沉积学报  2014, Vol. 32 Issue (6): 1100-1112

扩展功能

文章信息

王恒松, 黄春长, 周亚利, 熊康宁
WANG Heng-song, HUANG Chun-chang, ZHOU Ya-li, XIONG Kang-ning
汉江上游全新世特大古洪水事件光释光测年研究
OSL Dating and Climatic Change Record of the Holocene Paleoflood Events in the Upper Reaches of Hanjiang River, China
沉积学报, 2014, 32(6): 1100-1112
ACTA SEDIMENTOLOGICA SINCA, 2014, 32(6): 1100-1112

文章历史

收稿日期:2013-08-27
收修改稿日期:2013-11-24
汉江上游全新世特大古洪水事件光释光测年研究
王恒松1,2, 黄春长3, 周亚利3, 熊康宁1,2    
1. 贵州师范大学中国南方喀斯特研究院 贵阳 550001;
2. 贵州省喀斯特山地生态环境国家重点实验室培育基地 贵阳 550001;
3. 陕西师范大学旅游与环境学院 西安 710062
摘要:古洪水事件对中国古代文明的演变进程产生过重大影响,古洪水水文学研究是全球变化研究的前沿课题.通过野外深入考察,在汉江上游河谷阶地上,发现典型的全新世剖面中赋存古洪水滞流沉积层,记录了古洪水事件的气候水文信息.选择三个剖面系统采样,应用SAR法的Post-IR OSL技术对样品进行测年研究,获得了14个OSL年龄数据.结合样品的粒度成分和磁化率等气候替代指标测定分析,获得了全新世洪水事件与气候变化关系的记录.证明在距今9.5~8.5 ka和3.2~2.8 ka前,汉江上游经历了2个特大洪水期.该流域黄土—古土壤剖面记录了全新世早期气温回升增湿的气候,由于大气波动失稳,出现了9~8 ka前的全球降温事件;中期土壤成壤强烈,记录了温暖湿润的气候;晚期形成的现代黄土和表土层,记录了相对干旱的气候.由此揭示了在全新世早期气候波动失稳和中期向晚期过渡的气候转折时期,气候变化剧烈,降水变率增大,是导致特大古洪水事件频发的主要原因,这也是该区域气候水文事件对全球气候变化响应规律的具体表现.
关键词光释光测年     全新世     古洪水事件     气候变化     汉江上游河谷    
Effect of Compaction Methods on Performance of ATB-30 Asphalt Mixture
WANG Heng-song1,2, HUANG Chun-chang3 , ZHOU Ya-li3, XIONG Kang-ning1,2    
1. Institute of South China Karst, Guizhou Normal University, Guiyang 550001;
2. State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001;
3. College of Tourism and Environment, Shaanxi Normal University, Xi'an 710062
Abstract:Field investigation was carried out from Xunyang to Yunxian along the upper Hanjiang River valley, typical palaeoflood slackwater deposit interbedded in loess-like sediments were found in the profile of XTZ, NGK and JJTZ, which indicate these bedded slackwater deposits recorded the information of palaeoflood events. Systematic sampling for optical dating was carried out on these profiles. The Post-IR OSL single aliquot regeneration (SAR) protocol was used to determine equivalent and 14 OSL ages were obtained. The results show that there were two stage extreme palaeofloods occurred 9.5~8.5 ka B.P. and 3.2~2.8 ka B.P, respectively. According to the analysis of grain-size distribution and magnetic susceptibility, the relationship between Holocene palaeoflood events and climate change was established. The transitional loess (Lt) was dated to 11 500~8 500 a B.P. It has recorded the climatic shift from cold and moist to amelioration during the Early Holocene and dust storm activity gradually decreased. The Luvisol (S0) was dated 8 500~ 3 100 a B.P. It has recorded the warm-humid climate during the mid-Holocene Climatic Optimum. This is a period with more intensified pedogenesis. The loess (L0) was dated to 3 100 a B.P. that has recorded the climate decline during the Late Holocene and dust storms were obviously intensified to form modern loess. Environment records from all over the world revealed the temperature rising, relative precipitation increasing and climatic fluctuation during the period of 9.5~8.5 ka, which lead to abrupt climate events occured frequently such as cooling, flood and drought; during the period of 3.2~2.8 ka, that is a turning period from the Middle Holocene to the Late Holocene, climate changing to aridity, climate change intensively, atmosphere instability and precipitation variability. Therefore, climate changing and transformation were the main reason of frequent flood occurence. The climatic Hydrography event recorded during 9.5~8.5 ka and 3.2~2.8 ka represents the concrete manifestation of the hydrological system to global climate change. The regional responses of the hydrological system. It is significant to understand the regional responses of the hydrological system to global climate change.
Key words: OSL dating     Holocene     palaeoflood event     weather changes     Upper Hanjiang River Valley    

与人类社会发展关系密切的全新世气候演变,一直是学者们关注的焦点。古洪水事件是对全球气候变化规律的响应,洪水滞流沉积物(slackwater deposit,即SWD) 是记录古洪水事件发生信息的重要载体,从中可以解译古洪水发生的气候演变背景。准确测定洪水沉积物的年龄是研究古洪水事件的关键,对古洪水沉积物的断代主要有地层序列、考古年代、14C测年、热释光(thermoluminescence,简称TL)、光释光(optical stimulated luminescence,简称OSL)等测年方法。Page,Forman 等[1,2]利用TL法对湖湘和冰水沉积物断代研究,前者能获得较合理的年龄,而后者的年龄偏差很大。近十几年来,OSL测年技术得到快速发展和改进[3,4],Fuchs等[5, 6, 7, 8]应用OSL测年法对冰水和河流相等水成沉积物测年研究,获得与14C年龄一致的年龄数据。赖忠平、张家富和王恒松等[7, 8, 9, 10, 11, 12, 13]对湖泊及古洪水等水成沉积物进行OSL测年研究也取得了丰富的成果,这为古洪水事件的深入研究奠定了基础。目前,在长江及汉江流域发现了不少古人类遗址中记录有古洪水事件,但学者们对于这些特大古洪水事件的断代研究比较有限。近几年来,黄春长教授的课题组在汉江河谷考察时,在若干个地点发现全新世黄土剖面中夹有古洪水滞流沉积层,对之研究并取得了一系列研究成果[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27],但都侧重在古洪水水文学和古洪水滞流沉积物特征方面的研究,在定年方面周亮、顾洪亮等[18,19]虽做了汉江湖北段河谷土壤沉积物的定年工作,但他们多以单个剖面的数据讨论,在年代数据方面尚显乏力。基于此,本文选择汉江上游旬阳至郧西段河谷阶地3个剖面的古洪水滞流沉积物,应用SAR法的Post-IR OSL技术进行测年研究,建立了该河段全新世特大古洪水事件年代框架,深入讨论全新世古洪水事件发生的年代及其与全球气候变化规律的关系。 1 研究区域、剖面特征和古洪水SWD鉴别 1.1 自然概况

汉江是长江最长的一级支流,发源于陕西省宁强县潘冢山,全长1 577 km,流域面积15.9×104 km2。多年平均径流量5.63×108 m3,落差1 964 m,全河段平均比降为0.39‰。丹江口以上为上游(图 1),长约925 km,流域面积9.52×104 km2,海拔2 000~2 500 m,地貌为峡谷盆地相间;丹江口至钟祥为中游,长约270 km,平均比降0.19‰,流域面积4.68×104 km2;钟祥以下为下游,长约382 km,平均比降0.09‰,流域面积1.7×104 km2。流域内植被覆盖度达62%,属于北亚热带季风气候,温和湿润,雨量丰沛,多年平均降水量800~1 000 mm,降水年变率和月变率都比较大。年降水量的80%主要集中在5~10月,也是暴雨洪水多发的时期,11月到次年4月占全年的降雨量不足20%。汉江洪枯流量相差较大,据史料记载1583年最大洪峰流量安康站为36 000 m3·s-1,白河站为34 800 m3·s-1,1974年白河站最小流量仅80.5 m3·s-1,两者相差达432倍。白河站多年平均含沙量1.92 kg·m-3,年平均输沙量0.512×108 t,最大年输沙量1.48×108 t(1958),最小年输沙量0.108×108 t(1987),两者比为13.7,输沙量集中在5~10月份的汛期,占全年输沙量的97.5%[28]

图 1 汉江上游旬阳—郧西段水系和研究地点位置图 Fig. 1 The study site in the Xunyang and Yunxi in the upper reaches of the Hanjiang River
1.2 研究剖面

本文选择汉江上游旬阳—郧西段的新滩子(XTZ)、泥沟口(NGK)和焦家台子(JJTZ)三个全新世黄土土壤剖面作为研究对象(图 1)。这3个地点分布在汉江河谷一级阶地,海拔高度在200~250 m,3个剖面的海拔高程分别为230 m、230 m和200 m。XTZ 和NGK剖面相距8 km左右,覆盖在阶地上的风成黄土顶部高出河流平水位35 m左右。JJTZ剖面距羊尾镇约1 km,阶地面高于河流平水位约30 m。通过野外观测,结合沉积学、地层学和土壤学特征及其粒度成分和磁化率理化分析,对剖面详细描述和地层划分(图 2)。3个剖面顶部发育的典型现代表土层TS是在全新世晚期形成的,成壤改造很好,为黄褐土。其中NGK和JJTZ剖面的表土层TS之下堆积有大小角砾与泥土混杂,无分选的坡积角砾层SD。古土壤S0为浊棕色黄褐土,底部含有细小的钙结核。L1为晚冰期的马兰黄土。古洪水SWD为浊黄橙色的细砂质粉沙,微具波状层理,处在表土层TS或坡积角砾层SD或古土壤S0之下,表明古洪水发生在全新世期间。

图 2 汉江上游XTZ、NGK和JJTZ剖面地层划分 Fig. 2 Stratigraphic subdivision in the XTZ,NGK and JJTZ profile in the upper reaches of the Hanjiang River

将地层挖出垂直的新鲜面,在关键地层层位用直径5 cm不锈钢管垂直打进剖面灌满沉积物,取出将两端用铝箔纸和黑色塑料带密封带回实验室,共采取OSL测年样品13个(表 2)。并采到陶片若干块,同时采集9个沉积样品,粒度成分和磁化率指标测试参照王恒松等的方法[13]

古洪水SWD是最为忠实直接的记录古洪水事件发生的地质学证据。根据欧美学者曾经总结出的一些判别方法[29, 30, 31, 32],结合本项目组在渭河、黄河全新世古洪水的研究中总结出的一套准确的判别标准[33, 34, 35]。在沿着汉江河谷的野外考察中,在多处全新世沉积地层中发现有疑似古洪水SWD夹层。对其做粒度和磁化率测量分析表明(图 3表 1),疑似古洪水沉积物粒度较粗,中值粒径(Md) 在4.08~5.64 φ之间;均值粒径(Mz)一般在4.42~5.80 φ,颗粒较粗,属细粉砂、粗粉砂;标准偏差(δ)在1.62~2.03,属河流沉积;分选系数(S)在0.99~1.41之间,分选性较好。其粒度频率曲线显示,峰值在30~90 μm,含量在3.5%~5.2%之间,曲线呈对称或正偏态(Sk 0.045~0.3),分选较好,且偏向粗粒级一侧。峰度(Kg)在0.96~1.16 φ,尖锐程度峰态为中等,为河流沉积物频率曲线形态。三个剖面的SWD 粒度分布频率曲线表现均为近似单峰型(图 3(a)),主峰偏向粗粉砂段。其主峰粒径在20~100 μm之间,且所占百分比含量较高,分选较好,属于古洪水SWD[15, 16]。XTZ-SWD1-1和XTZ-SWD1-2为同一期古洪水SWD的上、下两个亚层,上层颗粒较细,为粉砂质黏土,下层颗粒较粗,为砂粒堆积,反映了洪水沉积物典型的二元结构特征。

图 3 汉江上游全新世剖面沉积物粒度
a.自然分布频率曲线图;b.概率累积曲线图
Fig. 3 Distribution frequency curves of grain-size in the upper reaches of the Hanjiang River
a. grain-size distribution frequency curves; b. the probability cumulative curves

粒度成分和磁化率常作为黄土与气候变化研究的主要替代指标,粒度成分反映了沉积物和土壤的性质、成因和形成环境。汉江河谷XTZ剖面黄土和古土壤的粒度成分以细粉砂为主,其自然分布频率曲线表现为正偏态,与黄河及渭河流域河谷其他全新世剖面基本一致[33, 36, 37],这说明它们是风成物,物源应该是相同的(图 3)。古洪水滞流沉积层的粒度成分都是以粗粉砂为主,其自然分布频率曲线表现为正态,砂粒含量较大,表明其物质是黄土—古土壤和坡积角砾物的混合物,与黄土古土壤有明显的区别,表明它们是暴雨洪水从支流秦岭、大巴山地区侵蚀搬运到阶地上沉积的。另外,古洪水SWD中<5 μm的黏粒成分含量很低,平均不到12%,而古土壤S0和黄土L1高达22%左右,表土层TS为15%,风成黄土L1和古土壤S0中>100 μm砂级颗粒含量都很低,在4%以下,表土层TS为11%,而古洪水SWD中砂级颗粒含量较多,在6.5%~31.8%之间,平均高达18%(表 1)。表土层TS、古土壤S0和黄土层L1磁化率值分别为124.7×10-8 m3·kg-1,77×10-8 m3·kg-1和70.5×10-8 m3·kg-1,而古洪水SWD的磁化率值很低,平均值仅为34×10-8m3·kg-1,表明它们是洪流挟带而形成的沉积物,未经风化改造就被坡积物掩埋保存下来,导致其磁化率较低。XTZ,NGK和JJTZ剖面沉积物的粒度分布及磁化率特征,与黄河、渭河流域洪水沉积物可对比,进一步鉴别确定该流域的疑似古洪水沉积物为洪水滞流沉积物。

表 1 汉江上游河谷全新世剖面沉积物磁化率和粒度含量 Table 1 Grain-size analysis and magnetic susceptibility in the Holocene reach in the upper reaches of Hanjiang River
样品X-lf/10-8 m3·kg-1黏粒<5 μm/%砂粒>100 μm/%
XTZ-SWD23211.3920.64
XTZ-SWD1-230.319.169.18
XTZ-SWD1-125.314.547.82
XTZ-L170.521.512.46
NGK-SWD227.710.7919.42
NGK-SWD127.38.5131.75
JJTZ-TS124.715.0511.71
JJTZ-SWD617.3216.78
JJTZ-S07721.564.16
2 实验测量条件 2.1 环境剂量率(Dy)的测量

样品环境剂量率的贡献主要是来自周围地层中放射性元素U,Th,K和Rb、样品含水量及其宇宙射线的含量。本文中的U,Th和K含量是在中国原子能研究院用中子活化法测定得到,样品的含水量采用采样时的实测值,并结合已有汉江河谷阶地土壤含水量进行校正。宇宙射线的贡献是根据Prescott and Hutton[38]给出的方法,依据样品所在地点的经纬度、海拔高度和埋藏深度等计算得到的。文中α射线的辐射效率系数值η=0.035[39]。最后,依据Adamiec等提供的公式和相关转换参数[40]计算出样品的环境剂量率。

2.2 等效剂量(De)的测量

样品的前处理是在实验室微弱安全的红光下进行,具体过程与Aitken[41]和王恒松等[13]的方法相似。将提纯的石英中颗粒(40~63 μm)进行IR检测,供仪器测量使用。每个样品各制备18~32个样片,所有样品的等效剂量测量步骤按照单片再生剂量法(SAR)[3,42],在丹麦里瑟(Ris)国家实验室生产的Ris TL/OSL DA-15型和DA-20型全自动释光仪测量。采用蓝光(BLSL)技术和红外后蓝光(Post-IR)OSL技术测量De值。激发光源为红外发光(830 nm)和蓝光(470±17 nm),光释光信号由EMI9235QB15光电倍增管测量,探测滤光片为U-340,β辐射源为90Sr/90Y,源强标定为0.080 17 Gy/s。

对样品预热是为了消除较浅的热不稳定的陷获电子,使电荷从热稳定的非光敏陷阱向光敏陷阱转移[43],从而获得较稳定的光释光信号和准确可靠的De值。为了获得合适的预热温度,本文选取2个古洪水SWD样品JJTZ-4和XTZ-4进行从160℃到300℃之间以20℃间隔的预热坪区实验,在220℃~260℃之间出现一个明显的预热坪(图 4(a))。选取预热温度260℃,检验剂量之后的预热温度160℃做热迁移效应及剂量恢复试验(图 4(b)),结果表明JJTZ-4和XTZ-4因热转移效应生成的De值分别为0.074 Gy和0.89 Gy,误差仅为0.75%和1.97%,热转移效应对等效剂量影响非常小,可以忽略。剂量恢复试验表明,对于JJTZ-4和XTZ-4给出已知剂量分别为10.42 Gy和36.08 Gy,恢复得到的等效剂量分别是10.63 Gy和36.95 Gy,与已知剂量相比仅相差1.99%和2.4%,恢复系数在0.90~1.10之间,在误差范围之内[3],释光信号回授率在3%以内(图 5(a))。Murray 等[42]认为恢复系数在0.9~1.1之间(图 5(b)),回授率小于5%,表明等效剂量测量过程中释光感量得到了很好地校正。释光信号采用前0.8 s减去后4 s的五分之一,自然释光信号快速衰退到本底值(图 4(b)),说明光释光信号以快速组分为主[44,45],可以保证释光数据的可靠性。将经感量校正后的自然光释光信号(Ln/Tn)与再生剂量及其释光强度(Lx/Tx)对比建立生长曲线,用校正后的自然释光强度值在该曲线上内插,得到测量单片的De值(图 4(b)中内插图虚线与X轴相交的点的数据)。

图 4 汉江上游XTZ-4和JJTZ-4样品的预热坪区实验(a)及释光信号衰减曲线与再生信号增长曲线(b) Fig. 4 Preheat temperature and equivalent dose,OSL decay curve,growth curves of XTZ-4and JJTZ-4 samples

in the upper reaches of Hanjiang River
图 5 汉江上游河谷OSL样品的回授率、循环比率(a)和剂量恢复比率 (b) Fig. 5 Experiments for samples from the OSL of feedback rate,recycling ratio and the dose recovery ratio

in the upper reaches of Hanjiang River
3 OSL测年结果分析

释光信号回零是OSL测年可靠的前提之一,石英晶体的陷获电子在晒退过程中被释放,在被埋藏沉积前所累积的辐射能量已经归零或接近零点。一般黄土样品在沉积之前都经过彻底的晒退,但古洪水滞流沉积物在沉积前未得到充分曝光,残留的释光信号可能对样品的等效剂量测量产生影响。为此,本文根据Bailey,Singarayer等[46]应用De值相对于激发时间建立De(t)坪区图检验了所有样品在沉积前的晒退程度,选择样品NGK-1和JJTZ-3为例作图分析(图 6)。样品的OSL衰退曲线上不同积分区间内的De值随着激发时间变化表现出明显的增长,相对标准偏差在2%~33%,揭示了该批样品在搬运、沉积的过程中释光信号只经历了部分晒退,信号中的中速、慢速组分并未归零。

图 6 样品NGK-1-SWD2和JJTZ-3-SWD的De(t)坪区实验图 Fig. 6 De(t) results and Recycling ratio (t) results for different aeolian samples

Zhang J F等[8]的研究认为不同测量单片的De值与自然释光强度的关系可以判断样品的晒退程度。图 7反映了样品NGK-1和JJTZ-4的晒退程度,2个样品均存在一定的离散性。离散度用相对标准偏差(RSD)表示,样品中各单片的等效剂量、自然光释光信号和第一次再生剂量光释光信号的离散度分别为RSDDeRSDN-OSLRSDR-OSL。通过对比RSDN-OSLRSDR-OSL值,选择晒退相对较好的样片的等效剂量来计算该样品的De值,获得的数据接近样品的古剂量[8]。NGK-1和JJTZ-4的De值离散度均较大,且分布分散,RSDN-OSLRSDR-OSL在20%以上,RSDDe分别为19.38%和28.85%,表明样品沉积前晒褪不归零[47]图 6图 7充分说明了研究区域的样品,都存在残留释光信号的现象,由此根据Zhang等提供的方法计算等效剂量[8](图 7中虚线左侧为参与计算De的单片,右侧是舍去的单片)。最后采用计算软件获得所有样品的OSL年龄值。表 2给出了汉江XTZ、NGK和JJTZ剖面所有样品等效剂量、环境剂量率及光释光年龄值。

图 7 NGK-1-SWD和JJTZ-4-SWD的等效剂量相对于灵敏度校正后的自然光释光信号的分布图 Fig. 7 Equivalent dose relative to seatter grams of natural luminescene signal after correction of the sense of NGK-3 and JJTZ-4 samples
表 2 汉江上游河谷XTZ、NGK和JJTZ剖面光释光测年数据表 Table 2 The OSL dating results in the XTZ,NGK and JJTZ profile in the upper reaches of Hanjiang River
样品编号深度/cm含水量/%U

/μg·g-1

Th

/μg·g-1

K

/%

环境剂量率

(Dy)/Gy.ka-1

等效剂量

(De)/Gy

OSL年龄

/ka

XTZ-1-SWD277.518.202.98±0.1110.20±0.332.10±0.063.67±0.1410.93±0.322.98±0.14
XTZ-2-S0157.524.302.86±0.1111.30±0.352.00±0.063.43±0.1410.92±0.573.19±0.21
XTZ-3-S0287.523.502.60±0.1010.60±0.341.79±0.063.13±0.1328.74±1.009.17±0.5
XTZ-4-SWD1307.520.102.62±0.1010.60±0.342.05±0.063.45±0.1433.85±1.069.82±0.49
NGK-1-SWD2397.521.702.96±0.1510.00±0.321.98±0.063.37±0.1410.94±0.303.25±0.16
NGK-2-SWD1497.524.702.33±0.1013.30±0.402.07±0.063.12±0.1026.59±1.268.52±0.49
JJTZ-1-P 50-6018.43.01±0.129.93±0.332.01±0.073.55±0.307.83±0.0712.21±0.21
JJTZ-2-SD上412.521.301.88±0.097.45±0.251.33±0.052.34±0.106.86±0.232.93±0.16
JJTZ-3-SWD462.520.901.83±0.099.22±0.301.88±0.062.93±0.119.17±0.233.13±0.14
JJTZ-4-SWD467.520.701.94±0.0910.50±0.342.04±0.063.19±0.129.85±0.803.08±0.28
JJTZ-5-SD下512.523.90/td>2.06±0.098.83±0.301.57±0.062.62±0.118.51±0.163.24±0.22
JJTZ-6-S0612.522.402.22±0.1012.40±0.372.19±0.073.48±0.1411.68±0.453.36±0.19
JJTZ-7-S0717.521.002.43±0.1011.40±0.352.14±0.063.15±0.1222.93±0.887.29±0.36
JJTZ-8-S0787.521.802.46±0.1012.00±0.362.16±0.063.18±0.1130.22±0.059.49±0.59
4 讨论与结论 4.1 OSL年龄

汉江上游旬阳—郧西段3个剖面的14个样品基本控制各剖面的关键层位,OSL年龄数值随深度增加而增大(图 8)。年龄范围在2.21~9.82 ka之间,数据误差在4.47%~9.09%之间。可知研究区域剖面包含了整个全新世地层及其晚冰期的部分地层。汉江上游河谷马兰黄土L1只在XTZ剖面发现,古土壤(S0) 的控制点是S0顶部的样品XTZ-3和SWD1之上古土壤S0底部的样品XTZ-2,OSL年龄分别为9.17±0.50和3.19±0.21 ka,S0发育于全新世中期,距今8.5~3.1 ka 之间,样品XTZ-4取于古洪水SWD1上部,OSL年龄为(9.82±0.49) ka,说明该期古洪水事件发生的时间介于距今9.8~9.2 ka之间,样品XTZ-1采自古洪水SWD2顶部,年龄为(2.98±0.14) ka,与其下伏地层S0的上部样品XTZ-2的年龄界定了此期古洪水事件的年代为距今3.2~2.8 ka之间;NGK剖面在表土层TS和古土壤S0之间出现坡积角砾层SD,该剖面古洪水SWD2处在古土壤S0之上,坡积角砾层SD之下,样品NGK-1取于古洪水SWD2的中间,年龄为(3.25±0.16) ka,古洪水SWD1发生在古土壤S0之下,样品NGK-2采自SWD1层位,年龄为(8.52±0.49) ka,参照前人在其它流域研究的成果[36, 48, 49],以及测量数据可能存在的误差,可以推断汉江上游NGK和XTZ剖面古洪水SWD1记录的期特大古洪水事件发生的年代在距今9.5~8.5 ka以前。基于此可以确定NGK和XTZ剖面记录的两层古洪水SWD1和SWD2是分别对应的两期洪水(图 2,8);样品JJTZ-6、7、8分别采自古土壤S0层的上中下三个层位,年龄分别是(3.36±0.19) ka、(7.29±0.36) ka和(9.49±0.59) ka,这层古土壤S0的年龄与XTZ的年龄基本一致,说明所测年代是可靠的,样品JJTZ-2和JJTZ-5分别取自SD和SD,年龄分别为(2.98±0.14) ka和(3.24±0.22) ka,古洪水SWD2就出现在这两个坡积角砾层之间,样品JJTZ-3和JJTZ-4是取于古洪水SWD2上下层(图 1(b)),年龄分别为(3.13±0.14)和(3.08±0.28) ka,JJTZ-1是采于TS层中部所夹汉代文化层的灰色陶片,OSL年龄为(2.2±0.21) ka,所测释光断代与考古断代年龄一致。该汉代文化层为焦家台子汉墓遗址,所测陶片为遗址存留物,进一步说明了该期古洪水事件是发生在汉代文化层形成之前。该剖面的古洪水SWD1夹在古土壤S0和SD之间,样品JJTZ-5和JJTZ-6的年龄可以界定其发生年代与SWD2为同一个洪水多发时期的两期古洪水,其发生年龄介于距今3.2~2.8 ka之间,与XTZ和NGK剖面记录的古洪水SWD2发生在同一时期。这样就确定了汉江上游旬阳—郧西段记录的两古洪水事件分别发生在距今9.5~8.5 ka和3.2~2.8 ka前,该时段为汉江特大洪水多发期。

图 8 汉江上游河谷XTZ、NGK和JJTZ剖面的OSL年龄与地层深度关系图 Fig. 8 The relations between OSL age and the depth in the XTZ,NGK and JJTZ profiles in the upper reaches of Hanjiang River
4.2 汉江上游古洪水事件与全新世气候变化

前人对汉江流域研究表明,汉江上游河谷阶地全新世黄土—古土壤剖面记录到了与渭河河谷一样的气候变化水文信息[36, 50, 51]。根据XTZ、NGK和JJTZ 三个剖面地层的OSL年龄序列,结合粒度成分和磁化率等气候替代指标(图 3表 1),揭示了全新世汉江流域气候变化和水文信息。汉江河谷阶地上普遍覆盖着黄土、古土壤、表土等沉积物,马兰黄土L1记录了晚冰期的冷湿气候;过渡性黄土Lt记录了全新世早期(距今11.5~8.5 ka前),风化成壤作用较弱,升温增湿的气候;古土壤S0形成于全新世最适宜期(距今8.5~3.1 ka前),黏粒含量增多,磁化率增大(表 1),记录了温暖湿润的气候;古土壤之上的覆盖层是现代黄土L0和表土层TS,是全新世晚期(距今3.1 ka以来)形成的,记录了干旱的气候。

在XTZ 和NGK剖面的古土壤S0之下覆盖的古洪水滞流沉积层记录到了古洪水事件发生的气候信息,古洪水样品XTZ-SWD1-2、XTZ-SWD1-1、NGK-SWD1的磁化率值很低(表 1),黏粒含量较少,而粗砂含量增大,OSL测年确定该期洪水发生在全新世早期距今9.5~8.5 ka前。该时期在千年尺度的气候变化上可能不是由地球轨道变化直接引起的,很可能是叠加于轨道尺度大趋势上的次一级波动的某种“非轨道”行为。降温、干旱事件或许是叠加于这种轨道尺度上的次一级波动,它们是气候突变造成的极端天气的具体表现,而洪涝则往往与降温、干旱相伴出现,但在不同地区的响应也不同。在湖北神农架及贵州黔南和黔北地区,前人对溶洞的石笋δ18O 记录研究发现,在距今9.5~6.5 ka前亚洲季风区气候异常,大气系统不稳定,并记录到距今9.3、8.6和8.2ka前的几次显著地气候降温干旱事件[52, 53, 54]。在长江下游阶地的古洪水沉积物记录距今9.49~8.48 ka前相对较低温度的气候[55],在太湖地区湖泊沉积物的δ13C值记录了距今9.5~7.2 ka前偏暖湿且波动剧烈的气候[56]。冲绳海槽沉积物记录到距今9.5~8.3 ka前相对冷干的气候[57]。黄春长等[36,48]对黄河中游运城盆地及关中盆地西部河谷阶地研究时,发现全新世黄土土壤剖面中夹的古洪水SWD发生年代距今9.5~8.5 ka前。殷春敏等[49]对华北平原多个沼泽沉积剖面研究发现距今9.5~8.76 ka前具有洪水沉积特性。新疆艾比湖记录了距今10.2~8 ka前温良偏干的气候[58]。全新世9~8 ka的气候突变是全球范围内最为显著的气候波动失稳现象,在北半球其它地方也有多方面的证据。Sarah等人研究英国North Vermont 地区1万年以来的古洪水记录时,发现该区域存在距今10~8.6 ka、6.81 ka和6.33 ka前等几次大洪水事件[59]。Harrison等研究欧洲湖泊沉积记录也证明了9 000~8 000 yr B.P.气候湿润,湖面升高,湖泊扩张[60]。Bennito 等[61,62]对西班牙多条河流的全新世古洪水事件研究表明在10 750~10 240 yrB.P.和9 550~9 130 yrB.P.等6个时间段是特大洪水多发期。Grossman(2001)等对日本中部的Ara河研究时发现在距今9.5~7.5 ka前之间大洪水事件增加,该时段气候温凉,暴雨频率增加。

XTZ、NGK和JJTZ剖面记录到距今3.2~2.8 ka前的古洪水事件,在流域内及其他地方的沉积环境中也有记录。谢远云等[63]在汉江下游发现了该时期的古洪水SWD记录,朱诚等[64]在长江三峡库区中坝遗址地层发现距今3~2.9 ka前记录的古洪水滞流沉积层,冲绳海槽沉积物也记录到了在距今3.1~2 ka前干冷的气候突变现象[57]。在渭河干流的多处谷河阶地均发现有距今3.2~2.8 ka年前发生的古洪水滞流沉积层[37,65]。汉江流域发生距今3.2~2.8 ka之间的特大古洪水事件,在格陵兰Summit地点冰芯GISP2的年代系列也记录到了这个时期气候的恶化转折[66]。这个时期正是全新世中期向晚期过渡转折阶段,全球范围气候波动转折期,大气系统不稳定,降水变率增大,由此揭示出该区域的古洪水事件是对全球极端气候事件的响应。

4.3 古洪水对人类的影响

前述可知,全新世气候并非一直稳定不变,这期间的气候失稳与变率增大使气候恶化,导致干旱、寒冷和洪水事件的发生。特大洪水事件往往影响人类社会的发展和进程。我国各地的证据表明,全新世大暖期的9 000~8 500 a B.P.,6 000~5 500 a B.P.,4 200~4 000 a B.P.,3 200~2 800 a B.P.期间,气候表现为恶化阶段,干旱事件和洪水事件皆有发生[33, 36, 67, 68, 69]。世界其他地区的事实,也表明该期间出现严重的气候恶化期[70,71]。这几个时期发生的多次特大洪水事件对古文明的影响是比较深远的,其一,使史前农业文化发生中断,聚落分布范围缩小,遗址数量减少,使发达的史前文化突然衰落或废弃,大洪水把原始聚落的各种设施顷刻摧毁,农田和沃土被洪水淤泥淹没,生产无法进行,淤泥层把文化层覆盖其下。其二,大洪水导致新石器文化的衰落和终结,先民被迫向南、向东或向气候环境条件较好而又能避免洪水波及的较高阶地大规模迁徙[72]。调查发现史前大洪水事件在黄河以及支流渭河、汉江流域都发现有古洪水沉积学证据[13, 14, 35, 37]。大洪水灾害的发生对人类社会带来了严重的影响,当然,也有可能促成文化的突变和社会的转型,在黄河中游流域诞生了古国和城邦,中国历史上的夏代肇始[34]。这也就表明古洪水与当地文明衰落有着成因上的关联。

5 结论

通过对汉江上游旬阳—郧西段河谷阶地XTZ,NGK和JJTZ黄土剖面及其记录的特大洪水事件研究,揭示出了全新世气候变化的信息。根据野外观察和实验方法确定了古洪水滞流沉积层,应用SAR法的Post-IR技术进行测年研究,获得了14个OSL年龄值,结合粒度成分和磁化率等气候替代指标分析,建立了全新世汉江河谷剖面年代框架,确定了这3个剖面记录的两期特大洪水分别发生在距今9.5~8.5 ka和3.2~2.8 ka之间。这3个剖面记录了汉江上游河谷黄土成壤、物质沉积与全新世气候变化水文信息:晚更新世末期,成壤较弱,气候冷湿;全新世早期,成壤作用渐强,气温回升增湿,大气系统未稳,干旱洪水时有发生;全新世中期,气候温暖湿润,黄土风化强烈形成古土壤;全新世晚期气候又向干旱化发展,在转折时期气候突变也是洪水频发的时期。

在气候冷暖波动交替变化和气候转型期,大气系统状态失稳,导致降水变率增大,是特大洪水频繁发生的时期,而在气候平稳时期洪水事件发生频率较低。汉江上游旬阳—郧西段XTZ 、NGK和JJTZ剖面记录的发生在距今9.5~8.5 ka前的古洪水事件对应着全新世早期气候失稳的冷湿时期,而3.2~2.8 ka前的古洪水事件恰好处在全新世大暖期结束向晚期过渡气候向干旱化转折时期,东亚季风格局突变,西北季风势力增强,气候系统不稳定,处于波动变化的异常时期,气候恶化,降水量异常变化,这是发生特大洪水事件频发的主要原因,也是区域性气候对全球气候变化响应的结果。同时,古洪水事件的发生对人类社会带来了严重的影响,并与当地文明衰落有着成因上的联系。

参考文献
[1] Page K, Nanson G, Price D J. Chronology of Murrumbidgee River paleochannels on the riverine plain, southeastern Australia [J]. Quaternary Science, 1996, 11(2): 311-326
[2] Forman S L, Ennis G. The effect of light intensity and spectra on the reduction of thermoluminescence of nearshore sediments from Spitsbergen, Svalbard[J]. Geophysical Resiews Letters, 1991, 18(4): 1727-1730
[3] Wintle A G, Murray A S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols [J]. Radiation Measurements, 2006, 41(4): 369-391
[4] Murray A S, Olley J M. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: A status review [J]. Geochronometria, 2002, 21(6): 1-16
[5] Lang A, Wagner G A. Infra-red stimulated luminescence dating of Holocene colluvial sediments using the 410 nm emission[J]. Quaternary Science Reviews, 1997, 16(3): 393-396
[6] Fuchs M, Fischer M, Reverman R. Colluvial and alluvial sediment archives temporally resolved by OSL dating: Implications for reconstructing soil erosion [J]. Quaternary Geochronology, 2010, 12(5): 269-273
[7] 赖忠平,张景昭,卢演俦. 沙漠黄土边界带湖相沉积糜地湾剖面红外释光测年[J]. 海洋地质与第四纪地质,2001,21(1):75-79 [Lai Zhongping, Zhang Jingzhao, Lu Yanchou. IRSL dating of lacustrine sediments in Midwan section from loess and desert transitional zone in China [J]. Marine Geology & Quaternary Geology, 2001, 21(1): 75-79]
[8] Zhang J F, Zhou L P, Yue S Y. Dating fluvial sediments by optically stimulated luminescence:selection of equivalent doses for age calculation[J]. Quaternary Science Reviews, 2003, 22(3): 1123-1129
[9] 张家富,周力平,姚书春,等. 湖泊沉积物的14C和光释光测年[J]. 第四纪研究,2007,27(4):522-528 [Zhang Jiafu, Zhou Liping, Yao Shuchun, et al. Radiocarbon and optical dating of lacustrine sediments[J]. Quaternary Sciences, 2007, 27(4): 522-528]
[10] 樊启顺,赖忠平,刘向军,等. 晚第四纪柴达木盆地东部古湖泊高湖面光释光年代学[J]. 地质学报,2010,84(11):1652-1660 [Fan Qishun, Lai Zhongping, Liu Xiangjun, et al. Luminescence chronology of high lake levels of paleolakes in the Late Quaternary eastern Qaidam Basin[J]. Acta Geologica Sinica, 2010, 84(11): 1652-1660]
[11] Zheng Y E, Zhou L P, Zhang J F. Optical dating of the upper 22 m of cored sediments from Daihai Lake, northern China[J]. Quaternary Geochronology, 2010, 21(5): 228-232
[12] Zhao H, Lu Y C, Wang C M,et al. Re-OSL dating of aeolian and fluvial sediments from Nihewan Basin, northern China and its environmental application[J]. Quaternary Geochronology, 2010, 23(5): 159-163
[13] 王恒松,黄春长,周亚利,等. 关中西部千河流域全新世古洪水事件光释光测年研究[J]. 中国科学(D辑):地球科学,2012,42(3):390-401 [Wang Hengsong, Huang Chunchang, Zhou Yali, et al. OSL dating of the Holocene paleoflood events on the Qianhe River in the Guanzhou Basin, China[J]. Science China (Seri. D): Earth Science, 2012, 42(3): 390-401]
[14] 查小春,黄春长,庞奖励,等. 汉江上游郧西段全新世古洪水事件研究[J]. 地理学报,2012,67(5):671-680 [Zha Xiaochun, Huang Chunchang, Pang Jiangli,et al. The Holocene palaeoflood events in the Yunxi Reach in the upper reaches of Hanjiang River [J]. Acta Geographica Sinica, 2012, 67(5): 671-680]
[15] 李晓刚,黄春长,庞奖励,等. 汉江上游白河段万年尺度洪水水文学研究[J]. 地理科学,2012,32(8):971-978 [Li Xiaogang, Huang Chunchang, Pang Jiangli, et al. Palaeoflood hydrological study in the Baihe Reach in the upper reaches of the Hanjiang River[J]. Scientia Geographica Sinica, 2012, 32(8): 971-978]
[16] 王龙升,黄春长,庞奖励,等. 旬阳东段汉江全新世古洪水研究[J]. 地理科学进展,2012,31(9):1141-1148 [Wang Longsheng, Huang Chunchang, Pang Jiangli, et al. Holocene palaeofloods recorded in the East Xunyang Reach in the Upper Hanjiang River[J]. Progress in Geography, 2012, 31(9): 1141-1148]
[17] 乔晶,庞奖励,黄春长,等. 汉江上游郧县段全新世古洪水滞流沉积物特征[J]. 地理科学进展,2012,31(11):1467-1474 [Qiao Jing, Pang Jiangli, Huang Chunchang, et al. Characteristics of palaeoflood slackwater deposits of Yunxian county in the upper reaches of the Hanjiang River[J]. Progress in Geography, 2012, 31(11): 1467-1474]
[18] 周亮,黄春长,周亚利,等. 汉江上游郧县段全新世特大洪水事件光释光测年研究[J]. 长江流域资源与环境,2013,22(4):502-511 [Zhou Liang, Huang Chunchang, Zhou Yali, et al. OSL dating of the palaeoflood events in the Yunxian Reach of the Upper Hanjiang River[J]. Resources and Environment in the Yangtze Basin, 2013, 22(4): 502-511]
[19] 顾洪亮,黄春长,周亚利,等. 汉江上游湖北段低阶地风成黄土—古土壤释光测年研究[J]. 第四纪研究,2012,32(3):516-526 [Gu Hongliang, Huang Chunchang, Zhou Yali, et al. OSL dating of the Holocene eolian loess and palaeosol on the low terrace land in the upper Hanjiang River valley[J]. Quaternary Sciences, 2012, 32(3): 516-526]
[20] 乔晶,庞奖励,黄春长,等. 汉江上游郧县前坊段全新世古洪水水文学研究[J]. 长江流域资源与环境,2012,21(5):533-539 [Qiao Jing, Pang Jiangli, Huang Chunchang, et al. Palaeoflood hydrological study in the Qianfang section of Yunxian county in the upper reaches of the Hanjiang River[J]. Resources and Environment in the Yangtze Basin, 2012, 21(5): 533-539]
[21] 刘建芳,查小春,黄春长. 汉江上游郧县尚家河段全新世古洪水水文学研究[J]. 水土保持学报,2013,27(2):90-94 [Liu Jianfang, Zha Xiaochun, Huang Chunchang. Palaeoflood hydrological study in the Yun County Reach in the upper reaches of the Hanjiang River [J]. Journal of Soil and Water conservation, 2013, 27(2): 90-94]
[22] 吴帅虎,庞奖励,黄春长,等. 汉江上游郧县辽瓦店全新世古洪水研究[J]. 水土保持通报,2012,32(6):182-186 [Wu Shuaihu, Pang Jiangli, Huang Chunchang, et al. Palaeoflood study in Liaowadian site of Yunxian county in upper reaches of Hanjiang River[J]. Bulletin of Soil and Water Conservation, 2012, 32(6): 182-186]
[23] 虎亚伟,庞奖励,黄春长,等. 汉江上游郧西段全新世古洪水水文学研究[J]. 自然灾害学报,2012,21(5):55-59 [Hu Yawei, Pang Jiangli, Huang Chunchang, et al. Hydrological study on Holocene palaeoflood at Yunxi section of upper reaches of Hanjiang River[J]. Journal of Natural Disasters, 2012, 21(5): 55-59]
[24] 许洁,黄春长,庞奖励,等. 汉江上游安康东段全新世古洪水沉积学与水文学研究[J]. 湖泊科学,2013,25(3):445-454 [Xu Jie, Huang Chunchang, Pang Jiangli, et al. Sedimentological and hydrological studies of the palaeoflood events in the Ankang east section in the upper reaches of the Hanjiang River[J]. Journal of Lake Science, 2013, 25(3): 445-454]
[25] 吴帅虎,庞奖励,黄春长,等. 汉江上游河谷古洪水滞流沉积物特征[J]. 土壤通报,2012,44(2):271-276 [Wu Shuaihu, Pang Jiangli, Huang Chunchang, et al. The palaeoflood slackwater sediments feature in the valley of the upper reaches of the Hanjiang River [J]. Journal of Soil Science, 2012, 44(2): 271-276]
[26] 杨建超,庞奖励,黄春长,等. 汉江上游郧县辽瓦店剖面粒度组成特征及其意义[J]. 中国沙漠,2013,33(3):682-687 [Yang Jianchao,Pang Jiangli, Huang Chunchang, et al. Grain-size distribution and significance in Liaowadian Profile in the Upper Hanjiang River Valley, China[J]. Journal of Desert Research, 2013, 33(3): 682-687]
[27] 王朝建,庞奖励,黄春长,等. 汉江上游谷地黄褐土粒度组成特征及其意义[J]. 陕西师范大学学报:自然科学版,2012,40(3):76-80 [Wang Chaojian, Pang Jiangli, Huang Chunchang, et al. The grain construction of the yellow cinamon soil and its significance in the upper reaches of Hanjiang valley [J]. Journal of Shaanxi Normal University: Natural Science Edition, 2012, 40(3): 76-80]
[28] 杨永德,邹宁,郭希望,等. 汉江上游水文特性的初步分析[J]. 水文,1997,9(2):54-56 [Yang Yongde, Zou Ning, Guo Xiwang, et al. Preliminary analysis of hydrological characteristics in the upper reaches of the Hanjiang River[J]. Journal of China Hydrology, 1997, 9(2): 54-56]
[29] Benito G, Thorndycraft V R. Palaeoflood hydrology and its role in applied hydrological sciences [J]. Journal of Hydrology, 2005, 313(8): 3-15
[30] Sridhar A. A mid-late Holocene flood record from the alluvial reach of the Mahi River, Western India [J]. Catena, 2007, 70(5): 330-339
[31] Thorndycraft V R, Benito G. The Holocene fluvial chronology ofSpain: evidence from a newly compiled radiocarbon database [J]. Quaternary Science Reviews 2006, 25(1): 223-234
[32] Sheffer N A, Rico M, Enzel Y, et al. The palaeoflood record of the Gardon River, France: A comparison with the extreme 2002 flood event [J]. Geomorphology, 2008, 98(12): 71-83
[33] Huang Chunchang, Pang Jiangli, Zha Xiaochun, et al. Extraordinary floods of 4 100-4 000 a B.P. recorded at the late neolithic ruins in the Jinghe River gorges, middle reach of the Yellow River, China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 289(6): 1-9
[34] 黄春长,庞奖励,查小春,等. 黄河流域关中盆地史前大洪水研究[J]. 中国科学(D辑):地球科学,2011,41(11):1658-1669 [Huang Chunchang, Pang Jiangli, Zha Xiaochun, et al. Prehistorical floods in the Guanzhong Basin in the Yellow River drainage area[J]. Science China (Seri. D): Earth Science, 2011, 41(11): 1658-1669]
[35] Huang Chunchang, Pang Jiangli, Zha Xiaochun, et al. Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River, middle reaches of the Yellow River, China [J]. Quaternary Science Reviews, 2011, 30(8): 460-468
[36] Huang Chunchang, Pang Jiangli, Zha Xiaochun, et al. Impact of monsoonal climatic change on Holocene overbank flooding along theSushui River within the Middle Reaches of the Yellow River, China [J]. Quaternary Science Reviews, 2007, 26(12): 2247-2264
[37] 李瑜琴,黄春长,查小春,等. 泾河中游龙山文化晚期特大洪水水文学研究[J]. 地理学报,2009,64(5):541-552 [Li Yuqin, Huang Chunchang, Zha Xiaochun, et al. Palaeoflood occurrence in the late period of the Longshan Culture in the middle reaches of the Jinghe River[J]. Acta Geographica Sinca, 2009, 64(5): 541-552]
[38] Prescott J R, Hutton J T. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations [J]. Radiation Measurements, 1994, 23(7): 497-500
[39] Lai Z P, Zller L, Fuchsb M,et al. Alpha efficiency determination for OSL of quartz extracted from Chinese loess [J]. Radiation Measurements, 2008, 43(8): 767-770
[40] Adamiec G, Aitken M J. Dose-rate conversion factors: update [J]. Ancient TL, 1998, 16(4/5/6): 37-50
[41] Aitken M J. An Introduction to Optical Dating [M]. London: Oxford University Press, 1998: 1-359
[42] Murray A S, Wintle A G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol [J]. Radiation Measurements, 2000, 32(5): 57-73
[43] Wintle A G, Murray A S. Luminescence sensitivity changes in quartz [J]. Radiation Measurements, 1999, 30(8): 107-118
[44] Steffen D, Preusser F, Schlunegger F. OSL quartz age underestimation due to unstable signal components [J]. Quaternary Geochronology, 2009, 4(5): 353-362
[45] Ou X J, Xu L B, Lai Z P,et al. Potential of quartz OSL dating on moraine deposists from eastern Tibetan Plateau using SAR protocol [J]. Quaternary Geochronology, 2010, 5(6): 257-262
[46] Bailey R M, Singarayer J S, Ward S,et al. Identification of partial resetting using De as a function of illumination time [J]. Radiation Measurements, 2003, 37(4): 511-518
[47] Li S H. Optical dating: insufficiently bleached sediments [J]. Radiation Measurements, 1994, 23(23): 563-567
[48] 黄春长,庞奖励,黄萍,等. 关中盆地西部黄土台塬全新世气候事件研究[J]. 干旱区地理,2002,25(1):10-15 [Huang Chunchang, Pang Jiangli, Huang Ping, et al. Holocene climatic events on the loess tableland in the western Guanzhong Basin,China[J]. Arid Land Geography, 2002, 25(1): 10-15]
[49] 殷春敏,邱维理,李容全. 全新世华北平原古洪水 [J]. 北京师范大学学报:自然科学版,2001,37(2):280-284 [Yin Chunmin, Qiu Weili, Li Rongquan. Holocene paleofloods in the North China Plain [J]. Journal of Beijing Normal University: Natural Science, 2001, 37(2): 280-284]
[50] Huang C C, Pang J L, Chen S E,et al. Charcoal records of the fire history in the Holocene loss-soil sequences over the Southern Loess Plateau of China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239(2): 28-44
[51] 庞奖励,黄春长,周亚利,等. 汉江上游谷地全新世风成黄土及其成壤改造特征[J]. 地理学报,2011,66(11):1562-1573 [Pang Jiangli, Huang Chunchang, Zhou Yali, et al. Holocene aeolian loess and its pedogenic modification in the Upper Hanjiang River Valley, China[J]. Acta Geographica Sinica, 2011, 66(11): 1562-1573]
[52] Dong J G, Wang Y J, Cheng H,et al. A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China [J]. Holocene, 2010, 20(2): 257-264
[53] 姜修洋,何尧启,沈川洲,等. 全新世黔北降水特征的石笋记录及适宜期结束时间在亚洲季风区的不等时性[J]. 科学通报,2012,57(1):73-79 [Jiang Xiouyang, He Yaoqi, Shen Chuanzhou, et al. Stalagmite-inferred Holocene precipitation in northern Guizhou Province, China, and asynchronous termination of the climatic optimum in the Asian monsoon territory[J]. Chinese Science Bulletin, 2012, 57(1): 73-79]
[54] 邵晓华,汪永进,程海,等. 全新世季风气候演化与干旱事件的湖北神农架石笋记录[J]. 科学通报,2006,51(1):80-86 [Shao Xiaohua,Wang Yongjin,Cheng Hai, et al. Holocene climate evolution Stalagmite-inferred Holocene Monsoon climate evolution and drought events in Shennongjia Hubei province, China[J]. Chinese Science Bulletin, 2006, 51(1): 80-86]
[55] 朱诚,马春梅,黄林燕,等. 南京江北地区9490-4840 aB.P.环境演变的地层记录研究[J]. 地质论评,2005,51(3):347-352 [Zhu Cheng, Ma Chunmei, Huang Linyan, et al. Stratigraphic record of environmental evolution during 9490-4840 a B.P. on the north bank of the Yangtze River, Nanjing area[J]. Geological Review, 2005, 51(3): 347-352]
[56] 薛滨,瞿文川,吴艳宏,等. 太湖晚冰期—全新世气候、环境变化的沉积记录[J]. 湖泊科学,1998,10(2):30-36 [Xue Bin,Qu Wenchuan, Wu Yanhong, et al. Sedimentological record of paleoenvironment of Taihu Lake in Late-Glacial to Holocene[J]. Journal of Lake Science, 1998, 10(2): 30-36]
[57] 宋长青,孙湘君,Saito Y. 冲绳海槽B-3GC钻孔柱状样花粉记录的古环境信息[J]. 科学通报,2001,46(2):153-158 [Song Changqing, Sun Xiangjun, Saito Y. Pollen records of B-3GC drilling cores of paleoenvironmental information of Okinawa Trough[J]. Chinese Science Bulletin, 2001, 46(2): 153-158]
[58] 吴敬禄,沈吉,王苏民,等. 新疆艾比湖地区湖泊沉积记录的早全新世气候环境特征[J]. 中国科学(D辑):地球科学,2003,33(6):569-574 [Wu Jinglu, Shen Ji, Wang Sumin, et al. Lake sedimentological record of paleoenvironment of Ebinur Lake in Early Holocene[J]. Science China (Seri. D): Earth Science, 2003, 33(6): 569-574]
[59] Sarah L B, Paul R B, Andrea L, et al. 10000 yr record of extreme hydrologic events[J]. Geology, 2000, 28(4): 335-338
[60] Harrison S P, Yu G, Tarasov P E. Late Quaternary lake-level record from northern Eurasia [J]. Quaternary Research, 1996, 45(2): 138-159
[61] Benito G, Alfonso Sopeña, Yolanda Sáchez-Moya,et al. Palaeoflood record of the Tagus River(Central Spain) during the Late Pleistocene and Holocene[J]. Quaternary Seience Reviews, 2003, 22(4/5/6): 1737-1756
[62] Benito G, Thomdycraft V R, Rico M,et al. Palaeoflood and floodplain records from Spain:Evidence for long- term climate variability and environrnental changes[J]. Geomorphology, 2008, 101(5/6/7): 68-77
[63] 谢远云,李长安,王秋良,等. 江汉平原近3000年来古洪水事件的沉积记录[J]. 地理科学,2007,27(1):81-84 [Xie Yuanyun, Li Chang'an, Wang Qiuliang, et al. Sedimentary records of paleoflood events during the last 3000 years in Jianghan Plain[J]. Scientia Geographica Sinica, 2007, 27(1): 81-84]
[64] 朱诚,郑朝贵,马春梅,等. 长江三峡库区中坝遗址地层古洪水沉积判别研究[J]. 科学通报,2005,50(20):2240-2250 [Zhu Cheng, Zheng Chaogui, Ma Chunmei, et al. Study on identification paleoflood deposits in Zhongba Site in Yangtze River Three Gorges[J]. Chinese Science Bulletin, 2005, 50(20): 2240-2250]
[65] 王恒松,黄春长,周亚利,等. 渭河咸阳段全新世古洪水事件光释光测年研究[J]. 沉积学报,2012,30(2):102-111 [Wang Hengsong, Huang Chunchang, Zhou Yali, et al. OSL dating research of palaeoflood events in the middle reaches of the Weihe River[J]. Acta Sedimentologica Sinica, 2012, 30(2): 102-111]
[66] O’Brien S R, Mayewski P A, Meeker L D,et al. Complexity of Holocene climate as reconstructed from a Greenland ice core[J]. Science, 1995, 270(5244): 1962-1964
[67] Peng Y, Xiao J, Nakamura T, et al. Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of the Daihai Lake in Inner Mongolia of north central China[J].Earth and Planetary Science Letters, 2005, 233(3/4): 467-479
[68] Wang Y, Chan H, Edwards R L,et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate [J]. Science, 2005, 308: 854-857
[69] Yang D Y, Yu G, Xie Y B,et al. Sedimentary records of large Holocene floods from the middle reaches of the Yellow River, China [J]. Geomorphology, 2000, 33(1/2): 73-88
[70] Booth R K, Jackson S T, Forman S L,et al. A severe centennial-scale drought in mid-continental North America 4200 years ago and apparent global linkages [J]. Holocene, 2005, 15: 321-328
[71] Arz H W, Lamy F, Ptzold J. A pronounced dry event recorded around 4.2 ka in brine sediments from the northern Red Sea [J]. Quaternary Research, 2006, 66(3): 432-441
[72] 吴文祥,刘东生. 4000aB.P.前后降温事件与中华文明的诞生[J]. 第四纪研究,2001,21(5):443-451 [Wu Wenxiang, Liu Tungsheng. 4 000a B.P. Event and its implications for the origin of ancient Chinese civilization [J]. Quaternary Sciences, 2001, 21(5): 443-451]