2. 青岛海洋科学与技术国家实验室海洋矿产资源实验室, 山东 青岛 266237;
3. 中国科学院 青藏高原地球科学卓越创新中心, 北京 100101;
4. 中国科学院 广州地球化学研究所 同位素地球化学国家重点实验室, 广州 510640;
5. 中国科学院 广州地球化学研究所 矿物学与成矿学重点实验室, 广州 510640
2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
3. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China;
4. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
5. CAS Key Laboratory of Mineralogy and Metallogeny; Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
地球内部的热是重大地质事件的主要能量来源(Sun et al., 2007)。洋中脊是整个板块运动发动机的燃料箱,控制着板块漂移和板块间相互作用(Sun et al., 2007)。板块间相互作用往往会产生板内变形,如美国的盆岭省(Lachenbruch and Sass, 1978;Wernicke,1981;Allmendinger et al., 1983)。Sun等(2007, 2013)提出,中国东部重大地质事件与太平洋板块的俯冲、转向有关,但是这种观点至今并没有完全得到公认。关键的问题在于,Sun等(2007)利用太平洋板块上岛链的展布方式所获得的太平洋板块漂移历史与国际上流行的结果存在较大的差异(图 1)。很多学者至今仍采用Engebretson等1985年的重建结果(Engebretson et al., 1985)。而目前流行的太平洋板块漂移历史是以海底磁异常条带记录为基础,假设太平洋板块在83.5 Ma以前静止不动,利用GPlates软件构建的(Seton et al., 2012)。问题是,这种再造的结果与东亚地质演化历史不相符。更重要的是,太平洋板块上大量早白垩世的岛链指示太平洋板块在83.5 Ma前并非静止的(Maruyama et al., 1997;Sun et al., 2007),这使得上述重建结果存在很大的缺陷。因此,本项目拟以此为切入点,重建太平洋板块的漂移历史,重点揭示洋脊俯冲的历史。同时,在此基础上,多学科联合攻关,揭示燕山运动的本质。
|
图 1 基于GPlates重建的70 Ma时太平洋板块分布范围(a,引自Seton et al., 2012);白垩纪之后太平洋板块的漂移轨迹(b,引自Sun et al., 2007) Figure 1 Global plate reconstructions at 70 Ma basing on GPlates, showing that the ridge between the Pacific and the Izanagi plates was roughly parallel to the subdution zone(a, after Seton et al., 2012); The drifting history of the Pacific plate since Cretaceous based on island chains, showing thatthe ridge was roughly perpendicular to the subduction zone(b, after Sun et al., 2007) |
本课题拟解决的关键科学问题是太平洋板块漂移历史。研究目标是:首先重建太平洋板块白垩纪以来的运动轨迹,尝试重建太平洋板块侏罗纪的运动历史。进而,查明燕山早期华北克拉通东缘地壳加厚的地球动力学机制,阐述其对岩浆活动和金属成矿作用的约束(Fan and Menzies, 1992;吴福元和孙德有,1999;Fan et al., 2000;Xu,2001;翟明国等,2003;邓晋福等,2006;吴福元等,2008;Gao et al., 2009;Zhu et al., 2011);通过金属稳定同位素等(Zhu et al., 2000;Teng et al., 2008, 2010;Huang et al., 2009, 2011, 2010;侯可军等,2012;王跃和朱祥坤,2012;祝红丽等,2015;Zhu et al., 2016;刘芳等,2016)揭示洋脊俯冲对长江中下游燕山期岩浆活动和铜-多金属成矿的制约(Ling et al., 2009, 2013);探讨不同构造域A型花岗岩的形成机制及地球动力学背景,确定不同构造域A型花岗岩的成矿专属性(Whalen et al., 1987;Eby,1990;Yang et al., 2008;Li et al., 2012, 2014);反演矿物水化、脱水和部分熔融过程,探讨在该过程中矿物结构-性质的变化和重要成矿元素的地球化学行为(Pokrovski et al., 2005, 2008;Nagaseki and Hayashi, 2008;Ding et al., 2009;冷成彪等,2009);总结中国燕山期构造-岩浆活动和金属成矿规律,揭示不同构造域燕山运动的深部地球过程差异,探讨其地球动力学机制。
3 主要研究内容本课题旨在揭示太平洋板块的漂移历史,对比不同构造域燕山运动的特征,总结中国燕山期构造-岩浆活动和金属成矿规律;揭示成矿元素的地球化学行为与富集机理;通过动力学正演模拟,探究燕山运动的深部地球动力学机制。
3.1 太平洋板块漂移历史综合海底磁异常条带、岛链和周缘地质事件信息,修正GPlates计算中的关键信息,重建太平洋板块白垩纪以来的运动轨迹,并尝试重建太平洋板块侏罗纪的运动历史;利用地球化学、岩石学等多种研究手段,研究岛链与洋脊的相互作用,限定古洋脊的位置。
3.2 长江中下游燕山期岩浆活动及成矿作用的动力学机制对长江中下游埃达克岩和富铌玄武岩进行系统的元素地球化学(Wang et al., 2006;Ling et al., 2011;Li et al., 2012, 2014)和Ca、Mg同位素组成的研究(Huang et al., 2009, 2010;Teng et al., 2010;祝红丽等,2015; Zhu et al., 2016;刘芳等,2016),并与世界典型的同类岩石进行对比,揭示相应岩石的形成机制和地球动力学背景,约束该地区燕山运动的深部过程;
对长江中下游分布的埃达克岩-富铌玄武岩-A型花岗岩组合和典型矿床进行综合地球化学和金属稳定同位素研究,揭示洋脊俯冲对区内燕山期岩浆活动和金属成矿的制约。
3.3 古太平洋板块俯冲对燕山期华北埃达克质岩石形成的制约对玲珑、昆嵛山、文登等地低镁(指镁指数)埃达克岩(苗来成等,1998;胡芳芳等,2005;Xu et al., 2013)进行元素地球化学、同位素地球化学和年代学研究,并与典型加厚下地壳熔体进行对比,揭示其成因机制,阐述地壳加厚对埃达克岩形成的制约,查明燕山早期华北克拉通东缘加厚地壳(吴福元和孙德有,1999;Fan et al., 2000;张旗等,2001;Xu,2001;翟明国等,2003;吴福元等,2008;李印等,2009;Gao et al., 2009;Zhu et al., 2011)的时空分布,探讨地壳加厚的地球动力学机制;
对典型高镁埃达克岩(Huang et al., 2008;Xu et al., 2012)进行岩石学、元素地球化学和同位素地球化学,特别是Fe和Mg等金属同位素地球化学的综合研究(Zhu et al., 2000;Teng et al., 2008, 2010;Huang et al., 2009, 2011;侯可军等,2012;王跃和朱祥坤,2012),探讨该类岩石的形成机制,揭示俯冲的碳酸盐岩对其形成的制约。通过含矿与不含矿岩石(Liu et al., 2010)的对比研究,揭示Cu-Au矿床的形成机制及地球动力学背景。
3.4 燕山期A型花岗岩及其成矿作用以中国东部燕山期的A型花岗岩为研究对象,开展系统的矿物学、岩石学和同位素地球化学研究,探讨不同构造域A型花岗岩的形成机制及地球动力学背景,进而反演燕山期中国东部地区岩石圈结构,探讨板块俯冲作用对其形成的制约;
通过对含矿和不含矿A型花岗元素和同位素地球化学特征以及熔体包裹体成分分析,揭示不同构造域A型花岗质岩浆的成矿专属性(Li et al., 2012, 2014),阐述其地球化学机制,探讨原始岩浆性质和分异常演化程度对稀有金属元素成矿作用的制约。
3.5 高温高压实验模拟研究利用多种高温高压设备模拟俯冲带、上地幔和地壳等不同地质环境中流体与矿物、流体与岩石的相互作用过程,反演矿物水化、脱水和部分熔融过程,探讨在该过程中矿物结构-性质的变化和重要成矿元素(铜、金、钨、锡等)的地球化学行为(Rapp et al., 1999;Liu et al., 2016);
在不同温度梯度下开展重要成矿元素(铜、金、钨、锡等)迁移、富集实验研究,探讨这些金属元素在成矿过程迁移形成和富集机制;通过不平衡体系的流体-矿物(岩石)模拟实验研究,探讨元素的分异和同位素分馏机制(Rapp et al., 1999;Pokrovski et al., 2005, 2008;Nagaseki and Hayashi, 2008;Ding et al., 2009;冷成彪等,2009)。
3.6 中国南部地区地壳上地幔深部细结构及动力学研究利用中国南部地区地震观测资料和新的成像技术,获取研究区深至地幔转换带的多震相高分辨率深部细结构特征,揭示印度板块在缅甸弧下东向俯冲的几何形态(Lei et al., 2009a;Lei and Zhao, 2016)以及太平洋板块和菲律宾海洋板块西向深俯冲的结构形态(Lei and Zhao, 2006)及古板块残留板片;
根据成像结果限定印度板块、太平洋板块和菲律宾海洋板块在地幔转换带内的动力学过程,揭示板块俯冲对腾冲火山活动和海南地幔柱形成的制约(Lei et al., 2009a, 2009b)。
4 结语板块间相互作用是板内地质事件的重要动力和能量来源之一。中国东部地处太平洋西岸,太平洋板块的漂移对中国东部产生过重大的影响。本课题的研究亮点在于以重建太平洋板片漂移历史为切入点,揭示燕山运动的本质。
| [] | Allmendinger R W, Sharp J W, Von Tish D, Serpa L, Brown L, Kaufman S, Oliver J, Smith R B. 1983. Cenozoic and Mesozoic structure of the eastern Basin and Range province, Utah, from COCORP seismic-reflection data. Geology, 11(9): 532–536. DOI:10.1130/0091-7613(1983)11<532:CAMSOT>2.0.CO;2 |
| [] | Ding X, Lundstrom C, Huang F, Li J, Zhang Z M, Sun X M, Liang J L, Sun W D. 2009. Natural and experimental constraints on formation of the continental crust based on niobium-tantalum fractionation. International Geology Review, 51(6): 473–501. DOI:10.1080/00206810902759749 |
| [] | Eby G N. 1990. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1-2): 115–134. DOI:10.1016/0024-4937(90)90043-Z |
| [] | Engebretson D C, Cox A, Gordon R G. 1985. Relative motions between oceanic and continental plates in the Pacific basin. Geological Society of America Special Papers, 206: 1–60. DOI:10.1130/SPE206 |
| [] | Fan W M, Menzies M. 1992. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotectonica et Metallogenia, 16: 171–180. |
| [] | Fan W M, Zhang H F, Baker J, Jarvis K E, Mason P R D, Menzies M A. 2000. On and off the North China Craton:Where is the Archaean Keel. Journal of Petrology, 41(7): 933–950. DOI:10.1093/petrology/41.7.933 |
| [] | Gao S, Zhang J F, Xu W L, Liu Y S. 2009. Delamination and destruction of the North China Craton. Science Bulletin, 54(19): 3367–3378. DOI:10.1007/s11434-009-0395-9 |
| [] | Huang F, Li S G, Dong F, He Y S, Chen F K. 2008. High-Mg adakitic rocks in the Dabie orogen, central China:Implications for foundering mechanism of lower continental crust. Chemical Geology, 255(1-2): 1–13. DOI:10.1016/j.chemgeo.2008.02.014 |
| [] | Huang F, Glessner J, Ianno A, Lundstrom C, Zhang Z F. 2009. Magnesium isotopic composition of igneous rock standards measured by MC-ICP-MS. Chemical Geology, 268(1-2): 15–23. DOI:10.1016/j.chemgeo.2009.07.003 |
| [] | Huang F, Zhang Z F, Lundstrom C C, Zhi X C. 2011. Iron and magnesium isotopic compositions of peridotite xenoliths from Eastern China. Geochimica et Cosmochimica Acta, 75(12): 3318–3334. DOI:10.1016/j.gca.2011.03.036 |
| [] | Huang S C, Farkaš J, Jacobsen S B. 2010. Calcium isotopic fractionation between clinopyroxene and orthopyroxene from mantle peridotites. Earth and Planetary Science Letters, 292(3-4): 337–344. DOI:10.1016/j.epsl.2010.01.042 |
| [] | Lachenbruch A H, Sass J H. 1978. 9:Models of an extending lithosphere and heat flow in the Basin and Range province. Geological Society of America Memoirs, 152: 209–250. DOI:10.1130/MEM152 |
| [] | Lei J S, Zhao D P. 2006. Global P-wave tomography:On the effect of various mantle and core phases. Physics of the Earth and Planetary Interiors, 154(1): 44–69. DOI:10.1016/j.pepi.2005.09.001 |
| [] | Lei J S, Zhao D P, Su Y J. 2009a. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. Jounral of Geophysical Research, 114(B5): B05302. DOI:10.1029/2008JB005881 |
| [] | Lei J S, Zhao D P, Steinberger B, Wu B, Shen F L, Li Z X. 2009b. New seismic constraints on the upper mantle structure of the Hainan plume. Physics of the Earth and Planetary Interiors, 173(1-2): 33–50. DOI:10.1016/j.pepi.2008.10.013 |
| [] | Lei J S, Zhao D P. 2016. Teleseismic P-wave tomography and mantle dynamics beneath Eastern Tibet. Geochemistry, Geophysics, Geosystems, 17(5): 1861–1884. DOI:10.1002/2016GC006262 |
| [] | Li H, Ling M X, Li C Y, Zhang H, Ding X, Yang X Y, Fan W M, Li Y L, Sun W D. 2012. A-type granite belts of two chemical subgroups in central eastern China:Indication of ridge subduction. Lithos, 150: 26–36. DOI:10.1016/j.lithos.2011.09.021 |
| [] | Li H, Ling M X, Ding X, Zhang H, Li C Y, Liu D Y, Sun W D. 2014. The geochemical characteristics of Haiyang A-type granite complex in Shandong, eastern China. Lithos, 200-201: 142–156. DOI:10.1016/j.lithos.2014.04.014 |
| [] | Ling M X, Wang F Y, Ding X, Hu Y H, Zhou J B, Zartman R E, Yang X Y, Sun W D. 2009. Cretaceous ridge subduction along the lower Yangtze River belt, eastern China. Economic Geology, 104(2): 303–321. DOI:10.2113/gsecongeo.104.2.303 |
| [] | Ling M X, Wang F Y, Ding X, Zhou J B, Sun W D. 2011. Different origins of adakites from the Dabie Mountains and the Cambrian Yangtze River Belt, eastern China:Geochemical constraints. International Geology Review, 53(5-6): 727–740. DOI:10.1080/00206814.2010.482349 |
| [] | Ling M X, Li Y, Ding X, Teng F Z, Yang X Y, Fan W M, Xu Y G, Sun W D. 2013. Destruction of the North China Craton induced by ridge subductions. The Journal of Geology, 121(2): 197–213. DOI:10.1086/669248 |
| [] | Liu S A, Li S G, He Y S, Huang F. 2010. Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China:Implications for petrogenesis and Cu-Au mineralization. Geochimica et Cosmochimica Acta, 74(24): 7160–7178. DOI:10.1016/j.gca.2010.09.003 |
| [] | Liu X, Xiong Z H, Chang L L, He Q, Wang F, Shieh S R, Wu C M, Li B S, Zhang L F. 2016. Anhydrous ringwoodites in the mantle transition zone:Their bulk modulus, solid solution behavior, compositional variation, and sound velocity feature. Solid Earth Sciences, 1(1): 28–47. DOI:10.1016/j.sesci.2015.09.001 |
| [] | Maruyama S, Isozaki Y, Kimura G, Terabayashi M. 1997. Paleogeographic maps of the Japanese Islands:Plate tectonic synthesis from 750 Ma to the present. Island Arc, 6(1): 121–142. DOI:10.1111/iar.1997.6.issue-1 |
| [] | Nagaseki H, Hayashi K I. 2008. Experimental study of the behavior of copper and zinc in a boiling hydrothermal system. Geology, 36(1): 27–30. DOI:10.1130/G24173A.1 |
| [] | Pokrovski G S, Roux J, Harrichoury J C. 2005. Fluid density control on vapor-liquid partitioning of metals in hydrothermal systems. Geology, 33(8): 657–660. DOI:10.1130/G21475.1 |
| [] | Pokrovski G S, Borisova A Y, Harrichoury J C. 2008. The effect of sulfur on vapor-liquid fractionation of metals in hydrothermal systems. Earth and Planetary Science Letters, 266(3-4): 345–362. DOI:10.1016/j.epsl.2007.11.023 |
| [] | Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge:Experimental constraints at 3. 8 GPa. Chemical Geology, 160(4): 335–356. DOI:10.1016/S0009-2541(99)00106-0 |
| [] | Seton M, Müller R D, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S, Chandler M. 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Reviews, 113(3-4): 212–270. DOI:10.1016/j.earscirev.2012.03.002 |
| [] | Sun W D, Ding X, Hu Y H, Li X H. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters, 262(3-4): 533–542. DOI:10.1016/j.epsl.2007.08.021 |
| [] | Sun W D, Li S, Yang X Y, Ling M X, Ding X, Duan L A, Zhan M Z, Zhang H, Fan W M. 2013. Large-scale gold mineralization in eastern China induced by an Early Cretaceous clockwise change in Pacific plate motions. International Geology Review, 55(3): 311–321. DOI:10.1080/00206814.2012.698920 |
| [] | Teng F Z, Dauphas N, Helz R T. 2008. Iron isotope fractionation during magmatic differentiation in Kilauea Iki Lava lake. Science, 320(5883): 1620–1622. DOI:10.1126/science.1157166 |
| [] | Teng F Z, Li W Y, Ke S, Marty B, Dauphas N, Huang S C, Wu F Y, Pourmand A. 2010. Magnesium isotopic composition of the Earth and chondrites. Geochimica et Cosmochimica Acta, 74(14): 4150–4166. DOI:10.1016/j.gca.2010.04.019 |
| [] | Wang Q, Wyman D A, Xu J F, Zhao Z H, Jian P, Xiong X L, Bao Z W, Li C F, Bai Z H. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province(eastern China):Implications for geodynamics and Cu-Au mineralization. Lithos, 89(3-4): 424–446. DOI:10.1016/j.lithos.2005.12.010 |
| [] | Wernicke B. 1981. Low-angle normal faults in the Basin and Range Province:Nappe tectonics in an extending orogen. Nature, 291(5817): 645–648. DOI:10.1038/291645a0 |
| [] | Whalen J B, Currie K L, Chappell B W. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. DOI:10.1007/BF00402202 |
| [] | Xu H J, Ma C Q, Zhang J F. 2012. Generation of Early Cretaceous high-Mg adakitic host and enclaves by magma mixing, Dabie orogen, Eastern China. Lithos, 142-143: 182–200. DOI:10.1016/j.lithos.2012.03.004 |
| [] | Xu H J, Ma C Q, Zhang J F, Ye K. 2013. Early Cretaceous low-Mg adakitic granites from the Dabie orogen, eastern China:Petrogenesis and implications for destruction of the over-thickened lower continental crust. Gondwana Research, 23(1): 190–207. DOI:10.1016/j.gr.2011.12.009 |
| [] | Xu Y G. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China:Evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10): 747–757. DOI:10.1016/S1464-1895(01)00124-7 |
| [] | Yang J H, Wu F Y, Wilde S A, Chen F K, Liu X M, Xie L W. 2008. Petrogenesis of an alkali syenite-granite-rhyolite suite in the Yanshan Fold and Thrust Belt, Eastern North China Craton:Geochronological, geochemical and Nd-Sr-Hf isotopic evidence for lithospheric thinning. Journal of Petrology, 49(2): 315–351. |
| [] | Zhu H L, Zhang Z F, Wang G Q, Liu Y F, Liu F, Li X, Sun W D. 2016. Calcium isotopic fractionation during ion-exchange column chemistry and thermal ionisation mass spectrometry(TIMS)determination. Geostandards and Geoanalytical Research, 40(2): 185–194. DOI:10.1111/ggr.2016.40.issue-2 |
| [] | Zhu R X, Chen L, Wu F Y, Liu J L. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Science China Earth Sciences, 54(6): 789–797. DOI:10.1007/s11430-011-4203-4 |
| [] | Zhu X K, O'Nions R K, Guo Y L, Reynolds B C. 2000. Secular variation of iron isotopes in North Atlantic deep water. Science, 287(5460): 2000–2002. DOI:10.1126/science.287.5460.2000 |
| [] | 邓晋福, 苏尚国, 刘翠, 赵国春, 赵兴国, 周肃, 吴宗絮. 2006. 关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论:是拆沉, 还是热侵蚀和化学交代. 地学前缘, 13(2): 105–119. |
| [] | 侯可军, 秦燕, 李延河. 2012. Fe同位素的MC-ICP-MS测试方法. 地球学报, 33(6): 885–892. DOI:10.3975/cagsb.2012.06.06 |
| [] | 胡芳芳, 范宏瑞, 杨进辉, 翟明国, 金成伟, 谢烈文, 杨岳衡. 2005. 胶东文登长山南花岗闪长岩体的岩浆混合成因:闪长质包体及寄主岩石的地球化学、Sr-Nd同位素和锆石Hf同位素证据. 岩石学报, 21(3): 569–586. |
| [] | 冷成彪, 张兴春, 王守旭, 秦朝建, 吴孔文, 任涛. 2009. 岩浆-热液体系成矿流体演化及其金属元素气相迁移研究进展. 地质论评, 55(1): 100–112. |
| [] | 李印, 凌明星, 丁兴, 刘健, 韩峰, 孙卫东. 2009. 中国东部埃达克岩及成矿作用. 大地构造与成矿学, 33(3): 448–464. |
| [] | 刘芳, 祝红丽, 谭德灿, 刘峪菲, 康晋霆, 朱建明, 王桂琴, 张兆峰. 2016. 热电离质谱测定钙同位素过程中双稀释剂的选择. 质谱学报, 37(4): 310–318. DOI:10.7538/zpxb.youxian.2016.0031 |
| [] | 苗来成, 罗镇宽, 关康, 黄佳展. 1998. 玲珑花岗岩中锆石的离子质谱U-Pb年龄及其岩石学意义. 岩石学报, 14(2): 198–206. |
| [] | 王跃, 朱祥坤. 2012. 铁同位素体系及其在矿床学中的应用. 岩石学报, 28(11): 3638–3654. |
| [] | 吴福元, 孙德有. 1999. 中国东部中生代岩浆作用与岩石圈减薄. 长春科技大学学报, 29(4): 313–318. |
| [] | 吴福元, 徐义刚, 高山, 郑建平. 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论. 岩石学报, 24(6): 1145–1174. |
| [] | 翟明国, 朱日祥, 刘建明, 孟庆任, 侯泉林, 胡圣标, 李忠, 张宏福, 刘伟. 2003. 华北东部中生代构造体制转折的关键时限. 中国科学(D辑), 33(10): 913–920. DOI:10.3321/j.issn:1006-9267.2003.10.001 |
| [] | 张旗, 王焰, 钱青, 杨进辉, 王元龙, 赵太平, 郭光军. 2001. 中国东部燕山期埃达克岩的特征及其构造-成矿意义. 岩石学报, 17(2): 236–244. |
| [] | 祝红丽, 张兆峰, 刘峪菲, 刘芳, 康晋霆. 2015. 钙同位素地球化学综述. 地学前缘, 22(5): 44–53. |
2017, Vol. 36
