扩展功能
文章信息
- 田洋, 赵小明, 王令占, 涂兵, 谢国刚, 曾波夫
- TIAN Yang, ZHAO Xiao-ming, WANG Ling-zhan, TU Bing, XIE Guo-gang, ZENG Bo-fu
- 重庆石柱二叠纪栖霞组地球化学特征及其环境意义
- Geochemical Characteristics and Its Paleoenvironmental Implication of Permian Qixia Formation in Shizhu, Chongqing
- 沉积学报, 2014, 32(6): 1035-1045
- ACTA SEDIMENTOLOGICA SINCA, 2014, 32(6): 1035-1045
-
文章历史
- 收稿日期:2013-11-14
- 收修改稿日期:2014-02-21
二叠纪栖霞组沉积时期是晚古生代以来中国南方最大的海侵时期,整个南方被海水覆盖成为大片浅海海域,几乎全为碳酸盐沉积,为一个巨型碳酸盐缓坡,垂向上呈向上变深的序列[1] ,该地层分布广泛,富含有机质与燧石结核,局部地区产菊花石[2],但岩性、岩相、地层厚度变化不大,这些特殊性引起了学者广泛关注。前人对栖霞组的岩石学[3, 4, 5],如:岩石类型与组合;古生态学[3, 6, 7],如:遗迹组构、化石类型;地球化学[6, 7, 8, 9, 10],如:主量元素、微量元素、黄铁矿矿化程度(DOP)等方面特征进行过研究,并指出栖霞组沉积于缺氧环境。本文在前人研究成果的基础上,对重庆市石柱地区栖霞组碳酸盐岩地球化学特征、沉积环境及演化规律进行了探讨,为全面研究华南栖霞组沉积环境提供新材料。
1 区域地质概况研究区位于重庆市石柱县,东邻湖北省利川市,广泛出露震旦—侏罗系地层(图 1),构造位置属中扬子陆块川东构造带齐岳山断裂北段[12]。与华南其它地区相似,研究区栖霞组以富含燧石结核与有机质(图 2A,B),发育瘤状构造(图 2C)为特征,为一套深灰色、灰黑色中层—块状生物屑微晶灰岩夹灰黑色薄层碳质泥岩沉积。灰岩多被泥岩包绕形成瘤状构造,见大量燧石结核、团块,结核常呈串珠状排列,大小不等,直径一般<15 cm,团块常单个产出,形状不规则,大小不一,产腕足、非蜓类有孔虫、蜓、菊石、双壳、三叶虫及藻类化石,与下伏梁山组及上覆茅口组均呈整合接触(图 2D)。
![]() |
|
图 1 重庆石柱地区地质简图及剖面位置图
(据马艳芳等[11],2002修改) 1.震旦系—寒武系;2.奥陶系—石炭系;3.二叠系;4.三叠系;5.侏罗系;6.地层界线;7.断层线;8.省界;9.采样位置 Fig. 1 Geological sketch map of Shizhu area,Chongqing city and location of Jinlingxiang section(after Ma Yanfang,et al.[11],2002) 1.Sinian-Cambrian; 2.Ordovician-Carboniferous; 3. Permain; 4.Triassic; 5.Jurassic; 6.stratigraphic boundary; 7. fault line; 8.provincial boundary; 9. sampling location |
![]() |
|
图 2 栖霞组野外露头照片 A缺失c段的基本层序:由碳质泥岩(a)→中层状生物屑微晶灰岩(b)互层组成,锤头长12 cm;B.为A的局部放大,灰岩中的燧石结核呈串珠状排列;C.瘤状生物屑灰岩;人高:175 cm;D. 栖霞组(P2q)与梁山组(P2l)整合接触界线。 Fig. 2 The outcrop photos of Qixia Formation A. Basic sequence: carbonaceous shale (a)→bioclastic limestone(b),length of hammerhead: 12 cm; B. Partial enlarged view of A,beaded chert nodules in limestone; C. Nodular bioclastic limestone,height: 175 cm; D. Conformable boundary between Qixia and Liangshan Formations. |
样品采集于石柱县东部金铃乡栖霞组剖面,起点坐标:30° 00′ 55″ N,108° 28′ 22″ E,该剖面栖霞组厚253.3 m,按岩性组合特征划分为15层,由底至顶每层采集了1件新鲜灰岩样品,加上2件茅口组样品,共计17件,每件样品采集2套,具体采样位置如图 4所示,分别用于光学薄片磨制与化学分析测试,后者不含方解石脉。薄片在武汉地质矿产研究所磨制,之后在Zeiss-AXIO光学显微镜下观察并拍照。地球化学分析样品的加工及测试在国土资源部中南矿产资源监督检测中心完成,首先将样品无污染粉碎至200目干燥备用,全岩主量元素在X射线荧光光谱仪(AXIOS)上测试,微量元素与稀土元素在电感耦合等离子体质谱仪 (ICP-MS-X SeriesⅡ)上进行分析,测试精度优于5%。碳、氧同位素在MAT251上测定,结果以相对V-PDB的值给出。分析过程采用国家标准GBW04417和国际标样NBS19进行质量监控,分析误差范围为±0.2‰。
3 结果与讨论 3.1 岩石学金铃乡剖面栖霞组底部为灰色厚层状含黄铁矿集合体细晶灰岩,向上为深灰—灰黑色厚—中层状夹块状含燧石结核(含)生物屑微晶灰岩、粉晶灰岩与黑色中薄层状碳质泥岩,泥岩与灰岩接触面呈波状,使灰岩呈现瘤状构造(图 2C),下部泥岩比例较高,向上泥岩比例较少,呈页片状产出于灰岩层间,岩层界面也逐渐变得平直。基本层序为:黑色薄层状碳质泥岩(a)→深灰色中层状瘤状生物屑灰岩夹泥岩(b)→深灰色中厚层—块状生物屑灰岩(c)(图 2A),b、c单元中常含有灰黑色燧石结核、团块(图 2B),常缺失c单元。本组与下伏梁山组呈整合接触(图 2D),由于顶部覆盖严重未见其与茅口组接触界面,但区域资料显示两者为整合接触。镜下观察表明本次所采灰岩样品均含有少量的黄铁矿,大多含有一定量的生物碎屑,生物屑包括腕足、三叶虫、非蜓类有孔虫、介形虫、双壳、蜓类、棘皮及藻类(图 3A,B)。 灰岩中的燧石结核由玉髓组成(图 3C-a),玉髓中包裹晶形很好的菱形白云石晶体,推测与燧石结核形成时代相近,燧石结核与围岩微晶方解石(图 3C-e,D-e)存在一“过渡带”,由下往上依次为重结晶方解石、白云石(图 3C-b,3D-b),犬牙状石英与方解石(图 3C-c,3D-c),黄铁矿层(图 3C-d,3D-d)。燧石结核不切穿围岩,“过渡带”围绕围岩而弯曲,说明燧石结核最可能形成于早期成岩阶段。黄铁矿形成于海底成岩环境的硫酸盐还原阶段,指示了碳酸盐形成于缺氧环境[13]。
![]() |
|
图 3 栖霞组灰岩镜下照片 A.微晶生物屑灰岩,生物屑包括腕足、三叶虫(白色箭头)、介形虫(方框)、双壳、棘皮等,压实作用使生物屑定向排列,单偏光,样品编号:9-1h;B.为A中方框中介形虫的放大,单偏光;C.微晶灰岩中的燧石结核,由下至上可分为5层,a:燧石结核,由微粒石英、玉髓组成,b: 重结晶方解石、白云石,c:犬牙状石英与方解石,d:黄铁矿(黑色、近圆形)层,e:微晶方解石(围岩),正交光,样品编号:3-1h;D.为C方框的放大,白色箭头指向c层中的方解石,黄色箭头指向石英,正交光。 Fig. 3 Microscopic photos of Qixia Formation A. Microcrystalline bioclastic limestone,bioclasts consist of trilobites (white arrow),ostracods(box),bivalves and echinoderms,single polarization,sample No. 9-1 h; B. Partial enlarged view of ostracods in photo A,single polarization; C. Chert nodules in limestone can be subdivided into 5 layers ascendingly,a~e layers are on behalf of chalcedony (chert nodule),recrystallized calcite and dolomite,canine quartz and calcite,pyrite,microcrystalline calcite (country rock),respectively,orthogonal light,sample No. 3-1 h; D. Detail view of b~e layers in photo C,white arrow points calcite and yellow arrow points quartz,cross polarization light. |
颜佳新等(1998)[13]在研究湖北省巴东栖霞组碳酸盐岩成岩作用与地球化学特征后指出,地层中CaO、Al2O3、K2O、Fe2O3、P、Ba和Mn的含量主要与沉积环境或原岩岩性有关,其中Al2O3和K2O的含量与岩石中陆源碎屑含量有关;而SiO2、MgO、Sr和Na的含量主要与成岩作用有关。Kaufman et al.(1993)[14]研究文德期海水中Sr、C同位素变化时认为当碳酸盐岩δ18OPDB<-11‰,岩石化学组成受到成岩作用的改造,并指出碳酸盐中颗粒较细、硅质碎屑物含量低、Mn/Sr<1.5、δ18OPDB>-11‰是地化数据有效的前提。Derry et al.[15] (1994)再次提出未发生白云岩化(MgO/CaO<0.125),Mn/Sr≤0.6,Fe/Sr<3是碳酸盐岩未发生成岩改变的基本前提,同时指出这个指标带有一定的经验性。鉴于目前未见新的判别标准,同时国内学者使用该标准并取得较好成果[16],故本文也采用这一标准来判别成岩作用的强弱,决定数据的选用。
样品3-1h、8-1h、11-1h、13-1h、18-2h的SiO2、MgO含量明显偏高,且两者具有较好的正相关性,SiO2最高达22.25%,平均值为14.38%,MgO最大值为12.39%,平均值为6.08%。野外及镜下观察表明,高SiO2、MgO含量与硅化和白云岩化作用有关,且往往出现在含有机质及燧石结核灰岩中。样品2-1h的Fe/Sr比值为34.89,野外该层碳酸盐含有大量的黄铁矿集合体,为了真实地反映沉积环境信息,故舍弃以上6个样品地球化学数据。余下10件栖霞组与1件茅口组样品MgO/CaO<0.125,Mn/Sr比值最大为0.024,Fe/Sr比值最大仅为0.85,δ18OPDB≥-7.9‰,满足数据有效性的基本条件,可用于古环境分析。
3.2.2 主量元素特征金铃乡栖霞组剖面17件碳酸盐岩全岩主量元素含量及部分元素计算结果如表 1、图 4所示,其具有如下特征:
| 样品编号 | 4-1h | 5-1h | 6-1h | 7-1h | 9-1h | 10-1h | 12-1h | 14-1h | 15-1h | 16-1h | 平均值 | 18-1h | 2-1h | 3-1h | 8-1h | 11-1h | 13-1h | 18-2h | 含硅质灰 |
| 岩性 | (含)生物屑微晶、粉晶灰岩 | 微晶灰岩细晶灰岩 | 含硅质灰岩 | 岩平均值 | |||||||||||||||
| SiO2 | 4.77 | 0.89 | 3.25 | 1.39 | 0.77 | 1.64 | 3.15 | 3.81 | 1.81 | 0.17 | 2.16 | 0.41 | 2.22 | 21.09 | 5.39 | 10.94 | 22.25 | 12.22 | 14.38 |
| Al2O3 | 0.29 | 0.25 | 0.27 | 0.14 | 0.28 | 0.05 | 0.15 | 0.10 | 0.10 | 0.04 | 0.17 | 0.17 | 0.81 | 0.58 | 0.11 | 0.32 | 0.37 | 0.08 | 0.29 |
| Fe2O3 | 0.06 | 0.02 | 0.05 | 0.003 6 | 0.05 | 0.01 | 0.003 5 | 0.01 | 0.01 | 0.01 | 0.02 | 0.03 | 2.12 | 0.08 | 0.01 | 0.03 | 0.08 | 0.01 | 0.04 |
| FeO | 0.11 | 0.13 | 0.10 | 0.07 | 0.07 | 0.04 | 0.11 | 0.07 | 0.07 | 0.04 | 0.08 | 0.06 | 0.70 | 0.26 | 0.07 | 0.16 | 0.17 | 0.11 | 0.15 |
| CaO | 52.11 | 54.70 | 52.87 | 54.62 | 54.70 | 54.05 | 52.92 | 52.59 | 53.91 | 55.66 | 53.81 | 55.35 | 51.19 | 31.47 | 50.93 | 46.64 | 37.02 | 47.57 | 42.73 |
| MgO | 1.48 | 1.07 | 1.82 | 1.04 | 0.96 | 1.50 | 1.82 | 2.11 | 1.58 | 0.61 | 1.40 | 0.53 | 2.47 | 12.39 | 3.01 | 4.37 | 8.97 | 1.66 | 6.08 |
| K2O | 0.049 | 0.032 | 0.040 | 0.018 | 0.040 | 0.011 | 0.034 | 0.015 | 0.021 | 0.012 | 0.027 | 0.038 | 0.034 | 0.011 | 0.010 | 0.035 | 0.033 | 0.062 | 0.030 |
| Na2O | 0.048 | 0.065 | 0.050 | 0.045 | 0.052 | 0.056 | 0.042 | 0.048 | 0.047 | 0.056 | 0.051 | 0.047 | 0.053 | 0.052 | 0.040 | 0.068 | 0.071 | 0.047 | 0.056 |
| TiO2 | 0.019 | 0.013 | 0.015 | 0.008 | 0.019 | 0.010 | 0.010 | 0.008 | 0.008 | 0.010 | 0.012 | 0.009 | 0.046 | 0.032 | 0.008 | 0.014 | 0.024 | 0.005 | 0.017 |
| P2O5 | 0.010 | 0.009 | 0.008 | 0.007 | 0.011 | 0.012 | 0.011 | 0.013 | 0.012 | 0.008 | 0.010 | 0.014 | 0.031 | 0.025 | 0.010 | 0.014 | 0.013 | 0.013 | 0.015 |
| MnO | 0.003 4 | 0.003 8 | 0.002 8 | 0.002 3 | 0.002 3 | 0.002 7 | 0.003 6 | 0.003 7 | 0.003 2 | 0.002 4 | 0.003 | 0.002 8 | 0.062 0 | 0.016 0 | 0.002 2 | 0.003 8 | 0.004 7 | 0.003 1 | 0.006 0 |
| LOI | 41.04 | 42.81 | 41.50 | 42.65 | 43.04 | 42.61 | 41.72 | 41.21 | 42.42 | 43.40 | 42.24 | 43.33 | 40.19 | 33.97 | 40.41 | 37.40 | 30.98 | 38.27 | 36.21 |
| SUM | 99.99 | 99.99 | 99.97 | 99.99 | 99.99 | 99.99 | 99.98 | 99.99 | 99.99 | 100.02 | 99.99 | 100.00 | 99.93 | 99.97 | 100.00 | 99.99 | 99.98 | 100.05 | 100.00 |
| 104×Na | 356 | 482 | 371 | 334 | 386 | 415 | 312 | 356 | 349 | 415 | 378 | 349 | 393 | 386 | 297 | 505 | 527 | 349 | 413 |
| ∑(Al2O3+TiO2) | 0.31 | 0.26 | 0.29 | 0.15 | 0.30 | 0.06 | 0.16 | 0.11 | 0.11 | 0.05 | 0.18 | 0.18 | 0.86 | 0.61 | 0.12 | 0.34 | 0.39 | 0.09 | 0.31 |
| CaO+MgO+LOI | 94.63 | 98.58 | 96.19 | 98.31 | 98.70 | 98.16 | 96.46 | 95.91 | 97.91 | 99.67 | 97.45 | 99.21 | 93.85 | 77.83 | 94.35 | 88.41 | 76.97 | 87.50 | 85.01 |
| 100×MgO/Al2O3 | 517 | 431 | 669 | 759 | 348 | 3 125 | 1 221 | 2 153 | 1 580 | 1 600 | 1 241 | 308 | 303 | 2 154 | 2 787 | 1 357 | 2 457 | 2 024 | 2 156.18 |
| MgO/CaO | 0.028 | 0.020 | 0.034 | 0.019 | 0.018 | 0.028 | 0.034 | 0.040 | 0.029 | 0.011 | 0.026 | 0.010 | 0.048 | 0.394 | 0.059 | 0.094 | 0.242 | 0.035 | 0.165 |
| Mn/Sr | 0.016 | 0.017 | 0.017 | 0.013 | 0.006 | 0.014 | 0.020 | 0.024 | 0.017 | 0.006 | 0.015 | 0.015 | 0.828 | 0.138 | 0.018 | 0.018 | 0.013 | 0.022 | 0.042 |
| Fe/Sr | 0.80 | 0.67 | 0.85 | 0.42 | 0.29 | 0.26 | 0.66 | 0.53 | 0.43 | 0.15 | 0.50 | 0.47 | 34.89 | 2.86 | 0.64 | 0.87 | 0.69 | 0.88 | 1.19 |
| 1000×Sr/Ca | 4.35 | 4.40 | 3.44 | 3.54 | 7.99 | 3.81 | 3.65 | 3.14 | 3.77 | 7.27 | 4.54 | 3.59 | 1.59 | 3.99 | 2.59 | 4.86 | 10.40 | 3.15 | 5.00 |
| 注:2-1h~16-1h为栖霞组样品,18-1h、18-2h为茅口组样品,LOI为烧失量,SUM为总和。 | |||||||||||||||||||
![]() |
| 图 4 栖霞组碳酸盐岩部分元素含量与古环境特征 Fig. 4 Element contents and paleoenvironmental characteristics of the Qixia Formation |
(1) 样品CaO含量高且稳定,分布于52.11%~55.66%之间,平均53.81%,接近纯灰岩化学成分理论值56%,∑(CaO+MgO+LOI)平均值高达97.45%,反映了稳定的沉积环境。CaO与SiO2、MgO强烈负相关(Pearson相关系数r=-0.98、-0.87,下同),这一现象,颜佳新等[13](1998)在研究巴东栖霞组沉积成岩地球化学特征时也有过报导。
(2) 样品SiO2、MgO含量低,且两者具有较好的正相关性(r=0.80),前者低于5%,平均值为2.16%,后者含量不超过2.5%,平均值为1.40%,表明样品在成岩过程中几乎不受硅化和白云岩化作用的改造。
(3) 陆源元素Al2O3与TiO2含量很低,且强烈正相关(r=0.85),平均值分别为0.17%与0.012%,K2O的含量也很低,最大为0.049%,表明研究区栖霞组碳酸盐岩沉积于几乎无陆源碎屑影响的古海洋环境。样品2-1h的∑(Al2O3+TiO2) 值3倍于其他样品,考虑到本层灰岩紧邻海陆交互相地层梁山组,该特征可解释为海陆交互相沉积向海相沉积转变的沉积地球化学响应。垂向上,由底至顶∑(Al2O3+ TiO2)呈逐渐减少之势(图 4),表明陆源供给逐渐减少。颜佳新等[5](1994)指出华南栖霞组是在全球石炭纪—二叠纪冰期极地冰盖逐渐消融、全球大规模海侵背景中形成的一套特殊碳酸盐岩地层,从下到上大致由一大的海侵沉积序列组成。海侵一方面造成陆地面积减小,另一方面导致沉积区远离海岸,这就造成研究区陆源物质供给的逐渐匮乏。
(4) Na2O含量低,平均值为0.051%,元素Na含量介于312~482×10-6之间,平均值为378×10-6,同时样品具有较高的Sr含量(详见下文),具有未受大气淡水影响的以海底成岩作用为主的石灰岩特征[17]。
(5) Fe2O3、FeO与陆源元素Al2O3强烈的正相关(r=0.84,0.74),与自生元素CaO具有一定负相关性,表明Fe含量主要受陆源物质供给量控制。
3.2.3 微量元素Sr特征现代环境中从海洋直接形成的是文石和高镁方解石[18] ,沉积于巴哈马与波斯湾的文石Sr平均含量至少为7 740±300×10-6[19] ,高镁方解石Sr含量低于文石。现代海洋中白云石的Sr含量为245~600×10-6,白云岩化作用使Sr明显受损,强烈白云石化可以使Sr含量下降到150×10-6,文石被白云石化后,典型的Sr含量是500~600×10-6,高镁方解石将会被具有几百×10-6 Sr含量的白云石代替[17, 20, 21]。栖霞组10个碳酸盐岩样品Sr含量高,平均为1 751×10-6(表 2、图 4),样品9-1h的Sr含量更是达到3 120×10-6,进一步表明样品受白云石化影响较小,较好的保留了沉积环境的原始信息,其反映的沉积时古海洋环境最可能是“高镁方解石海”,与颜佳新等(2006)[22]在研究显生宙海水成分演化时得出的结论相吻合。
3.2.4 稀土元素特征金铃乡剖面栖霞组灰岩稀土总量很低(表 2),∑REE为0.95~7.21×10-6,平均值仅为3.33×10-6,∑LREE/∑HREE平均值为6.72,∑REE与陆源元素∑(Al2O3+TiO2)强烈正相关(r=0.82),垂向上两者变化趋势极为一致(图 4),反映了稀土元素含量主要受陆源供给控制。另外,样品2-1h稀土元素含量明显高于其他样品(图 5),这与其紧邻梁山组,受陆源影响最大有关。除16-1h外,样品具轻度Ce负异常,δCe为0.71~0.92,平均值为0.87。除样品14-1h不具Eu异常,10-1h具强烈的Eu负异常外,其它样品具有中度Eu负异常,所有样品δEu平均值0.69。经北美页岩标准化稀土配分曲线表现为近水平(图 5),以上特征表明稀土元素主要来源于陆源供给。
| 样品号 | 4-1h | 5-1h | 6-1h | 7-1h | 9-1h | 10-1h | 12-1h | 14-1h | 15-1h | 16-1h | 平均值 | 18-1h | 2-1h |
| Cr | 12.30 | 9.03 | 11.80 | 8.12 | 47.10 | 6.46 | 14.20 | 8.10 | 7.21 | 8.91 | 13.32 | 14.70 | 12.00 |
| Ni | 6.65 | 5.18 | 5.36 | 4.92 | 9.50 | 3.52 | 7.16 | 3.03 | 3.55 | 4.18 | 5.31 | 4.81 | 7.79 |
| Co | 1.20 | 1.22 | 1.02 | <1 | 1.00 | <1 | 1.14 | <1 | 1.10 | 1.11 | 1.08 | 2.60 | 2.48 |
| Mo | 1.09 | 0.34 | 0.96 | 0.77 | 3.19 | 0.99 | 1.31 | 0.21 | 0.80 | 0.66 | 1.03 | 0.26 | 0.36 |
| Sr | 1 620 | 1 720 | 1 300 | 1 380 | 3 120 | 1 470 | 1 380 | 1 180 | 1 450 | 2 890 | 1 751 | 1 420 | 580 |
| Ba | 14.30 | 8.18 | 10.60 | 7.33 | 12.40 | 4.09 | 4.58 | 3.49 | 4.70 | 4.33 | 7.40 | 5.42 | 63.60 |
| V | 21.60 | 8.25 | 7.10 | 4.02 | 17.70 | 3.48 | 15.00 | 2.86 | 4.95 | 10.80 | 9.58 | 12.40 | 9.46 |
| U | 2.52 | 2.04 | 3.54 | 2.46 | 2.53 | 4.28 | 6.67 | 1.61 | 6.18 | 1.76 | 3.36 | 3.81 | 0.70 |
| Th | 0.22 | 0.16 | 0.33 | <0.1 | 0.17 | <0.1 | 0.12 | 0.10 | <0.1 | <0.1 | <0.15 | 0.94 | 0.70 |
| Sr/Ba | 113 | 210 | 123 | 188 | 252 | 359 | 301 | 338 | 309 | 667 | 286 | 262 | 9 |
| U/Th | 11.45 | 12.75 | 10.73 | >24.6 | 14.88 | >42.8 | 55.58 | 16.10 | >61.8 | >17.6 | >26.83 | 4.05 | 1.00 |
| V/(V+Ni) | 0.76 | 0.61 | 0.57 | 0.45 | 0.65 | 0.50 | 0.68 | 0.49 | 0.58 | 0.72 | 0.60 | 0.72 | 0.55 |
| Ni/Co | 5.54 | 4.25 | 5.25 | >4.92 | 9.50 | >3.52 | 6.28 | >3.03 | 3.23 | 3.77 | >4.93 | 1.85 | 3.14 |
| V/Cr | 1.76 | 0.91 | 0.60 | 0.50 | 0.38 | 0.54 | 1.06 | 0.35 | 0.69 | 1.21 | 0.80 | 0.84 | 0.79 |
| La | 1.06 | 0.68 | 1.64 | 0.38 | 0.72 | 0.16 | 0.68 | 0.80 | 0.41 | 0.20 | 0.67 | 0.89 | 3.42 |
| Ce | 2.40 | 1.44 | 2.90 | 0.78 | 1.51 | 0.39 | 1.34 | 1.23 | 0.75 | 0.54 | 1.33 | 1.80 | 5.28 |
| Pr | 0.30 | 0.18 | 0.35 | 0.10 | 0.20 | 0.06 | 0.16 | 0.18 | 0.10 | 0.06 | 0.17 | 0.23 | 0.68 |
| Nd | 1.04 | 0.65 | 1.26 | 0.37 | 0.70 | 0.17 | 0.58 | 0.71 | 0.39 | 0.22 | 0.61 | 0.81 | 2.46 |
| Sm | 0.18 | 0.11 | 0.24 | 0.08 | 0.12 | 0.04 | 0.11 | 0.14 | 0.07 | 0.05 | 0.11 | 0.17 | 0.50 |
| Eu | 0.03 | 0.02 | 0.03 | 0.01 | 0.02 | 0.001 | 0.02 | 0.03 | 0.01 | 0.01 | 0.02 | 0.02 | 0.12 |
| Gd | 0.17 | 0.12 | 0.21 | 0.06 | 0.14 | 0.03 | 0.09 | 0.13 | 0.09 | 0.03 | 0.11 | 0.17 | 0.52 |
| Tb | 0.03 | 0.02 | 0.03 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.03 | 0.09 |
| Dy | 0.14 | 0.11 | 0.20 | 0.07 | 0.10 | 0.04 | 0.11 | 0.16 | 0.11 | 0.05 | 0.11 | 0.17 | 0.55 |
| Ho | 0.03 | 0.02 | 0.05 | 0.02 | 0.02 | 0.01 | 0.03 | 0.03 | 0.03 | 0.01 | 0.02 | 0.03 | 0.12 |
| Er | 0.08 | 0.07 | 0.12 | 0.05 | 0.06 | 0.02 | 0.07 | 0.08 | 0.07 | 0.02 | 0.06 | 0.10 | 0.35 |
| Tm | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.003 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.06 |
| Yb | 0.09 | 0.08 | 0.14 | 0.06 | 0.08 | 0.03 | 0.08 | 0.08 | 0.08 | 0.03 | 0.07 | 0.12 | 0.40 |
| Lu | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.005 | 0.01 | 0.02 | 0.06 |
| ∑REE | 5.58 | 3.52 | 7.21 | 2.00 | 3.72 | 0.95 | 3.31 | 3.62 | 2.15 | 1.22 | 3.33 | 4.58 | 14.62 |
| ∑LREE/∑HREE | 8.84 | 6.90 | 8.10 | 6.11 | 7.25 | 5.88 | 6.93 | 5.85 | 4.17 | 7.21 | 6.72 | 6.00 | 5.77 |
| δCe | 0.92 | 0.90 | 0.83 | 0.87 | 0.87 | 0.87 | 0.88 | 0.71 | 0.81 | 1.05 | 0.87 | 0.87 | 0.75 |
| δEu | 0.75 | 0.69 | 0.51 | 0.73 | 0.74 | 0.14 | 0.86 | 1.01 | 0.76 | 0.71 | 0.69 | 0.59 | 1.03 |
| 注:δCe = 2×CeN/(LaN+PrN);δEu =2×EuN/(SmN+GdN),标准化值据Haskin et al.,1968[23]。 | |||||||||||||
MgO/CaO比值是气候变化的良好指示剂,高值对应干热气候,低值指示潮湿气候[24, 25, 26]。样品MgO/CaO比值低,且变化范围小,为0.011~0.040,平均0.026(表 1),反映栖霞组沉积时期为潮湿气候。纵向上,MgO/CaO比值整体表现为升高(4~14层)→降低(14~18层)的二段式变化(图 4),可能反映了气候的周期性变化。
3.3.2 古盐度m=100×MgO/Al2O3是根据沉积岩中MgO的亲海性和Al2O3的亲陆性特征而建立的[25, 26]。沉积环境在由淡水向海水过渡的过程中,m值随水体盐度的增大而逐渐增加:①淡水沉积环境m<1;②陆海过渡性沉积环境m值为1~10;③海水沉积环境m值为10~500;④陆表海环境(或瀉湖沉积环境)m>500。本 次研究的栖霞组样品m值介于349~3 125之间,平均值为1 241,8个样品的m>500(表 1),表明栖霞组沉积时为陆表海沉积环境。纵向上,m值呈两段式变化(图 4),4~9层m值较小且变化幅度不大,而9~18层m值较大,且持续降低,反映了早期沉积水体盐度稳定,后期海水盐度较大,且持续降低。
3.3.3 古水深、离岸远近Sr/Ba比值常是海水深度和离岸距离的重要判别标志[27]。Sr、Ba的化学性质相近,但Sr的迁移能力强于Ba,可迁移到大洋深处,而Ba多在近岸沉积物中富集,仅有少量进入深海,通常Sr/Ba<1,代表淡水,Sr/Ba>1表示咸水。如:紧邻海陆交互相沉积的样品2-1h Ba含量为其它样品的4倍以上,而Sr含量不及其它样品的一半,Sr/Ba比值仅为9,远远小于其它样品(表 2)。本文所选取的10个样品的Sr/Ba比值分布于113~667之间,平均值为286,具有离岸较远的沉积特征。纵向上,Sr/Ba比值具有向上逐渐增大的特点,为持续海侵的沉积地球化学响应,与前文已指出的∑(Al2O3+TiO2)变化规律所指示海平面变化特征高度一致。值得注意的是,到茅口组沉积时期样品18-1h,Sr/Ba比值明显降低,这一特点在其它地球化学指标上也有显示,如:∑(Al2O3+ TiO2)、1 000×(Sr/Ca)(图 4),该特征可能反映了茅口组沉积时期海平面明显下降。
汪凯明等(2009)[27, 28]在研究冀北坳陷长城系高于庄组碳酸盐岩时,指出1 000×(Sr/Ca)比值从浅滩向陆棚方向,随沉积水体的加深而增大,可作为判断古水深的标志。本文所获得1 000×(Sr/Ca)比值较高,分布于3.14~7.99之间,平均为4.54,表明栖霞组沉积环境为陆离岸较远的陆棚环境。纵向上,与Sr/Ba比值所反映的特征极为相似。
3.3.4 古氧相氧化还原敏感性元素可以作为重建沉积水体古氧相的有效指标,这些元素在富氧条件下溶解度较高,在缺氧条件下,溶解度变低,这将会导致在缺氧沉积物中的自生富集。一般来讲,水体缺氧程度越大,沉积物中各元素越富集,如果缺氧程度有所缓解,各元素会被氧化再活化,从沉积物表层溶解出进入海水。Tribovillard et al.(2006)[29]指出U、V和Mo可作为古氧相的有效判别指标,其次为Cr和Co,而Cu、Ni可作为古生产力判别指标。由于微量元素会受到碳酸盐、蛋白石的“稀释”,因此在比较不同样品中微量元素的含量时,通常将其进行Al标准化[30]。
栖霞组10件样品各微量元素的Al标准化值相关性如表 3所示,古氧相判别指标中,除U/Al与V/Al、Cr/Al的相关性较低,分别为0.31、0.38外,其他元素间均显示了较好的正相关性,古生产力指标Cu/Al与Ni/Al的相关系数为0.89,同时与氧化还原判别指标也具有良好正相关性,最低为0.63,最高为Co/Al与Ni/Al的0.95,反映这些金属元素具有较相似的化学性质。如图 6所示,金铃乡栖霞组剖面U、V、Mo、Cr、Co、Cu、Ni与Al标准化值远高于北美页岩的Al标准化值,且变化趋势较为一致,整体表现为在第10层与第16层值达到峰值;4~9层各元素Al标准化值较小,变化幅度较小,变化趋势较一致;11~15层变化幅度稍大,且变化趋势存在一定差异,该特征表明在第10层与第16层缺氧程度最高,结合古氧相与古生产力指标的相关性,表明栖霞组缺氧环境可能是由于海洋初级生产力升高造成的[31]。
| U/Al | V/Al | Mo/Al | Cr/Al | Co/Al | Cu/Al | Ni/Al | |
| U/Al | 1.00 | ||||||
| V/Al | 0.31 | 1.00 | |||||
| Mo/Al | 0.77 | 0.61 | 1.00 | ||||
| Cr/Al | 0.38 | 0.80 | 0.81 | 1.00 | |||
| Co/Al | 0.69 | 0.79 | 0.78 | 0.74 | 1.00 | ||
| Cu/Al | 0.63 | 0.75 | 0.65 | 0.68 | 0.93 | 1.00 | |
| Ni/Al | 0.63 | 0.88 | 0.85 | 0.85 | 0.95 | 0.89 | 1.00 |
Jones et al.(1994)[33]采用因子分析方法对8个判断泥岩古氧相指标进行归类,指出DOP、U/Th、Ni/Co、V/Cr和自生U这5个指标可靠度较高,并以DOP为标准,对其他4个指标进行校正,U/Th>1.25、V/Cr>4.25或Ni/Co>7.00反映缺氧环境,U/Th<0.75、V/Cr<2.00或Ni/Co<5.00指示富氧环境,而比值介于之间为贫氧环境。Hatch et al.(1992)[34]与Thomas et al.(2004)[35]对北美堪萨斯州上宾西法尼亚系黑色页岩的研究表明,高V/(V+Ni)比值 (0.84~0.89)反映水体分层,底层水体中出现H2S的缺氧环境;中等V/(V+Ni) 比值(0.54~0.82)指示水体分层不强烈的缺氧环境;低V/(V+Ni)比值(0.46~0.60)为水体分层弱的贫氧环境。对于这些适用泥岩的古氧相判断指标,颜佳新等(1998)[6]研究湖北水布垭栖霞组,施春华等(2001)[9]研究广西来宾栖霞组时指出V/(V+Ni)、U/Th同样适用于碳酸盐岩的古氧相判别,而V/Cr和Ni/Co的可靠性仍值得商榷。如表 2、图 7所示,金铃乡栖霞组样品的U/Th比值较大,均>10.73,平均值>26.83,反映了缺氧的沉积环境特征;V/(V+Ni)比值为0.45~0.76,平均值为0.60,反映弱分层贫氧—中等分层缺氧沉积环境;Ni/Co比值不稳定,其值>3.03,具有富氧—贫氧特征;V/Cr则反映了富氧沉积环境,同样表明Ni/Co和V/Cr能否作为判断碳酸盐岩古氧相的指标尚需进一步研究。以上地球化学特征综合表明,栖霞组形成于贫氧—缺氧环境,而缺氧环境可能是由于海洋初级生产力升高引起的。
![]() |
| 图 7 栖霞组氧化还原环境U/Th-V/(V+Ni)判别图解 (水平箭头表示V/(V+Ni)值大于该点所对应的值) Fig. 7 Crossplot of redox indices U/Th vs. V/(V+Ni) in Qixia Formation |
本文选取了10个采自重庆市石柱县金铃乡栖霞组剖面的碳酸盐岩样品进行地球化学特征及沉积环境分析。得到以下4点认识:
(1) 样品∑(CaO+MgO+LOI)平均值高达97.45%,SiO2、MgO含量低,且两者具有较好的正相关性,Mn/Sr比值低,最大仅为0.02,平均值0.015,Fe/Sr<1,Sr含量高,平均为1 751×10-6,δ18OPDB均>-10‰,表明样品在成岩过程中几乎不受硅化及白云岩化作用的影响,较好保留了沉积环境信息,可作为古环境分析的可靠对象。
(2) 样品具有低的陆源元素Al2O3、TiO2含量,低MgO/CaO比值,高100×(MgO/Al2O3)、Sr/Ba、1 000×(Sr/Ca)比值特征,表明栖霞组为潮湿气候下,几乎不受陆源影响的远岸陆棚沉积。
(3) 古氧相地球化学指标U/Al、V/Al、Mo/Al、Cr/Al、Co/Al、V/(V+Ni)和U/Th特征一致表明栖霞组碳酸盐岩沉积于贫氧—缺氧环境,Ni/Co、V/Cr判别碳酸盐岩古氧相的可靠性需要进一步研究。
(4) 垂向上,陆源元素∑(Al2O3+TiO2)含量逐渐降低,古水深指标Sr/Ba、1000×(Sr/Ca)比值逐渐增大,表明栖霞组沉积过程中离岸渐远、陆源供给逐步减少、水体持续加深。
致谢 所有参加“湖北1∶50 000汪家营、利川、忠路、黄泥塘幅区域地质调查”项目的同志付出了辛勤的劳动,武汉地质矿产研究所牛志军研究员,中国地质大学颜佳新教授给予了悉心指导,在此一并表示感谢!
| [1] | 刘宝珺,许效松,潘杏南,等. 中国南方古大陆沉积地壳演化与成矿[M]. 北京:科学出版社,1993[Liu Baojun, Xu Xiaosong, Pan Xingnan, et al. Sedimentary Crust Evolution of Paleocontinent and Metallogeny in Southern China [M]. Beijing: Science Press, 1993] |
| [2] | 刘德镒. 浏阳式菊花石的特征及其地质意义[J]. 岩相古地理,1988,8(3/4):41-50[Liu Deyi. Characteristics and geological significance of Liuyang-type chrysanthemum - stone from Hunan province[J]. Sedimentary Facies and Palaeogeography, 1988, 8(3/4): 41-50] |
| [3] | 吕炳全,瞿建忠. 下扬子地区早二叠世海进和上升流形成的缺氧环境的沉积[J]. 科学通报,1989,34(22):1721-1724[Lü Bingquan, Qu Jianzhong. The anoxic sediments related to the Early Permian transgression and upflow environment in the Lower Yangtze area[J]. Chinese Science Bulletin, 1989, 34(22): 1721-1724] |
| [4] | 吴胜和,冯增昭,何幼斌. 中下扬子地区二叠纪缺氧环境研究[J]. 沉积学报,1994,12(2):29-36[Wu Shenghe, Feng Zengzhao, He Youbin. Study on anoxic environments of Permian in the Middle and Lower Yangtze region[J]. Acta Sedimentologica Sinica, 1994, 12(2): 29-36] |
| [5] | 颜佳新,方念乔. 湖北省栖霞组沉积环境、沉积旋回及层序地层划分[J]. 地球科学,1994,19(5):620-626[Yan Jiaxin, Fang Nianqiao. Depositional environments, cycles and sequences of Chisia Formation in Hubei province[J]. Earth Science, 1994, 19(5): 620-626] |
| [6] | 颜佳新,徐四平,李方林. 湖北巴东栖霞组缺氧沉积环境的地球化学特征[J]. 岩相古地理,1998,18(6):27-32[Yan Jiaxin, Xu Siping, Li Fanglin. Geochemistry of the anaerobic sedimentary environments of the Qixia Formation in Badong, Hubei[J]. Sedimentary Facies and Palaeogeography, 1998, 18(6): 27-32] |
| [7] | 施春华,胡瑞忠,颜佳新. 栖霞组沉积地球化学特征及其环境意义[J]. 矿物岩石地球化学通报,2004,23(2):144-148[Shi Chunhua, Hu Ruizhong, Yan Jiaxin. Sedimentary geochemistry of the Qixia Formation and its environmental implication[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2004, 23(2): 144-148] |
| [8] | 施春华,黄秋,颜佳新. 广西来宾栖霞组缺氧沉积环境地球化学特征[J]. 地质地球化学,2001,29(4):35-39[Shi Chunhua, Huang Qiu, Yan Jiaxin. Geochemistry of anaerobic sedimentary environments of the Qixia Formation in Laibin, Guangxi[J].Geology Geochemistry, 2001, 29(4): 35-39] |
| [9] | 施春华,黄秋,颜佳新. 广西来宾栖霞组缺氧沉积环境的地球化学特征[J]. 沉积与特提斯地质,2001,21(2):72-77[Shi Chunhua, Huang Qiu, Yan Jiaxin. Geochemistry of the anaerobic sedimentary environments of Qixia Formation in Laibin, Guangxi[J]. Sedimentary Geology and Tethyan Geology, 2001, 21(2): 72-77] |
| [10] | 施春华,胡瑞忠,颜佳新. 华南地区栖霞组沉积地球化学特征研究[J]. 地质科技情报,2004,23(1):33-37[Shi Chunhua, Hu Ruizhong, Yan Jiaxin. Geochemical features of the sedimentation of Qixia Formation in South China[J]. Geological Science and Technology Information, 2004, 23(1): 33-37] |
| [11] | 马丽芳,《中国地质图集》编委会. 中国地质图集[M]. 北京:地质出版社,2002[Ma Lifang, Editorial Committee of “Geological Atlas of China”. Geological Atlas of China [M]. Beijing: Geological Publishing House, 2002] |
| [12] | Yan D P, Zhou M F, Song H L,et al. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China) [J]. Tectonophysics, 2003, 361(3/4): 239-254 |
| [13] | 颜佳新,伍明,李方林,等. 湖北省巴东栖霞组沉积成岩作用地球化学特征研究[J]. 沉积学报,1998,16(4):78-83[Yan Jiaxin, Wu Ming, Li Fanglin, et al. Geochemistry of sedimentation and diagenesis in Qixia Formation(Early Permian) of Badong, Hubei province[J]. Acta Sedimentologica Sinica, 1998, 16(4): 78-83] |
| [14] | Kaufman A J, Jacobsen S B, Knoll A H. The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate[J]. Earth and Planetary Science Letters, 1993, 120(3/4): 409-430 |
| [15] | Derry L A, Brasier M D, Corfield R M,et al. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: a paleoenvironmental record during the‘Cambrian explosion’[J]. Earth and Planetary Science Letters, 1994, 128(3/4): 678-681 |
| [16] | 旷红伟,柳永清,彭楠,等. 辽东大连新元古代臼齿碳酸盐岩地球化学特征及其地质意义[J]. 地学前缘,2011,18(4):25-40[Kuang Hongwei, Liu Yongqing, Peng Nan, et al. Geochemistry of the Neoproterozoic molar-tooth carbonates in Dalian, eastern Liaoning, China, and its geological implications[J]. Earth Science Frontiers, 2011, 18(4): 25-40] |
| [17] | 李双应,金福全,王道轩. 碳酸盐岩成岩作用的微量元素地球化学特征[J]. 石油实验地质,1995,17(1):55-62[Li Shuangying, Jin Fuquan, Wang Daoxuan. Geochemical characteristics of carbonate rocks diagenesis[J]. Experimental Petroleum Geology, 1995, 17(1): 55-62] |
| [18] | Land L S, Goreau T F. Submarine lithification of Jamacian reefs[J]. Journal of Sedimentary Research, 1970, 40(1): 457-462 |
| [19] | Kinaman D J J. Interpretation of Sr2+ concentrations in carbonate minerals and rocks[J]. Journal of Sedimentary Petrology, 1969, 39(2): 486-508 |
| [20] | Baker P A, Burns S J. Occurrence and formation of dolomite in organic-rich continental margin sediments[J]. AAPG Bulletin, 1985, 69(11): 1917-1930 |
| [21] | 倪善芹,侯泉林,王安建,等. 碳酸盐岩中锶元素地球化学特征及其指示意义——以北京下古生界碳酸盐岩为例[J]. 地质学报,2010,84(10):1510-1516 [Ni Shanqin, Hou Quanlin, Wang Anjian, et al. Geochemical characteristics of carbonate rocks and its geological implications-Taking the Lower Palaeozoic carbonate rock of Beijing area as an example[J]. Acta Geologica Sinica, 2010, 84(10): 1510-1516] |
| [22] | 颜佳新,伍明. 显生宙海水成分、碳酸盐沉积和生物演化系统研究进展[J]. 地质科技情报,2006,25(3):1-7 [Yan Jiaxin, Wu Ming. Synchronized oscillations in Phanerozoic chemical composition of seawater, carbonate sedimentation and biotic evolution: progresses and prospects [J]. Geological Science and Technology Information, 2006, 25(3): 1-7] |
| [23] | Haskin L A, Haskin M A, Frey F A,et al. Relative and absolute terrestrial abundances of the rare earths[C]//Ahrens L H. Origin and distribution of the elements. Oxford: Pergamon, 1968, 1: 889-911 |
| [24] | 王随继,黄杏珍,妥进才,等. 泌阳凹陷核桃园组微量元素演化特征及其古气候意义[J]. 沉积学报,1997,15(1):65-70[Wang Suiji, Huang Xingzhen, Tuo Jincai, et al. Evolutional characteristics and their paleoclimate significance of trace elements in the Hetaoyuan Formation, Biyang depression[J]. Acta Sedimentologica Sinica, 1997, 15(1): 65-70] |
| [25] | 经雅丽,张克信,林启祥,等. 浙江长兴煤山下三叠统和龙山组、南陵湖组沉积地球化学特征与古环境意义[J]. 地质科技情报,2005,24(1):35-40[Jing Yali, Zhang Kexin, Lin Qixiang, et al. Sedimentary geochemistry characteristics and paleoenvironmental meaning of Helongshan Formation and Nanlinghu Formation in Meishan, Changxing county, Zhejiang province[J]. Geological Science and Technology Information, 2005, 24(1): 35-40] |
| [26] | 杨振宇,沈渭洲,郑连弟. 广西来宾蓬莱滩二叠纪瓜德鲁普统—乐平统界线剖面元素和同位素地球化学研究及地质意义[J]. 地质学报,2009,83(1):1-15[Yang Zhenyu, Shen Weizhou, Zheng Liandi. Elements and isotopic geochemistry of Guadalupian - Luopingian boundary profile at the Penglaitan section of Laibin, Guangxi province, and its geological implications[J]. Acta Geologica Sinica, 2009, 83(1): 1-15] |
| [27] | 汪凯明,罗顺社. 燕山地区中元古界高于庄组和杨庄组地球化学特征及环境意义[J]. 矿物岩石地球化学通报,2009,28(4):356-364[Wang Kaiming, Luo Shunshe. Geochemical characteristics and environmental significance of Gaoyuzhuang and Yangzhuang Formations in Yanshan region[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(4): 356-364] |
| [28] | 汪凯明,罗顺社. 碳酸盐岩地球化学特征与沉积环境判别意义——以冀北坳陷长城系高于庄组为例[J]. 石油与天然气地质,2009,30(3):343-349[Wang Kaiming, Luo Shunshe. Geochemical characters of carbonates and indicative significance of sedimentary environment - An example from the Gaoyuzhuang Formation of the Changcheng System in the northern Hebei depression[J]. Oil & Gas Geology, 2009, 30(3): 343-349] |
| [29] | Tribovillard N, Algeo T J, Lyons T,et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32 |
| [30] | Riquier L, Tribovillard N, Averbuch O,et al. The Late Frasnian Kellwasser horizons of the Harz Mountains (Germany): Two oxygen-deficient periods resulting from different mechanisms[J]. Chemical Geology, 2006, 233(1/2): 137-155 |
| [31] | Wei H Y, Chen D Z, Wang J G,et al. Organic accumulation in the lower Chihsia Formation (Middle Permian) of South China: Constraints from pyrite morphology and multiple geochemical proxies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 353-355: 73-86 |
| [32] | Gromet L P, Dymek R F, Haskin L A,et al. The "North American shale composite": its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984, 48: 2469-2482 |
| [33] | Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129 |
| [34] | Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale Member of the Dennis limestone, Wabaunsee County, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99(1/2/3): 65-82 |
| [35] | Thomas J A, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318 |
2014, Vol. 32








