Deserts, Australia:Implications for reconstructing palaeoenvironmental conditions[J]. Sedimentary Geology, 2009, 218(1/2/3/4):61-73. |
| [150] | Singhvi A K, Williams M A J, Rajaguru S N, et al. A-200 ka record of climatic change and dune activity in the Thar Desert, India[J]. Quaternary Science Reviews, 2010, 29(23/24):3095-3105. |
| [151] | Padmakumar G P, Srinivas K, Uday K V, et al. Characterization of aeolian sands from Indian desert[J]. Engineering Geology, 2012, 139-140:38-49. |
| [152] | Garzanti E, Resentini A, Vezzoli G, et al. Forward compositional modelling of Alpine orogenic sediments[J]. Sedimentary Geology, 2012, 280:149-164. |
| [153] | Bloemsma M R, Zabel M, Stuut J B W, et al. Modelling the joint variability of grain size and chemical composition in sediments[J]. Sedimentary Geology, 2012, 280:135-148. |
| [154] | Caracciolo L, Tolosana-Delgado R, Le Pera E, et al. Influence of granitoid textural parameters on sediment composition:implications for sediment generation[J]. Sedimentary Geology, 2012, 280:93-107. |
| [155] | von Eynatten H, Tolosana-Delgado R, Karius V. Sediment generation in modern glacial settings:Grain-size and source-rock control on sediment composition[J]. Sedimentary Geology, 2012, 280:80-92. |
2015, Vol. 33

