沉积学报  2015, Vol. 33 Issue (2): 232-241

扩展功能

文章信息

王远翀, 梁薇, 牟传龙, 周恳恳, 葛祥英
WANG YuanChong, LIANG Wei, MOU ChuanLong, ZHOU KenKen, GE XiangYing
渝东南—黔北地区赫南特期冰川事件的沉积响应
The Sedimentary Response to Gondwana Glaciation in Hirnantian (Ordovician) of the Eastern Chongqing and the Northern Guizhou Region, South China
沉积学报, 2015, 33(2): 232-241
ACTA SEDIMENTOLOGICA SINCA, 2015, 33(2): 232-241
10.14027/j.cnki.cjxb.2015.02.003

文章历史

收稿日期:2014-03-14
收修改稿日期:2014-06-16
渝东南—黔北地区赫南特期冰川事件的沉积响应
王远翀1,2, 梁薇2,3, 牟传龙2,3, 周恳恳2,3, 葛祥英2,3    
1. 成都理工大学 成都 610059;
2. 中国地质调查局成都地质调查中心 成都 610081;
3. 国土资源部沉积盆地与油气资源重点实验室 成都 610081
摘要:奥陶纪末的赫南特期爆发全球冰川事件,渝东南—黔北地区赫南特期沉积的观音桥组,从岩相、古生物组合、古环境等方面表现出该地区对赫南特期冰川事件的响应。通过对观音桥组沉积特征的分析,发现其主要分为3类:一类为颗粒灰岩,细分为泥晶生屑砂屑灰岩和亮晶鲕粒灰岩、亮晶砂屑灰岩等,含珊瑚等化石,代表了中高能量的浅滩环境;一类主要为粉砂质灰岩、粉砂质泥灰岩组合,含腕足类及三叶虫动物群,沉积环境为潮坪。这两类是近岸沉积,主要受相对海平面下降的影响。另一类为形成于浅海陆棚环境的混合岩相,包括泥灰岩与钙质泥岩组合、粉砂质泥岩与泥质粉砂岩组合及含炭泥灰岩;生物包括三叶虫、笔石及腕足等,尤其是标志性冷水型Hirnantia动物群的短暂繁盛,表明其受海水温度变凉的影响较大。潮坪靠近黔中古陆分布,局部发育浅滩,远离古陆变为浅海陆棚环境。总体上,观音桥组沉积环境比五峰组与龙马溪组黑色笔石相页岩的缺氧滞留深水陆棚环境更浅、相对海平面及水温更低,是赫南特期冰川事件直接影响的结果。
关键词观音桥组     冰川事件     沉积响应     渝东南—黔北    
Effect of Compaction Methods on Performance of ATB-30 Asphalt Mixture
WANG YuanChong1,2, LIANG Wei2,3 , MOU ChuanLong2,3, ZHOU KenKen2,3, GE XiangYing2,3    
1. Chengdu Univerisity of Technology, Chengdu 610059;
2. Chengdu Center, China Geological Survey, Chengdu 610081;
3. Key Laboratory of Sedimentary Basins and Oil & Gas Resources of Ministry of Land and Resources, Chengdu 610081
Abstract:The global glaciation happened in Hirnantian of the Late Ordovician, the lithofacies, biologic facies and sedimentary environment of Hirnantian Kuanyinchiao Formation in the eastern Chongqing and northern Guizhou region, were the response to the glacial event. There were 3 types of lithofacies as a whole. The first type was composed of grainstone with coral. could be subdivided into bioclast limestone, calcarenite, oolitic sparite limestone and spararenite. Which formed in the shoal with medium to high energy. The major components of the second one were the silty limestone and silty argillaceous limestone that formed in tidal flat, where the plentiful brachiopoda and a few trilobites lived. These two types of lithofacies were both the inshore carbonate sediments resulted from sea level drop. The associations of marlstone and calcareous shale, argillaceous siltstone and silty mudstone, and the carbonous marlstone, constituted the last type. And its mixed biofacies containing brachiopoda, trilobites, graptolite, especially the bloomed Hirnantia fauna, indicated the cold water environment and temperature drop of seawater in Principal Glacial Age (Hirnantian). The tidal flat distributed near the Qianzhong(Central Guizhou)Uplift, and the shoal also occupied local area upon the tidal flat, and shallow shelf distributed far away from uplift. As a whole, the sedimentary environment of Kuanyinqiao Formation was shallower than the black shales of Wufeng Formation and Longmaxi Formation formed in anoxic deep-water shelf, the sea-level and seawater temperature was much lower in Hirnantian. All of which were the results influenced by the glacier events in Hirnantian.
Key words: Kuanyinchiao Formation     glaciation     sedimentary response     eastern Chongqing and northern Guizhou region    
0 引言

奥陶纪与志留纪之交的赫南特期,被广泛认定奥陶纪最末期不到2 Ma的一段时期[1, 2, 3]。南半球冈瓦纳发生大规模的冰川事件[4],受此事件的影响,奥陶纪与志留纪之交全球发生了大规模的生物灭绝事件[5, 6, 7, 8, 9],导致全球众多地方古生态、古环境、古气候发生了巨大变化[10, 11]。从70年代开始,人们先是在非洲北部、南非的奥陶纪晚期地层中发现了冰川沉积,之后在阿根廷、秘鲁、玻利维亚等国发现了奥陶纪晚期的冰碛杂岩,在西班牙、葡萄牙、法国、捷克、德国以及沙特阿拉伯等国发现了海相冰川沉积[12]。但在中国南方,但至今未发现与该期冰川事件对应的冰碛岩或冰川沉积。事实上,前辈们针对华南地区奥陶纪—志留纪之交——赫南特期的地层古生物及地球化学特征等方面的已开展诸多研究,取得众多重要的进展[13, 14, 15, 16],许多学者认为与下伏五峰组及上覆龙马溪组沉积截然不同的观音桥组沉积应与这期冰川事件相联系[17, 18, 19, 20, 21],并对其成因进行了探讨,大部分观点认为观音桥组是受加里东构造作用或冰川事件导致海平面相对下降影响的浅水沉积物。苏文博等[22, 23]通过对中上扬子地区五峰组及龙马溪组中的钾质斑脱岩的研究发现,奥陶纪与志留纪之交曾发生过火山喷发事件,胡艳华等[24]认为火山事件可能导致冰川事件的诱因之一。此外,亦有观点论述观音桥组形成于深海环境中,属深海等深流沉积[25]或深水异地沉积[26]

前人研究成果涉及到整个中上扬子地区晚奥陶世—早志留世生物地层工作,沉积环境演化及其构造作用机制[27, 28]、古生态变化对冰川事件的响应[12, 29, 30]等各方面,却较少涉及这一事件对沉积物的影响[21],即观音桥组的区域沉积特征与岩相古地理分布。故作者等人于2012—2013年在渝东南—黔北地区多地进行野外地质考察(图 1),旨在以渝东南—黔北地区观音桥组为研究对象,通过对其沉积物的沉积特征、古生物特征的详细研究分析沉积相特征与展布及沉积环境,揭示渝东南—黔北地区观音桥组表现出对赫南特冰川事件的沉积响应。

1 地质背景

渝东南—黔北地区属于上扬子地块,其沉积发展及地层记录受控于扬子地块与华夏地块之间的构造作用与演化。自中晚奥陶世开始,中上扬子地块逐渐发育为克拉通基础上的隆后盆地[31, 32]。受扬子地块和华夏地块之间的挤压作用,在扬子地块的边缘形成了一系列的隆起,如北部的汉南隆起、西边的川中隆起、康滇隆起以及东南边缘的黔中隆起、雪峰隆起等,这使在中上扬子地区成为受周围隆起控制的局限海盆(图 1)。晚奥陶世开始至早志留世,随着构造的强烈挤压使得沉积环境水体加深,早期的碳酸盐台地沉没消失,代之形成了五峰期、龙马溪期还原滞留的局限深水盆地环境[28, 30],沉积黑色页岩。

图 1 研究区构造背景与奥陶系—志留系出露示意图 Fig. 1 The tectonic setting and the exposure of the Ordovician-Silurian succession in the eastern Chongqing and the northern Guizhou region

渝东南—黔北地区奥陶纪—志留纪之交的地层,前辈生物地层学研究成果认为研究区发育五峰组—观音桥组—龙马溪组,五峰组—观音桥组基本为连续沉积,观音桥组—龙马溪组两者间常为非连续沉积,存在沉积间断[33, 34]。观音桥组沉积厚度较薄,地层通常厚0.5~2.0 m不等,贵州桐梓花园厚7.9 m,贵州凤冈硐卡拉厚达11.5 m。尽管存在地层的缺失,但仍具有较好的区域可比性(表 1)。从地层的岩性变化、化石组合来看,观音桥组地层在研究区具有明显的划分标志,不同于五峰组与龙马溪组的笔石相页岩,观音桥组多碳酸盐沉积,局部地区为粉砂质泥岩或泥质粉砂岩;生物化石种类丰富,见三叶虫、珊瑚、腕足等,尤以腕足类中赫南特动物群发育为标志。

表 1 渝东南—黔北地区奥陶系—志留系界线地层划分与对比(据戎嘉余等修改,2011) Table 1 The stratigraphic subdivision and correlation of the Ordovician-Silurian transitional interval in the eastern Chongqing and the northern Guizhou region
2 沉积相划分及特征

根据作者野外考察并参考区域资料,可将观音桥组的沉积相划分为3种主要类型,分别为潮坪相、浅滩相、浅海陆棚相(图 2)。

图 2 渝东—黔北地区观音桥组沉积特征及区域横向对比
1.泥灰岩;2.鲕粒灰岩;3.砂屑灰岩;4.炭质灰岩;5.粉砂质灰岩;6.泥质粉砂岩;7.生屑灰岩;8.粉砂质页岩;9.灰质白云岩;10.钙质页岩;11.钙质泥岩;12.粉砂岩;13.泥岩;14.炭质页岩;15.钙质粉砂岩;16.钙质砂岩;17.粉砂质泥岩;18.砂质页岩;19.页岩
Fig. 2 The sedimentary characteristics and lateral correlation of Kuanyinchiao Formation in the eastern Chongqing and northern Guizhou region
2.1 潮坪相

潮坪相,岩性以粉砂质灰岩、粉砂质泥质灰岩为主。粉砂质灰岩中粉砂的含量一般约25%~35%,个别达40%,以石英颗粒为主,粉砂分选磨圆较好,粒度一般在0.1~0.2 mm之间,多呈次圆状,少量呈次棱角状。陆源碎屑的供给可能来自南面的黔中隆起,由于黔中隆起的特殊性质,由早期的水下隆起逐渐暴露为陆上隆起[35, 36],其碎屑物源供给较少,潮坪相主要以碳酸盐沉积为主,混有陆源碎屑颗粒。靠近黔中隆起的近岸区粉砂质含量较高,离岸方向粉砂质含量逐渐减少,泥质含量增加,呈粉砂质泥质灰岩。厚度较薄,沉积构造基本不发育。古生物方面,潮坪相区内,生物丰富,产腕足类Dalmanella cf. testudinaria、Eostropheodonta cf. hirantensisRafinesquina sp.等;还见少量瓣鳃类Modiolopsis sp.、三叶虫Dalmanitina sp.及海百合茎[37, 38]、苔藓虫、腹足类、双壳类和钙藻[21, 30],极少数地区在观音桥组下部能见到赫南特贝。生物个体常较完整,局部呈现介壳生物层。缺乏较深水浮游营生的笔石类生物,总体上属于近岸暖水型[21]低能碳酸盐潮坪环境[28]。观音桥组沉积相对浅水的壳相碳酸盐沉积,是与赫南特主冰期海平面迅速下降有直接的关系。

图 3 渝东黔北地区观音桥组露头特征
a.铁锰质泥岩,重庆酉阳苍岭;b.铁锰质泥岩,重庆武隆黄草;c.含生物泥灰岩与钙质泥岩互层,贵州习水良村;d.含炭质粉砂质泥灰岩,重庆綦江观音桥;e.赫南特贝,重庆酉阳苍岭;f.含生物铁锰质泥岩、珊瑚、赫南特贝,贵州沿河新景;g.赫南特贝,重庆綦江观音桥;h.赫南特贝,贵州务川高桥
Fig. 3 The outcrop feature of Kuanyinchiao Formation in the eastern Chongqing and the northern Guizhou region
2.2 浅滩相

近岸潮坪相中局部地区能量较高,逐渐发生浅滩化。在凤冈、沿河、仁怀等周边区域,观音桥组岩性以颗粒灰岩为主,包括含泥质较少的亮晶砂屑灰岩(图 4b)、生物碎屑灰岩(图 4a,c)、含鲕粒亮晶砂屑灰岩等。亮晶砂屑灰岩中砂屑含量多达50%~60%,砂屑多呈不规则圆状与椭圆状,颗粒较小,粒径多为0.1~0.5 mm,方解石亮晶胶结居多。生物碎屑灰岩中,生屑成分较复杂,多见腕足类、三叶虫碎骨刺以及少量珊瑚碎屑,生屑的大小不等,介于1~2 mm之间。填隙物多为泥晶,局部呈亮晶胶结。少量的生屑灰岩,泥质含量较高,达20%~25%,见少量粉砂,含量<5%。生物方面,见完整的珊瑚(Sinkiangolasma sp.、Brachyelasma sp.)化石(图 3f图 5)与少量较为完整非赫南特贝的腕足类与三叶虫(Dalmanitina sp.)化石(图 3e)[21,37-38]

图 4 渝东黔北地区观音桥组岩石微观特征
a.生屑灰岩,单偏光,2.5×10,沿河新景;b.亮晶砂屑灰岩,单偏光,2.5×10,贵州凤冈永和;c.苔藓虫,正交偏光,10×10,贵州仁怀中枢;d.含炭质粉砂质泥灰岩,正交偏光,10×10,重庆南川三泉;e.铁锰质泥岩,单偏光,2.5×10,重庆酉阳苍岭;f.含炭粉砂质灰岩,单偏光,10×10,重庆綦江观音桥;g.粉砂质泥岩,正交偏光,10×10,贵州道真三元场;h.含铁锰质粉砂质泥岩,单偏光,2.5×10,贵州道真三元场
Fig. 4 The microscopic feature of Kuanyinchiao Formation in the eastern Chongqing and northern Guizhou region

图 5 仁怀地区观音桥组沉积特征及演化 Fig. 5 The sedimentary characteristics and evolution of Kuanyinqiao Formation in Renhuai area

泥质生屑灰岩多见于沿河、仁怀地区,水体动能稍弱,较浑浊。沿河地区,观音桥组较薄,仅0.2 m,发育小型生屑滩。凤冈硐卡拉是全研究区观音桥组沉积最厚的地方,发育亮晶砂屑灰岩为主的砂屑滩以及生屑灰岩为主的生屑滩,钙质泥岩主要为滩间低能沉积物。仁怀地区,稍显复杂,下部为钙质泥岩夹灰岩瘤[39],是赫南特贝动物群主要产出部位;上部为泥质含量较少的生屑灰岩、砂屑灰岩(图 5),主要产暖水型生物单体珊瑚(图 5)、少量三叶虫与非赫南特贝的腕足类及苔藓虫(图 4c)。仁怀剖面观音桥组的沉积特征,指示了在冰川作用下,相对海平面骤降,此地区沉积环境变浅为浅水陆棚,水温变凉,产凉水型赫南特贝动物群;冰期之后,气候回暖,水温升高,水体能量逐渐变高,形成小规模生屑滩以及砂屑滩,标志性暖水沉积砂屑灰岩等以及非凉水生长的珊瑚在此赋存。

浅滩相的存在,说明了主冰期的冰川作用下,局部近岸带温暖条件的幸存[21]。尽管如此,仍然反映了水体变浅的事实,以及笔石生物群的没落与生物群种的变化。

2.3 浅海陆棚相

浅海陆棚相包括混积陆棚与碎屑陆棚。混积陆棚沉积物以泥灰岩、含炭质粉砂质泥灰岩(图 4d),或泥灰岩与钙质泥岩或粉砂质泥岩互层为特征(图 3c)。泥灰岩中泥质含量较高,通常为20%~40%不等。綦江—南川一带,粉砂质泥灰岩中含少量炭质,含量约5%~15%(图 3d图 4f)不等,为深水陆棚的产物。碎屑陆棚沉积物以铁锰质泥岩(图 4e图 3a,b)、粉砂质泥岩(图 4g)(含粉砂泥岩)以及(含炭)泥质粉砂岩为主。含粉砂—粉砂质铁锰质泥岩中,粉砂的含量5%~25%不等;铁锰质含量较高,通常达20%左右(图 4h)。碎屑陆棚中局部铁锰质含量较高的区域水深较深,为深水陆棚环境。整个浅海陆棚能量较低,富含生物,生物个体完整,常见腕足类Triplesia sp.、Fardenia sp.、Oxoplecia sp.、 Dalmanella sp. Tetrephalerella sp.、Plectothyrella sp.等,三叶虫Dalmanitina nanchengensis Lu、Leonaspis sp.等以及营浮游生活的笔石Climacograptus sp.、Paraorthograptus sp.、DiplograptusOrthograptus sp.、Akidograptus sp.等[37, 38],以典型的冷水动物群赫南特贝(Hirnantia cf. magna)为代表的腕足类尤其繁盛(图 3e~h)。浮游笔石生物组合与浅水腕足类的共存表明,水深较潮坪变深,为浅海沉积环境,沉积相为浅海陆棚相。陆棚相区赫南特动物群的富产,亦更加说明其受水温变冷的影响较大,而水温变低的直接控制因素就是冰川作用。

综上,根据研究区观音桥组的岩相特征、生物类型、分布范围可将其分为近岸型与远岸型,分别受到了赫南特期冰川作用不同程度的影响。近岸型主要分布于潮坪相、浅滩相区,岩相以泥灰岩、粉砂质灰岩、颗粒灰岩为主,生物组合以富产暖水型动物珊瑚以及腕足类、腹足类、少量瓣鳃类、三叶虫、苔藓虫与海百合茎、赫南特贝为特征。近岸型组合表明其受海平面急剧下降影响较大,而受水温变低影响较小,近岸带局部存在温暖条件[21]。远岸型组合主要分布于浅海陆棚相区内,岩相以炭质泥灰岩、粉砂质泥岩以及铁锰质泥岩为主,生物种类主要为腕足类、三叶虫以及营浮游生活的笔石,尤以典型的冷水动物群赫南特贝动物群(Hirnantia fauna)极其繁盛为特征,表明主冰期海水温度急剧降低对远岸区影响较大。这两种类型的沉积物组合普遍结束了下伏凯迪期晚期的五峰组黑色笔石页岩沉积,之后被海进序列的鲁丹期早期的龙马溪组黑色页岩所超覆,简称为“两黑夹一灰”[21]

3 岩相古地理

总体上,渝东南—黔北地区观音桥组为碳酸盐岩与碎屑岩混和沉积的浅海沉积模式,自南向北,水体逐渐变深,但最深仅为浅海陆棚环境。沉积相带自南—南东向北—北西展布,依次为隆起—潮坪相—浅滩相—浅海陆棚相(图 6)。

图 6 渝东南—黔北地区赫南特期岩相古地理
1.隆起;2. 泥灰岩;3.砂屑灰岩;4.炭质灰岩;5.粉砂质灰岩;6.泥质粉砂岩;7.生屑灰岩;8.粉砂质页岩;9.鲕粒灰岩;10.钙质页岩;11.珊瑚;12.三叶虫;13.腕足类化石(不包括赫南特贝);14.赫南特贝;15.腹足类化石;16.笔石化石;17.海百合
Fig. 6 The lithofacies paleogeography in Hirnantian Stage(Ordovician) of the eastern Chongqing and the northern Guizhou region

隆起区主要分布在金沙—湄潭—石阡—江口一带以及以南的区域,是加里东运动初期,受扬子陆块与华夏陆块会聚,贵州中部与湖南雪峰山地区构造抬升而形成隆起区,对研究区的海域,起到一定的围限作用,研究区内仅见黔中隆起。在沿河、印江、凤冈等地,发育一些小型的水下孤岛,可能赫南特晚期浮出过水面,因暴露短暂而未被全部剥蚀[34]

潮坪相毗邻古隆起发育,分布于仁怀—绥阳—酉阳一线以南,以沉积粉砂质灰岩、粉砂质泥质灰岩富含珊瑚、三叶虫、非赫南特贝的腕足、腹足为特征,见少量海百合、苔藓虫、鲜见的赫南特贝。在凤冈、沿河、仁怀及周边地区,发育较高能的浅滩相,以亮晶颗粒灰岩、生屑灰岩为特征,沉积厚度较大,是发育在近岸的相对高能区。

浅海陆棚相分布于仁怀—绥阳—酉阳一线以北的广大区域,根据其岩相的区别划分为碎屑陆棚相与混积陆棚相。碎屑陆棚相主要分布于绥阳—务川—彭水一带,以沉积铁锰质泥岩、粉砂质泥岩与泥质粉砂岩为特征。混积陆棚相则分布于仁怀—正安—道真一线以北西,发育两种混和沉积类型:一种为碎屑岩与碳酸盐岩的混积层系,分布于桐梓—道真一带;桐梓一带主要是泥灰岩与钙质泥岩互层沉积,道真一带则是泥灰岩与粉砂质泥岩互层;另外一种混合沉积则为陆源碎屑颗粒混入碳酸盐沉积物的陆源碎屑质—碳酸盐岩[40],岩性主要为泥灰岩、含炭质泥灰岩、含粉砂泥灰岩,分布于綦江—南川一带。整个浅海陆棚相区,多见腕足类、三叶虫、营浮游生活的笔石,结合典型的冷水动物群—赫南特动物群在这一区域内的繁盛,反映了陆棚相区水深较潮坪变深,水温较低。綦江—南川一带的泥灰岩中含少量有机质,武隆一带的泥岩中铁锰质含量较高,表明了自南向北,沉积环境逐渐变深,綦江—南川—武隆一带已变为深水陆棚环境。

综上,在加里东构造运动持续碰撞挤压背景下,相较于五峰期缺氧滞留深水陆棚环境,渝东南—黔北地区观音桥组的沉积环境骤然变浅,海岸线向海方向迁移,隆起区暴露范围增大[28],黑色岩系消失,浮游笔石类生物的大灭绝[5, 6, 7, 8, 9],浅水壳相生物的繁盛,尤其是赫南特贝动物群的富产,均表现了冰川作用对研究区相对海平面和海水温度的影响,使其急剧下降。之后,气候回暖,随着冰川的消融,海平面迅速升高,沉积环境加深,区内快速海侵,出现新的一套黑色岩系,同时,壳相化石组合消失,代之新一轮笔石化石的繁荣[5, 6, 7, 8, 9]。另外,严德天等[41]所做的微量和稀土元素研究结果表明,扬子区的五峰组和龙马溪组形成于缺氧环境,而观音桥组形成于氧化环境。全球海平面的下降导致凯迪晚期缺氧环境被观音桥期氧化环境所取代,而随后的海平面上升又导致鲁丹早期的龙马溪期恢复为缺氧环境。氧化还原环境的变化与岩相、生物变化特征的高度吻合赫南特期南冈瓦纳冰川控制的全球海平面下降与海水温度降低。

4 结论

(1) 渝东南—黔北地区赫南特期观音桥组发育3种沉积相类型:潮坪相、浅滩相、浅海陆棚相,总体沉积环境较浅,水体能量偏低。渝东南—黔北地区赫南特期沉积模式为混积浅海,自南向北,水体变深,沉积相展布方式为隆起—潮坪相—浅滩相—浅海陆棚相(碎屑陆棚相—混积陆棚相)。

(2) 受赫南特期南冈瓦纳冰川事件影响,研究区相对海平面降低,观音桥组沉积与五峰组及龙马溪组笔石相页岩完全不同的壳相碳酸盐岩为主的沉积物,沉积环境变浅,产暖水型动物—珊瑚的浅滩相区代表了近岸带局部温暖环境的存在。陆棚相区,标志性凉水动物群—赫南特动物群的繁盛,表明受控于赫南特冰川作用海水温度降低。

致谢 许效松研究员在本文的完成过程中给予了宝贵的意见及指导,在此致谢。

参考文献
[1] Gradstein F M, Ogg J G, Smith A G, et al. A new geologic time scale, with special reference to Precambrian and Neogene[J]. Episodes, 2004, 27(2): 83-100.
[2] Chen Xu, Rong Jiayu, Fan Junxuan, et al. The global boundary stratotype section and point (GSSP) for the base of the Hirnantian stage[J]. Episodes, 2006, 29(3): 183-196.
[3] 胡艳华,刘健,周明忠,等. 奥陶纪和志留纪钾质斑脱岩研究评述[J]. 地球化学,2009,38(4):393-404.[Hu Yanhua, Liu Jian, Zhou Mingzhong, et al. An overview of Ordovician and Silurian K-bentonites[J]. Geochimica, 2009, 38(4): 393-404.]
[4] Delabroye A, Vecoli M. The end-Ordovician glaciation and the Hirnantian Stage: A global review and questions about Late Ordovician event stratigraphy[J]. Earth-Science Reviews, 2010, 98(3/4): 269-282.
[5] Marshall J D, Brenchley P J, Mason P, et al. Global carbon isotopic events associated with mass extinction and glaciation in the late Ordovician[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1/2/3/4): 195-210.
[6] 戎嘉余,詹仁斌. 奥陶纪末集群灭绝后腕足动物复苏的主要源泉—论先驱生物的分类[J]. 中国科学(D辑):地球科学,1999,29(3):232-239.[Rong Jiayu, Zhan Renbin. Chief sources of brachiopod recovery from the end Ordovician mass extinction with special references to progenitors[J]. Science China (Seri. D): Earth Sciences, 1999, 29(3): 232-239.]
[7] Sheehan P M. The Late Ordovician mass extinction[J]. Annual Review of Earth and Planetary Sciences, 2001, 29: 331-364.
[8] 王传尚,汪啸风,陈孝红. 奥陶系/志留系界线之交生物的绝灭与复苏[J]. 华南地质与矿产,2001(2):28-34.[Wang Chuanshang, Wang Xiaofeng, Chen Xiaohong. Extinction and Lazarus of the faunas across late Ordovician and early Silurian[J]. Geology and Mineral Resources of South China, 2001(2): 28-34.]
[9] Chen Xu, Melchin M J, Sheets H D, et al. Patterns and processes of latest Ordovician graptolite extinction and recovery based on data from South China[J]. Journal of Paleontology, 2005, 79(5): 842-861.
[10] Brenchley P J, Newall G. A facies analysis of Upper Ordovician regressive sequences in the Oslo Region Norway–A record of glacio-eustatic changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1980, 31: 1-38.
[11] Melchin M J, Holmden C. Carbon isotope chemostratigraphy in Arctic Canada: Sea-level forcing of carbonate platform weathering and implications for Hirnantian global correlation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 234(2/3/4): 186-200.
[12] 戎嘉余,詹仁斌. 华南奥陶、志留纪腕足动物群的更替兼论奥陶纪末冰川活动的影响[J]. 现代地质,1999,13(4):390-394.[Rong Jiayu, Zhan Renbin. Ordovician- Silurian brachiopod fauna turnover in South China[J]. Geoscience, 1999, 13(4): 390-394.]
[13] 汪啸风,柴之芳. 奥陶系与志留系界线处生物灭绝事件及其与铱和碳氧同位素异常的关系[J]. 地质学报,1989,60(3):255-264.[Wang Xiaofeng, Chai Zhifang. Terminal Ordovicaian mass extinction and its relationship to iridium and carbon isotope anomalies[J]. Acta Geologica Sinica, 1989, 60(3): 255-264.]
[14] Wang K, Chatterton B D E, Wang Y. An organic carbon isotope record of Late Ordovician to Early Silurian marine sedimentary rocks, Yangtze Sea, South China: Implications for CO2 changes during the Hirnantian glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1/2/3/4): 147-158.
[15] Fan Junxuan,Peng Ping'an, Melchin M J. Carbon isotopes and event stratigraphy near the Ordovician– Silurian boundary, Yichang, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276(1/2/3/4): 160-169.
[16] Gorjan P, Kaiho K, Fike D A, et al. Carbon- and sulfur-isotope geochemistry of the Hirnantian (Late Ordovician) Wangjiawan (Riverside) section, South China: Global correlation and environmental event interpretation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 337-338: 14-22.
[17] 戎嘉余. 上扬子区晚奥陶世海退的生态地层证据与冰川活动影响[J]. 地层学杂志,1984,8(1):19-29.[Rong Jiayu. The ecostratigraphy evidence and influence of glacier activities of the Upper Yangtze in Late Ordovician[J]. Journal of Stratigraphy, 1984, 8(1): 19-29.]
[18] Chen Xu. Influence of the Late Ordovician glaciation on basin configuration of the Yangtze platform in China[J]. Lethaia, 1984, 17(1): 51-59.
[19] 周名魁,王汝植,李志明. 中国南方奥陶—志留纪岩相古地理与成矿作用[M]. 北京:地质出版社,1993:67-72.[Zhou Mingkui, Wang Ruzhi, Li Zhiming. Ordovician and Silurian Lithofacies Paleogeography and Mineralization in South China[M]. Beijing: Geological Publishing House, 1993: 67-72.]
[20] Chen Xu, Rong Jiayu, Li Yue, et al. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 204(3/4): 353-372.
[21] 李越,王建坡,张园园,等. 华南奥陶—志留纪之交的碳酸盐岩对古气候的诠释[J]. 自然科学进展,2008,18(11):1264-1270.[Li Yue, Wang Jianpo, Zhang Yuanyuan, et al. The annotation on climate from the Ordovician - Silurian in South China[J]. Progress in Natural Science, 2008, 18(11): 1264-1270.]
[22] 苏文博,何龙清,王永标,等. 华南奥陶—志留系五峰组及龙马溪组底部斑脱岩与高分辨综合地层[J]. 中国科学(D辑):地球科学,2002,32(3):207-219.[Su Wenbo, He Longqing, Wang Yongbiao, et al. K-bentonite beds and high-resolution integrated stratigraphy of the uppermost Ordovician Wufeng and the lowest Silurian Longmaxi Formations in South China[J]. Science China (Seri. D): Earth Sciences, 2002, 32(3): 207-219.]
[23] 苏文博,李志明,史晓颖,等. 华南五峰组—龙马溪组与华北下马岭组的钾质斑脱岩及黑色岩系——两个地史转折期板块构造运动的沉积响应[J]. 地学前缘,2006,13(6):82-95.[Su Wenbo, Li Zhiming, Shi Xiaoying, et al. K-bentonites and black shales from the Wufeng-Longmaxi Formations (Early Paleozoic, South China) and Xiamaling Formation (Early Neoproterozoic, North China) — implications for tectonic processes during two important transitions[J]. Earth Science Frontiers, 2006, 13(6): 82-95.]
[24] 胡艳华,孙卫东,丁兴,等. 奥陶纪—志留纪边界附近火山活动记录:来华南周缘钾质斑脱岩的信息[J]. 岩石学报,2009,25(12):3298-3308.[Hu Yanhua, Sun Weidong, Ding Xing, et al. Volcanic event at the Ordovician-Silurian boundary: The message from K-bentonite of Yangtze Block[J]. Acta Petrologica Sinica, 2009, 25(12): 3298-3308.]
[25] 徐论勋,肖传桃,龚文平,等. 论扬子地区上奥陶统五峰组观音桥段的深海成因[J]. 地质学报,2004,78(6):726-732.[Xu Lunxun, Xiao Chuantao, Gong Wenping, et al. A study on the deep-sea sediment of the Guanyinqiao member of the upper Ordovician Wufeng Formation in the Yangtze Area[J]. Acta Geologica Sinica, 2004, 78(6): 726-732.]
[26] 高振中,何幼斌,李罗照,等. 中国南方上奥陶统五峰组观音桥段成因讨论:是"浅水介壳相",还是深水异地沉积?[J]. 古地理学报,2008,10(5):487-494.[Gao Zhenzhong, He Youbin, Li Luozhao, et al. Genesis of the Guanyinqiao Member of Upper Ordovician Wufeng Formation in south China: "shallow water shelly facies" or deep water allogene sediments?[J]. Journal of Palaeogeography, 2008, 10(5): 487-494.]
[27] 陈旭,戎嘉余,樊隽轩,等. 扬子区奥陶纪末赫南特亚阶的生物地层学研究[J]. 地层学杂志,2000,24(3):169-175[Chen Xu, Rong Jiayu, Fan Junxuan, et al. Biostratigraphy of the Hirnantian Substage in the Yangtze Region[J]. Journal of Stratigraphy, 2000, 24(3): 169-175 ]
[28] 刘伟,许效松,余谦,等. 中上扬子晚奥陶世赫南特期岩相古地理[J]. 成都理工大学学报:自然科学版,2012,39(1):32-39.[Liu Wei, Xu Xiaosong, Yu Qian, et al. Lithofacies palaeogeography of the Late Ordovician Hirnantian in the middle-upper Yangtze region of China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2012, 39(1): 32-39.]
[29] 樊隽轩,Melchin M J,陈旭,等. 华南奥陶—志留系龙马溪组黑色笔石页岩的生物地层学[J]. 中国科学(D辑):地球科学,2012,42(1):130-139.[Fan Junxuan, Melchin M J, Chen Xu, et al. Biostratigraphy and geography of the Ordovician-Silurian Lungmachi black shales in South China[J]. Science China (Seri. D): Earth Sciences, 2012, 42(1): 130-139.]
[30] Li Yue, Matsumoto R, Kershaw S. Sedimentary and biotic-evidence of a warm-water enclave in the cooler oceans of the Latest Ordovician glacial phase, Yangtze Platform, South China[J]. The Island Arc, 2005, 14(4): 623-635.
[31] 牟传龙,许效松. 华南地区早古生代沉积演化与油气地质条件[J]. 沉积与特提斯地质,2010,30(3):24-29.[ Mou Chuanlong, Xu Xiaosong. Sedimentary evolution and petroleum geology in South China during the Early Palaeozoic[J]. Sedimentary Geology and Tethyan Geology, 2010, 30(3): 24-29.]
[32] 牟传龙,周恳恳,梁薇,等. 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报,2011,85(4):526-532.[Mou Chuanlong, Zhou Kenken, Liang Wei, et al. The early Paleozoic sedimentary environment of hydrocarbon source rocks with petroleum and gas exploration in the middle-upper Yangtze region[J]. Acta Geologica Sinica, 2011, 85(4): 526-532.]
[33] 陈旭,戎嘉余,周志毅,等. 上扬子区奥陶—志留纪之交的黔中隆起和宜昌上升[J]. 科学通报,2001,46(12):1052-1056.[Chen Xu, Rong Jiayu, Zhou Zhiyi, et al. The central Guizhou and Yichang uplifts, Upper Yangtze region, between Ordovician and Silurian[J]. Chinese Science Bulletin, 2001, 46(12): 1052-1056.]
[34] 戎嘉余,陈旭,王怿,等. 奥陶—志留纪之交黔中古陆的变迁:证据与启示[J]. 中国科学 (D辑):地球科学,2011,41(10):1407-1415.[Rong Jiayu, Chen Xu, Wang Yi, et al. Northward expansion of central Guizhou oldland through the Ordovician and Silurian transition: Evidence and implications[J]. Science China (Seri. D): Earth Sciences, 2011, 41(10): 1407-1415.]
[35] 牛新生,冯常茂,刘进. 黔中隆起的形成时间及形成机制探讨[J]. 海相油气地质,2007,12(2):46-50.[Niu Xinsheng, Feng Changmao, Liu Jin. Formation mechanism and time of Qianzhong Uplift[J]. Marine Origin Petroleum Geology, 2007, 12(2):46-50.]
[36] 邓新,杨坤光,刘彦良,等. 黔中隆起性质及其构造演化[J]. 地学前缘,2010,17(3):79-89.[Deng Xin, Yang Kunguang, Liu Yanliang, et al. Characteristics and tectonic evolution of Qianzhong Uplift[J]. Earth Science Frontiers, 2010, 17(3): 79-89.]
[37] 贵州省地质矿产局. 贵州省区域地质志[M]. 北京:地质出版社,1987:97-137.[Bureau of Geology and Mineral Resources of Guizhou Province. Regional Geology of Guizhou Province[M]. Beijing: Geology Publishing House, 1987: 97-137.]
[38] 四川省地质矿产局. 四川省区域地质志[M]. 北京:地质出版社,1991:93-114.[Bureau of Geology and Mineral Resources of Sichuan Province. Regional Geology of Sichuan Province[M]. Beijing: Geological Publishing House, 1991: 93-114.]
[39] 詹仁斌,刘建波,Percival I G,等. 华南上扬子区晚奥陶世赫南特贝动物群的时空演变[J]. 中国科学(D辑):地球科学,2010,40(9):1154-1163.[Zhan Renbin, Liu Jianbo, Percival I G, et al. Biodiversification of Late Ordovician Hirnantia Fauna on the upper Yangtze Platform, south China[J]. Science China (Seri. D): Earth Sciences, 2010, 40(9): 1154-1163.]
[40] 梁薇,牟传龙,周恳恳,等. 湘中—湘南地区寒武纪岩相古地理[J]. 古地理学报,2014,16(1):41-54.[Liang Wei, Mou Chuanlong, Zhou Kenken, et al. Lithofacies palaeogeography of the Cambrian in the central and southern Hunan province[J]. Journal of Palaeogeography, 2014, 16(1): 41-54.]
[41] 严德天,陈代钊,王清晨,等. 扬子地区奥陶系—志留系界线附近地球化学研究[J]. 中国科学(D辑):地球科学,2009,39(3):285-299.[Yan Detian, Chen Daizhao, Wang Qingchen, et al. Geochemical changes across the Ordovician-Silurian transition on the Yangtze Platform, South China[J]. Science China (Seri. D): Earth Sciences, 2009, 39(3): 285-299.]