矿物岩石地球化学通报  2017, Vol. 36 Issue (2): 237-244   PDF    
不同构造环境基性岩浆作用碳组成及其环境意义
汤庆艳 , 张铭杰 , 冯鹏宇 , 王跃堃 , 孙凡婷 , 党永西 , 王小东 , 胡飞     
兰州大学 地质科学与矿产资源学院, 兰州 730000
摘要: 地球内部的碳储量远高于地球表层系统,基性岩浆作用使地球深部的含碳挥发分排放到地球表层系统中,导致大气圈中CO2和CH4等组分含量及地表温度升高。本文总结了不同构造环境基性岩浆作用形成岩石中含碳挥发分的含量及其意义,认为大洋和大陆环境的玄武岩及基性岩浆侵入体中含碳挥发分均以CO2为主,CH4等烃类气体的含量较低。大洋玄武岩CO2含量从洋岛玄武岩(210 mm3·STP/g,STP-标准温度压力条件,下同)、洋中脊玄武岩(263)、弧后盆地玄武岩(1060)到岛弧玄武岩(1246)逐步升高。大陆玄武岩的CO2含量变化较大,西伯利亚二叠纪大火成岩省苦橄岩中CO2(276.98)低于准噶尔盆地二叠纪玄武岩(643.99)。西秦岭造山带玄武岩CO2含量为237.27 mm3·STP/g,而腾冲新生代玄武岩CO2含量只有11.97 mm3·STP/g;华北-华南克拉通新生代玄武岩CO2含量较低(140~202.8 mm3·STP/g)。镁铁质-超镁铁质侵入体CO2含量为105~384 mm3·STP/g,含碳挥发分的组成与氧化还原条件有关,大规模基性岩浆作用排放大量的CO2到地球表层环境系统,诱发了环境变化。
关键词: 环境影响      组成      含碳挥发分      基性岩浆作用      构造环境     
The Chemical Compositions and Environmental Implications of Carbonaceous Volatile Species of the Mafic Magmatism in Different Tectonic Settings
TANG Qing-yan, ZHANG Ming-jie, FENG Peng-yu, WANG Yue-kun, SUN Fan-ting, DANG Yong-xi, WANG Xiao-dong, HU Fei     
School of Earth Sciences, Lanzhou University, Lanzhou 730000, China
Abstract: The interior of earth has higher carbon contents than surface system of Earth. Carbon in the Earth interior occurs in various forms, such as carbonatite melt, carbonous minerals (diamonds and graphite etc.), carbonaceous volatiles (CO2 and CH4 etc.). Carbonous species in the solid state are difficult to emit into earth surface environmental system. The carbonous volatile species (CO2 and CH4 etc. greenhouse gases) are volumetrically significant, are dispersed as free elemental or inorganic and hydrocarbon molecular species along grain boundaries, charged species in fluid inclusions or in mineral structures, structural defects or vacancies. The carbonous volatile species have been emitted or leaked constantly into earth surface system by extensive mafic magmatism or associated fracture, and resulted in the rising of CO2 concentration and temperature in global surface system nowadays and in geological time. Carbonous volatile species in mafic magmatism vary in concentration with tectonic settings. The extensive oceanic basaltic magmatism is the strongest emitting channel of carbonous volatiles from the earth interior (especially mantle), and shows dominant CO2 with minor CH4. Mid-Ocean-Ridge-Basalts (MORB) are dominated by CO2 (av. 263 mm3·STP/g) with minor CO and CH4 components. Atlantic MORB has higher CO2 (av. 598 mm3·STP/g) than Pacific and Indian MORB (av. 292 and 157 mm3·STP/g, respectively). Ocean-island basalts (OIB) are characterized by the lowest CO2 content (210 mm3·STP/g). CO2 contents increase from OIB (210), MORB (263), BAB (1060) to IAB (1246 mm3·STP/g). The CO2 contents of basalts vary largely in continental environments. The average contents of CO2 in the gabbroic and picrite rocks in Permian Siberian large igneous province (LIP) are measured to be 102 and 276.98 mm3·STP/g, respectively. Permian basalts in Northwest Junger basin, Xinjiang, China show high CO2 content (av., 643.99 mm3·STP/g). The av. CO2 contents of Cenozoic basalts in the orogenic belts western China vary from 237.27 in western Qinling to 11.97 mm3·STP/g in Tengchong. The CO2 contents in Ni-Cu sulfide bearing magmatic mafic ultramafic intrusions are av. 153.9 mm3·STP/g for Xiarihamu in the East Kunlun orogenic belt and av. 257.4 mm3·STP/g for Karatonke in the Central Asian Orogenic Belt of Xingjiang, China, and 110.6 for the Siberian LIP and 227.5 for Emeishan LIP. The speciation of carbonous volatiles is related to the oxidation state and associated tectonic setting of mafic magma. The large scale of mafic magmatism in marine and continental environments had emitted crucially large amounts of CO2 into the atmosphere. The mantle plume magmatic system emitted huge amounts of CO2 into the atmosphere due to large volume, and could be a trigger for the mass extinction.
Key words: environmental effect     chemical composition     carbonaceous volatile     mafic magmatism     tectonic setting    

地球表层系统中含碳挥发分 (如CO2和CH4等温室气体) 的浓度增加及其极强的温室气体效应引发对人类活动碳排放的诸多关注 (Berner,1991; Ganino and Arndt, 2009)。如果从地理学的年代学观察尺度扩展到地质学年代学尺度 (Zeebe and Caldeira, 2008),地质历史时期地球表层系统中多个时期的CO2和CH4等含量及地表温度之高,是现今地球表层系统无法比拟的,地球内部排放出大量的含碳挥发分 (Burton et al., 2013)。因此,地质碳循环对全球环境变化具有重要作用。地球内部的碳储量远高于地球表层系统的碳储量,地球表层系统碳库的碳储量大约为7350×1018 mol,不考虑以沉积碳酸盐岩保存于地壳中的巨量碳,地幔中碳储量就高达27000×1018 mol (Hayes and Waldbauer, 2009)。可见地球内部的碳库及排放对环境的影响具有重要的作用。

太阳系由大量的挥发分组成,星云冷凝、行星形成过程中吸积了大量的挥发分,地球最初10亿年化学分异演化早期形成的固体硅酸盐圈层-地幔及金属内核集聚了大量的挥发分,因此地幔是流体挥发分的重要储库之一 (Hirschmann,2016)。地幔上部的分异演化形成了地壳,脱出流体挥发分,改造了地球表层大气圈及水圈,岩石圈地幔保存着残余的流体挥发分 (Zhang and Zindler, 1993; Hirschmann,2012; Armstrong et al., 2015)。地幔与地壳和外地圈通过岩浆作用、板块俯冲及风化作用等过程进行物质与能量的交换,使含碳挥发分排放到地球表层系统 (Dobretsov and Shatskiy, 2012; Tang et al., 2013; Zhang et al., 2013)。因此,现今地幔中的碳组分主要为行星冷凝时期堆积的原始碳组分、以及板块俯冲再循环带入的地壳及外地圈的碳组分 (Aubaud et al., 2005; Marty,2012; Zhang et al., 2013)。基性岩浆作用是地球壳-幔相互作用、成矿作用及地球内部排气的主要机制 (Aubaud et al., 2005; Zhang et al., 2013; Armstrong et al., 2015)。

地球内部脱气的通道主要有基性岩浆作用及脆弱带的气体渗漏 (Aubaud et al., 2005; Hilton,2007; Helo et al., 2011; Marty,2012; Burton et al., 2013; Zhang et al., 2013),地球大面积的海洋环境为大规模基性岩浆作用及含碳挥发分排放的场所。对现今地球的含碳挥发分排放已有大量的资料 (Aubaud et al., 2005; Hilton,2007; Helo et al., 2011; Burton et al., 2013),而地质历史时期地幔柱活动期间的大规模基性岩浆作用,不仅形成了巨量的矿产资源,也引起地球表层环境系统的改变,甚至生物大灭绝 (Campbell et al., 1992; Aubaud et al., 2005; Armstrong et al., 2015)。因此,确定地球内部最普遍的基性岩浆作用含碳挥发分及组成具有重要的科学意义。

本文以大洋与大陆不同构造环境基性岩浆作用形成的玄武岩及镁铁-超镁铁质岩体中的含碳挥发分为对象,总结了不同构造环境的基性岩浆作用中含碳挥发分的组成特征,揭示基性岩浆中流体挥发分的化学地球动力学意义,为认识地球流体挥发分对环境影响具有重要的意义。

1 地球内部碳的赋存形式

地球内部的碳有不同的赋存形式,主要有碳酸岩熔体、固态矿物碳 (如金刚石、石墨、Fe-碳化物 (Fe3C,Fe7C3)、碳硅石 (SiC) 和菱镁矿等)、含碳挥发分 (如CO2、CO及有机碳分子等) 等 (Dobretsov and Shatskiy, 2012)。碳酸岩岩浆是地幔环境下成分特殊的熔体 (Dobretsov and Shatskiy, 2012),而含碳矿物则是地幔-地核特定条件下形成的高密度矿物。含碳挥发分包括无机的CO2和CO等、有机的CH4、C2H6等,CO2和CO是与地幔矿物平衡的C-O-H流体的重要组分 (Bergman and Dubessy, 1984; 张铭杰等, 1999, 2000Zhang et al., 2004, 2009)。CH4 (和较高级的烃类) 在还原条件和很高的温度下能稳定存在 (Bernard and Taras, 1990; Zhang et al., 2007, 2009; Mysen,2015)。

碳酸岩浆在全球普遍发育,但规模不大;固态的矿物碳喷出地表的几率相对较低,因而进入到地球表层大气圈的比例也较低。含碳挥发分以游离态的形式弥散于地幔矿物间隙、包裹于矿物内部,或结合于矿物结构中 (Bergman and Dubessy, 1984; Zhang et al., 1999, 2007, 2009; 汤庆艳等, 2012, 2017),通过基性岩浆作用 (岩浆脱气、围岩渗漏)、渗漏 (断裂带、软流圈上涌区域) 直接排放进入大气圈 (Aubaud et al., 2005; Hilton,2007; Okumura and Hirano, 2013; Burton et al., 2013; Tang et al., 2013)。克拉通、造山带等不同构造环境中岩石圈地幔的流体组分的化学组成与来源有所不同,其基性岩浆作用的碳挥发分相及组成各具特征 (Zhang et al., 2004; Tang et al., 2013; Armstrong et al., 2015),含碳挥发分排放对地球表层碳循环系统的作用值得关注。

2 大洋环境玄武岩浆作用的碳挥发分

地球表层大面积的海洋都是地幔玄武质岩浆作用的场所,自形成至今不断地喷发玄武岩浆,排放大量的含碳挥发分进入海水和大气圈 (Burton et al., 2013; Okumura and Hirano, 2013),大洋玄武岩及玻璃质中广泛分布的CO2就是含碳挥发分排放的残余。大洋中脊、洋岛和汇聚板块边缘等不同构造环境中基性 (玄武质) 岩浆作用的形式、化学组成及含碳挥发分组成明显不同,挥发分中含碳挥发分组成随岩石类型有所差异。表 1总结了大洋玄武岩含碳挥发分组成 (Zhang et al., 2009)。

表 1 不同类型大洋玄武岩中含碳挥发分的含量 (据Zhang et al., 2009) Table 1 Contents of carboneous volatiles in different type of ocean basalts (from Zhang et al., 2009) (mm3·STP/g)
2.1 洋中脊玄武岩

大洋中脊的拉张环境使大洋岩石圈地幔上升、减压熔融形成玄武质岩浆。不同地区洋中脊玄武岩 (MORB) 的含碳挥发分中 (表 1Zhang et al., 2009),CO2平均含量为263 mm3·STP/g (STP-标准温度压力条件,下同) (Javoy and Pineau, 1991; Zhang et al., 2009),CO和CH4含量较低。MORB中的含碳挥发分组成随地域有所差异,大西洋MORB的CO2含量 (598 mm3·STP/g) 高于太平洋MORB (292) 和印度洋MORB (157) (Aggrey et al., 1988a; Zhang et al., 2009)。

在大洋中脊玄武质岩浆演化和上升过程中,其中的流体组分常被大气和海水污染 (Aggrey et al., 1988a; Cartigny et al., 2001)。印度洋MORB由于大范围的再循环古沉积物或底侵大陆岩石圈组分混染,具有与北大西洋和东太平洋不同的Sr-Nd-Pb同位素组成,即Dupal异常 (Rehkämper and Hofmann, 1997),其挥发分主要由CO2 (平均172 mm3·STP/g) 组成,含有微量的CO和CH4 (Nishio et al., 1999),CO2的含量是3大洋中最低的。

含碳挥发分组成因岩石类型不同而有所差异,Galapagos扩张中心 (GSC) 的CO2含量从铁质玄武岩、安山岩到流纹岩玻璃逐渐降低 (Byers et al., 1984),表明未脱气MORB岩浆初始挥发分中CO2为主要成分。大西洋“爆裂岩” (“popping”rock) 具有典型的MORB稀有气体同位素组成特征,大气和海水混染组分含量极低 (3%~7%),可代表MORB岩浆初始挥发分的组成,其气泡的挥发分含量为7.56 cm3.STP/g,主要由CO2 (94.95%) 组成,含有微量的CO和CH4 (Javoy and Pineau, 1991)。而太平洋Juan de Fuca洋脊Axial海山斜长石斑晶中玄武质熔体揭示初始的CO2含量高达4663.3 mm3·STP/g (9160×10-6) (Helo et al., 2011)。

2.2 洋岛玄武岩

洋岛玄武岩 (OIB) 起源于深部地幔,其中的流体成分以CO2含量低 (平均210 mm3·STP/g) 为特征。流体化学组成随产地有所变化。夏威夷Loihi和Kilauea玄武岩玻璃中的挥发分含量为0.73%~1.40%,CO2含量的变化范围较大 (14.8~967.3 mm3·STP/g) (Muenow et al., 1979; Byers et al., 1985; Dixon and Clague 2001),而North Arch火山区的碱性玄武岩的玻璃中CO2含量为132.4~407.3 mm3·STP/g,可能与深海喷发前的强烈脱气作用有关,估计CO2总量为27490 mm3·STP/g (Dixon et al., 1997)。Samoan洋岛玄武岩中CO2含量较低 (30.4 mm3·STP/g) (Workman et al., 2006)。

2.3 弧后盆地和岛弧玄武岩

弧后盆地玄武岩 (BABB) 和岛弧玄武岩 (IAB) 在形成过程中有壳源物质混染,因而其CO2含量较高,前者流体成分中CO2含量 (平均1060 mm3·STP/g;Aggrey et al., 1988b) 略低于后者含量 (1246 mm3·STP/g;Garcia et al., 1979)。

3 大陆环境基性岩浆作用的碳挥发分

大陆环境也广泛发育基性岩浆作用,以地质历史时期地幔柱相关的大规模溢流玄武岩及镁铁-超镁铁质岩体为代表产物,另外造山带环境也存在大量的基性岩浆作用形成的岩石。大陆不同构造环境玄武岩及镁铁-超镁铁质岩体中的含碳挥发分含量总结列入表 2

表 2 大陆不同构造环境玄武岩及镁铁-超镁铁质岩体中含碳挥发分的含量 Table 2 Contents of carbonous volatile from mafic rocks in different continental tectonic settings (mm3·STP/g)
3.1 大陆玄武岩

表 2可见,大陆环境产出玄武岩的含碳挥发分中CO2含量最高,其次为CO和CH4等,流体化学组成与构造环境关系密切。地幔柱相关的岩浆作用排放大量的CO2等,西伯利亚二叠纪大火成岩省苦橄岩基质中含碳挥发分主要为CO2 (412.2 mm3·STP/g),其次为CO和CH4 (21.5和6.4 mm3·STP/g),含有微量的C2H6、C3H8和C4H10 (0.87、0.36和0.36 mm3·STP/g) (Tang et al., 2013)。新疆准噶尔西北部二叠纪玄武岩含碳挥发分含量较高,主要由CO2 (643.99 mm3·STP/g) 组成,其次为CO、CH4和C2H6 (12.92、7.0和3.5 mm3·STP/g;张铭杰等,2017)。

克拉通环境产出的玄武岩中CO2含量较低。中国东部华北克拉通与华南克拉通新生代玄武岩基质中CO2含量低于西伯利亚大火成岩省 (表 2)。起源于似原始地幔源区的华北克拉通玄武岩具有较低的CO2含量 (平均140.9 mm3·STP/g),亏损地幔源区的华南克拉通玄武岩基质具有较高的CO2含量 (平均202.8 mm3·STP/g)。华北克拉通与华南克拉通新生代玄武岩中次要含碳组分为CO (分别为24.1、11.2 mm3·STP/g) 和CH4 (1.6、0.88 mm3·STP/g)。苏鲁混杂地幔源区玄武岩基质具有较低的CO2 (103.7 mm3·STP/g;Zhang et al., 2004, 2007张铭杰等,1999)。

造山带环境玄武岩的CO2含量变化较大 (12.0~237.3 mm3·STP/g)。西秦岭造山带新生代玄武岩基质中含碳挥发分主要为CO2 (平均237.3 mm3·STP/g),其次为CO和CH4 (5.5和5.9 mm3·STP/g),含有微量的C2H6、C3H8和C4H10 (0.23、0.05和0.11 mm3·STP/g) (汤庆艳等,2012)。北祁连造山带石灰沟奥陶纪玄武岩中CO2含量平均为171.8 mm3·STP/g,CH4含量平均为1.95 mm3·STP/g (沈娟等,2014)。腾冲新生代火山岩中含碳挥发分的总量最低,CO2、CO、CH4和C2H6含量分别为12.0、10.4、1.1和0.03 mm3·STP/g (余明等,2014)。

3.2 镁铁-超镁铁质侵入体

大陆环境基性岩浆作用形成大量的镁铁-超镁铁质侵入体,赋存大量的岩浆矿床,其含碳挥发分组成与玄武岩类似,以CO2含量最高,其次为CO和CH4

大陆环境地幔柱大规模基性岩浆作用形成了大量的溢流玄武岩的同时形成了大型镁铁-超镁铁质岩体。西伯利亚二叠纪大火成岩省中含铜镍硫化物矿床的镁铁-超镁铁质岩体中,硅酸盐矿物中CO2含量平均为105.8 mm3·STP/g,CO、CH4和C2H6含量平均分别为19.3、9.4和4.2 mm3·STP/g (Tang et al., 2013)。峨眉山二叠纪大火成岩省中含钒钛磁铁矿矿床镁铁-超镁铁质侵入体的硅酸盐矿物中CO2含量较低 (平均45.73 mm3·STP/g;Xing et al., 2012),而含铜镍硫化物矿床镁铁-超镁铁质岩体的硅酸盐矿物中CO2含量平均为227.5 mm3·STP/g (Tang et al., 2017)。

造山带环境镁铁-超镁铁质侵入体的硅酸盐矿物中的含碳挥发分以CO2含量最高。新疆喀拉通克铜镍硫化物矿床超镁铁质岩体的硅酸盐矿物中含碳挥发分总量较高,主要为CO2 (平均257.4 mm3·STP/g),其次为CH4和C2H6,平均含量分别为8.9和6.8 mm3·STP/g (Fu et al., 2012)。青海东昆仑夏日哈木铜镍硫化物矿床的硅酸盐矿物中CO2含量平均为153.9 mm3·STP/g,CO和CH4含量分别为45.1和3.0 mm3·STP/g (汤庆艳等,2017)。

4 含碳挥发分相种及其环境意义 4.1 含碳挥发分相种

基性 (玄武质) 岩浆的形成源区包括地幔柱 (下地幔、乃至核幔边界)、软流圈、岩石圈地幔和地壳四大端元。在地幔源区部分熔融形成基性岩浆的过程中,含碳挥发分作为不相容组分明显富集于岩浆中,在岩浆喷发过程中脱出 (Helo et al., 2011Burton et al., 2013)。上述基性岩浆作用形成岩石中残余含碳挥发分主要以氧化态的CO2为主,还原相态组分 (CH4等) 的含量较低,含碳挥发分体系的挥发分相种和组成随构造环境有所不同,与其所处氧化还原状态 (氧逸度) 有关 (Bergman and Dubessy, 1984; Blundy et al., 1991; Frost and McCammon, 2008; Armstrong et al., 2015),而氧逸度与地质构造环境有关 (Zhang et al., 2009),所以含碳挥发分因构造环境的不同而有所差异。大陆玄武岩的地球化学性质不同于大洋玄武岩,通常被认为主要来自大陆岩石圈地幔。大陆玄武岩CO2含量与大洋玄武岩相比较低,可能与地幔源区差异有关。

不同构造环境条件下大洋地幔通过不同机制形成MORB、OIB、BAB和IAB等不同类型的大洋玄武岩,沿洋中脊脱气、在俯冲带发生再水化 (Rehydration) 或再碳酸盐化 (Recarbonation),并显示不同的氧逸度 (fO2) (Blundy et al., 1991Ballhaus,1993; Cottrell and Kelley, 2013)。地幔C-H-O挥发分相与这些地幔过程及氧化态密切相关。MORB和OIB的fO2变化于FMQ-1 (N-MORB) 到FMQ-2 (OIB) (Ballhaus,1993),与此相对应,CO2含量从OIB (210 mm3·STP/g)、MORB (263)、BAB (1060) 到IAB (1246) 依次增加 (Zhang et al., 2009)。

在俯冲带环境存在地壳和大气等来源的外来氧化性流体加入,玄武岩浆演化上升于相对氧化的环境中。俯冲带附近的上地幔具有最高的fO2值,俯冲板片大量氧化性挥发分的释出 (Wood et al., 1990; Rielli et al., 2017),IAB和BAB相对于MORB等具有较高的CO2含量,可能为近表层再循环挥发分的加入或俯冲板片大量挥发分的释出造成的 (Garcia et al., 1979; Rielli et al., 2017)。

还原的含碳挥发分种类通过氧逸度和水逸度的平衡关系互相联系,一般在高温、低fO2条件下还原的含碳挥发分能稳定存在。随着氧逸度的下降 (后者水逸度的升高),CO2饱和的流体可从CO2-H2O-CO系统变为H2O-CH4-H2系统 (Armstrong et al., 2015)。印度洋、东太平洋脊和GSC的MORB玻璃中含有微量的CH4、H2和CO等还原态挥发分相,其含量随岩浆分异程度的增加而降低 (Byers et al., 1983, 1984; Nishio et al., 1999),表明MORB源区为更还原的上地幔 (低于FMQ)。地幔柱岩浆矿物中H2等还原态挥发分相含量较高 (Tang et al., 2013, 2017),其组成与岩石指示环境相关 (Cottrell and Kelley, 2013; Burnard et al., 2014)。

4.2 含碳挥发分的环境意义

CO2和CH4等含碳挥发分具有极强的温室气体效应,CO2气体可长期滞留在大气圈中,在大气圈的滞留期长达105 a。CH4在大气圈中的滞留时间比较短,平均滞留期为7 a。从长时间尺度上来讲CH4的影响较CO2要小,但CH4的温室效应比CO2更显著,释出的大量CH4可造成局部乃至全球气温的升高 (Self et al., 2006)。地球大规模的基性岩浆作用曾排放了大量的CO2、CH4等,引发地表环境变化,如MORB的初始岩浆中CO2含量 (4663.3 mm3·STP/g) 与岩浆岩中残余的CO2含量 (平均292 mm3·STP/g) 有很大的差值 (Helo et al., 2011),表明大洋环境玄武质岩浆作用过程中持续排放了大量的CO2 (Burton et al., 2013)。

地幔柱岩浆活动的规模巨大,形成了大面积的溢流玄武岩及巨型杂岩体,岩浆的脱气作用及高温岩浆对围岩烘烤释放出大量的CO2、SO2、CH4和H2S等对环境有影响的温室气体和有害流体组分,是全球生物灭绝事件的重要诱因之一 (Olsen,1999; Wignall,2001; Self et al., 2006)。地幔柱岩浆作用与地球历史上最大规模生物灭绝事件在时间上相互重叠,如德干大火成岩省与白垩纪末期的生物灭绝等 (Self et al., 2006; Chenet et al., 2007),西伯利亚和峨眉大火成岩省与P-T生物灭绝 (Campbell et al., 1992)。二叠纪末期西伯利亚地幔柱岩浆活动期间,地球表面CO2含量升高,温度出现长时间显著升高 (Huey and Ward, 2005),P-T边界氧同位素表明古赤道地区地表温度快速升高6 ℃ (Holser and Magaritz, 1992)。

大火成岩省对环境破坏性影响的另一方面来自大体积、超高温的地幔柱岩浆对上覆和下伏岩石的长时间烘烤,导致围岩的大规模脱气,在白云岩、蒸发岩、煤或者富含有机质的泥页岩中的侵入体诱发围岩接触变质作用,产生了大量的温室气体和有毒气体 (如CO2、CH4和SO2),这些气体释放到大气中可引起了全球变暖和生物集群绝灭 (Huey and Ward, 2005; Ganino and Arndt, 2009)。研究表明源于沉积岩烘烤脱出的气体比岩浆作用释放的气体对环境有更大的影响 (Ganino and Arndt, 2009),其关键控制因素是侵入岩和溢流玄武岩下部盆地中的沉积岩的类型和有机质的含量 (Iacono-Marziano et al., 2012)。

5 结论

(1) 大洋玄武岩中含碳挥发分主要以CO2为主,CH4等烃类气体的含量较低。CO2含量从洋岛玄武岩 (210 mm3·STP/g)、洋中脊玄武岩 (263)、弧后盆地玄武岩 (1060) 到岛弧玄武岩 (1246) 逐步升高,可能与壳源组分的加入有关。

(2) 大陆环境基性岩浆作用产物中CO2含量较低,造山带环境的玄武岩中CO2含量为17~1273 mm3·STP/g,大火成岩省及克拉通环境的玄武岩中CO2含量为140~618 mm3·STP/g,侵入体的CO2含量为105~384 mm3·STP/g。

(3) 基性岩浆作用形成的岩石中残余含碳挥发分主要以氧化态的CO2为主,其成分与其所处氧化还原状态有关。大规模的基性岩浆作用曾经排放了大量的CO2和CH4等,引发地表环境变化。

参考文献
[] Aggrey K E, Muenow D W, Batiza R. 1988a. Volatile abundances in basaltic glasses from seamounts flanking the East Pacific Rise at 21°N and 12°-14°N. Geochimica et Cosmochimica Acta, 52(8): 2115–2119. DOI:10.1016/0016-7037(88)90191-3
[] Aggrey K W, Muenow D W, Sinton J M. 1988b. Volatile abundances in submarine glasses from the North Fiji and Lau back-arc basins. Geochimica et Cosmochimica Acta, 52(10): 2501–2506. DOI:10.1016/0016-7037(88)90308-0
[] Armstrong L S, Hirschmann M M, Stanley B D, Falksen E G, Jacobsen S D. 2015. Speciation and solubility of reduced C-O-H-N volatiles in mafic melt:Implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets. Geochimica et Cosmochimica Acta, 171: 283–302. DOI:10.1016/j.gca.2015.07.007
[] Aubaud C, Pineau F, Hékinian R, Javoy M. 2005. Degassing of CO2 and H2O in submarine lavas from the Society hotspot. Earth and Planetary Science Letters, 235(3-4): 511–527. DOI:10.1016/j.epsl.2005.04.047
[] Ballhaus C. 1993. Redox states of lithospheric and asthenospheric upper mantle. Contributions to Mineralogy and Petrology, 114(3): 33l–348.
[] Bergman S C, Dubessy J. 1984. CO2-CO fluid inclusions in a composite peridotite xenolith:Implications for upper mantle oxygen fugacity. Contributions to Mineralogy and Petrology, 85(1): 1–13. DOI:10.1007/BF00380216
[] Bernard W J, Taras B L. 1990. Determination of methane stability in the upper mantle and lower crust. Final Report. Evanston, IL: Northwestern University
[] Berner R A. 1991. A model for atmospheric CO2 over Phanerozoic time. American Journal of Science, 291(5): 339–376.
[] Blundy J D, Brodholt J P, Wood B J. 1991. Carbon-fluid equilibria and the oxidation state of the upper mantle. Nature, 349(6307): 321–324. DOI:10.1038/349321a0
[] Burnard P, Reisberg L, Colin A. 2014. An observed link between lithophile compositions and degassing of volatiles (He, Ar, CO2) in MORBs with implications for Re volatility and the mantle C/Nb ratio. Earth and Planetary Science Letters, 395: 159–167. DOI:10.1016/j.epsl.2014.03.045
[] Burton M R, Sawyer G M, Granieri D. 2013. Deep carbon emissions from volcanoes. Reviews in Mineralogy and Geochemistry, 75(1): 323–354. DOI:10.2138/rmg.2013.75.11
[] Byers C D, Muenow D W, Garcia M O. 1983. Volatiles in basalts and andesites from the Galapagos spreading center, 85° to 86°W. Geochimica et Cosmochimica Acta, 47(9): 1151–1558.
[] Byers C D, Christie D M, Muenow D W, Sinton J M. 1984. Volatile contents and ferric-ferrous ratios of basalt, ferrobasalt, andesite, and rhyodacite glasses from the Galapagos, 95. 5°W propagating rift. Geochimica et Cosmochimica Acta, 48(11): 2239–2245. DOI:10.1016/0016-7037(84)90220-5
[] Byers C D, Garcia M D, Muenow D W. 1985. Volatiles in pillow rim glasses from Loihi and Kilauea Volcanoes, Hawaii. Geochimica et Cosmochimica Acta, 49(9): 1887–1896. DOI:10.1016/0016-7037(85)90083-3
[] Byers C D, Garcia M O, Muenow D W. 1986. Volatiles in basaltic glasses from the East Pacific Rise at 21oN:Implications for MORB sources and submarine lava flow morphology. Earth and Planetary Science Letters, 79(1-2): 9–20. DOI:10.1016/0012-821X(86)90035-X
[] Campbell I H, Czamanske G K, Fedorenko V A, Hill R G, Stepanov V. 1992. Synchronism of the Siberian traps and the Permian-Triassic boundary. Science, 258(5089): 1760–1763. DOI:10.1126/science.258.5089.1760
[] Cartigny P, Jendrzejewski N, Pineau F, Petit E, Javoy M. 2001. Volatile (C, N, Ar) variability in MORB and the respective roles of mantle source heterogeneity and degassing:The case of the Southwest Indian Ridge. Earth and Planetary Science Letters, 194(1-2): 241–257. DOI:10.1016/S0012-821X(01)00540-4
[] Chenet A L, Quidelleur X, Fluteau F, Courtillot V, Bajpai S. 2007. 40K-40Ar dating of the main Deccan large igneous province:Further evidence of KTB age and short duration. Earth and Planetary Science Letters, 263(1-2): 1–15. DOI:10.1016/j.epsl.2007.07.011
[] Cottrell E, Kelley K A. 2013. Redox heterogeneity in Mid-Ocean Ridge Basalts as a function of mantle source. Science, 340(6138): 1314–1317. DOI:10.1126/science.1233299
[] Delaney J R, Muenow D W, Graham D G. 1978. Abundance and distribution of water, carbon and sulfur in the glassy rims of submarine pillow basalts. Geochimica et Cosmochimica Acta, 42(6): 581–594. DOI:10.1016/0016-7037(78)90003-0
[] Dixon J E, Clague D A, Wallace P, Poreda R. 1997. Volatiles in alkalic basalts form the North Arch volcanic field, Hawaii:Extensive degassing of deep submarine-erupted alkalic series lavas. Journal of Petrology, 38(7): 911–939. DOI:10.1093/petroj/38.7.911
[] Dixon J E, Clague D A. 2001. Volatiles in basaltic glasses from Loihi seamount, Hawaii:Evidence for a relatively dry plume component. Journal of Petrology, 42(3): 627–654. DOI:10.1093/petrology/42.3.627
[] Dobretsov N L, Shatskiy A F. 2012. Deep carbon cycle and geodynamics:The role of the core and carbonatite melts in the lower mantle. Russian Geology and Geophysics, 53(11): 1117–1132. DOI:10.1016/j.rgg.2012.09.001
[] Frost D J, McCammon C A. 2008. The redox state of Earth's mantle. Annual Review of Earth and Planetary Sciences, 36: 389–420. DOI:10.1146/annurev.earth.36.031207.124322
[] Fu P, Tang Q Y, Zhang M J, Zhang Z W, Li L W, Li W Y. 2012. The ore genesis of Kalatongke Cu-Ni Sulfide Deposits, western China:Constraints from volatile chemical and carbon isotopic compositions. Acta Geologica Sinica-English Edition, 86(3): 568–578. DOI:10.1111/acgs.2012.86.issue-3
[] Ganino C, Arndt N T. 2009. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology, 37(4): 323–326. DOI:10.1130/G25325A.1
[] Garcia M O, Liu N W K, Muenow D W. 1979. Volatiles in submarine volcanic rocks from the mariana Island arc and trough. Geochimica et Cosmochimica Acta, 43(3): 305–312. DOI:10.1016/0016-7037(79)90196-0
[] Hayes J M, Waldbauer J R. 2006. The carbon cycle and associated redox processes through time. Philosophical Transactions of the Royal Society B:Biological Sciences, 361(1470): 931–950. DOI:10.1098/rstb.2006.1840
[] Helo C, Longpré M A, Shimizu N, Clague D A, Stix J. 2011. Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas. Nature Geoscience, 4(4): 260–263. DOI:10.1038/ngeo1104
[] Hilton D R. 2007. The leaking mantle. Science, 318(5855): 1389–1390. DOI:10.1126/science.1151983
[] Hirschmann M M. 2012. Magma ocean influence on early atmosphere mass and composition. Earth and Planetary Science Letters, 341-344: 48–57. DOI:10.1016/j.epsl.2012.06.015
[] Hirschmann M M. 2016. Constraints on the early delivery and fractionation of Earth's major volatiles from C/H, C/N, and C/S ratios. American Mineralogist, 101(3): 540–553. DOI:10.2138/am-2016-5452
[] Holser W T, Magaritz M. 1992. Cretaceous/Tertiary and Permian/Triassic boundary events compared. Geochimica et Cosmochimica Acta, 56(8): 3297–3309. DOI:10.1016/0016-7037(92)90306-4
[] Huey R B, Ward P D. 2005. Hypoxia, global warming, and terrestrial late Permian extinctions. Science, 308(5720): 398–401. DOI:10.1126/science.1108019
[] Iacono-Marziano G, Marecal V, Pirre M, Gaillard F, Arteta J, Scaillet B, Arndt N T. 2012. Gas emissions due to magma-sediment interactions during flood magmatism at the Siberian Traps:Gas dispersion and environmental consequences. Earth and Planetary Science Letters, 357-358: 308–318. DOI:10.1016/j.epsl.2012.09.051
[] Javoy M, Pineau F. 1991. The volatiles record of a "popping" rock from the Mid-Atlantic Ridge at 14°N:Chemical and composition of gas trapped in the vesicles. Earth and Planetary Science Letters, 107(3-4): 598–611. DOI:10.1016/0012-821X(91)90104-P
[] Marty B, Zimmermann L. 1999. Volatiles (He, C, N, Ar) in mid-ocean ridge basalts:Assesment of shallow-level fractionation and characterization of source composition. Geochimica et Cosmochimica Acta, 63(21): 3619–3633. DOI:10.1016/S0016-7037(99)00169-6
[] Marty B. 2012. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth and Planetary Science Letters, 313-314: 56–66. DOI:10.1016/j.epsl.2011.10.040
[] Muenow D W, Graham D G, Liu N W K, Delaney J R. 1979. The abundance of volatiles in Hawaiian tholeiitic submarine basalts. Earth and Planetary Science Letters, 42(1): 71–76. DOI:10.1016/0012-821X(79)90191-2
[] Mysen B. 2015. Carbon speciation in silicate-C-O-H melt and fluid as a function of redox conditions:An experimental study, in situ to 1.7 GPa and 900 degrees C. American Mineralogist, 100(4): 872–882. DOI:10.2138/am-2015-4976
[] Nishio Y, Ishii T, Gamo T, Sano Y. 1999. Volatile element isotopic systematics of the Rodrigues Triple Junction Indian Ocean MORB:Implications for mantle heterogeneity. Earth and Planetary Science Letters, 170(3): 241–253. DOI:10.1016/S0012-821X(99)00113-2
[] Okumura S, Hirano N. 2013. Carbon dioxide emission to Earth's surface by deep-sea volcanism. Geology, 41(11): 1167–1170. DOI:10.1130/G34620.1
[] Olsen P E. 1999. Giant lava flows, mass extinctions, and mantle plumes. Science, 293(5414): 604–605.
[] Rehkämper M, Hofmann A W. 1997. Recycled ocean crust and sediment in Indian Ocean MORB. Earth and Planetary Science Letters, 147(1-4): 93–106. DOI:10.1016/S0012-821X(97)00009-5
[] Rielli A, Tomkins A G, Nebel O, Brugger J, Etschmann B, Zhong R, Yaxley G M, Paterson D. 2017. Evidence of sub-arc mantle oxidation by sulphur and carbon. Geochem. Geochemical Perspectives Letters, 3(2): 124–132.
[] Le Roux P J, Shirey S B, Hauri E H, Perfit M R, Bender J F. 2006. The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8-10°N and 12-14°N):Evidence from volatiles (H2O, CO2, S) and halogens (F, Cl) . Earth and Planetary Science Letters, 251(3-4): 209–231. DOI:10.1016/j.epsl.2006.09.012
[] Self S, Widdowson M, Thordarson T, Jay A E. 2006. Volatile fluxes during flood basalt eruptions and potential effects on the global environment:A Deccan perspective. Earth and Planetary Science Letters, 248(1-2): 518–532. DOI:10.1016/j.epsl.2006.05.041
[] Tang Q Y, Zhang M J, Li C S, Yu M, Li L W. 2013. The chemical compositions and abundances of volatiles in the Siberian large igneous province:Constraints on magmatic CO2 and SO2 emissions into the atmosphere. Chemical Geology, 339: 84–91. DOI:10.1016/j.chemgeo.2012.08.031
[] Tang Q Y, Zhang M J, Wang Y K, Yao Y S, Du L, Chen L M, Li Z P. 2017. The origin of the Zhubu mafic-ultramafic intrusion of the Emeishan large igneous province, SW China:Insights from volatile compositions and C-Hf-Sr-Nd isotopics. Chemical Geology. DOI:10.1016/j.chemgeo.2017.02.009
[] Wignall P B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53(1-2): 1–33. DOI:10.1016/S0012-8252(00)00037-4
[] Wood B J, Bryndzia L T, Johnson K E. 1990. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science, 248(4953): 337–345. DOI:10.1126/science.248.4953.337
[] Workman R K, Hauri E, Hart S R, Wang J H, Blusztajn J. 2006. Volatile and trace elements in basaltic glasses from Samoa:Implications for water distribution in the mantle. Earth and Planetary Science Letters, 241(3-4): 932–951. DOI:10.1016/j.epsl.2005.10.028
[] Xing C M, Wang C Y, Zhang M J. 2012. Volatile and C-H-O isotopic compositions of giant Fe-Ti-V oxide deposits in the Panxi region and their implications for the sources of volatiles and the origin of Fe-Ti oxide ores. Science China Earth Sciences, 55(11): 1782–1795. DOI:10.1007/s11430-012-4468-2
[] Zeebe R E, Caldeira K. 2008. Close mass balance of long-term carbon fluxes from ice-core CO2 and ocean chemistry records. Nature Geoscience, 1(5): 312–315. DOI:10.1038/ngeo185
[] Zhang M J, Wang X B, Liu G, Wen Q B, Li L W. 1999. Fluid composition and carbon & oxygen isotope geochemistry of Cenozoic alkali basalts in Eastern China. Chinese Journal of Geochemistry, 18(3): 276–282. DOI:10.1007/BF02831074
[] Zhang M J, Wang X B, Liu G, Zhang T W, Bo W R. 2004. Compositions of upper mantle fluids beneath Eastern China:Implications for mantle evolution. Acta Geologica Sinica, 78(1): 125–130.
[] Zhang M J, Hu P Q, Niu Y L, Su S G. 2007. Chemical and stable isotopic constraints on the nature and origin of volatiles in the sub-continental lithospheric mantle beneath eastern China. Lithos, 96(1-2): 55–66. DOI:10.1016/j.lithos.2006.10.006
[] Zhang M J, Niu Y L, Hu P Q. 2009. Volatiles in the mantle lithosphere: Modes of occurrence and chemical compositions. In: Anderson J E, Coates RW, Eds. The Lithosphere: Geochemistry, Geology and Geophysics. New York: Nova Science, 171-212
[] Zhang M J, Tang Q Y, Hu P Q, Ye X R, Cong Y N. 2013. Noble gas isotopic constraints on the origin and evolution of the Jinchuan Ni-Cu- (PGE) sulfide ore-bearing ultramafic intrusion, Western China. Chemical Geology, 339: 301–312. DOI:10.1016/j.chemgeo.2012.07.023
[] Zhang Y X, Zindler A. 1993. Distribution and evolution of carbon and nitrogen in Earth. Earth and Planetary Science Letters, 117(3-4): 331–345. DOI:10.1016/0012-821X(93)90088-Q
[] 沈娟, 饶万祥, 胡沛青, 余明, 刘玉祥. 2014. 北祁连石灰沟奥陶纪玄武岩流体组成及其地质意义. 兰州大学学报 (自然科学版) , 50(4): 472–476.
[] 汤庆艳, 张铭杰, 李晓亚, 李立武, 何佩佩, 林瑶. 2012. 西秦岭新生代高钾质玄武岩流体组成及其地幔动力学意义. 岩石学报, 28(4): 1251–1260.
[] 汤庆艳, 李建平, 张铭杰, 宋哲, 党永西, 杜丽. 2017. 东昆仑夏日哈木镍铜硫化物矿床成矿岩浆条件:流体挥发分化学组成与碳同位素组成制约. 岩石学报, 33(1): 104–114.
[] 余明, 汤庆艳, 张铭杰, 何佩佩, 尚慧, 李立武. 2014. 腾冲新生代火山作用流体组成及其来源:火山岩流体化学组成和碳同位素制约. 岩石学报, 30(12): 3635–3644.
[] 张铭杰, 王先彬, 刘刚, 李立武. 1999. 中国东部新生代碱性玄武岩及幔源捕虏体中的流体组成. 地质学报, 73(2): 162–166.
[] 张铭杰, 王先彬, 李立武. 2000. 地幔流体组成. 地学前缘, 7(2): 40l–412.
[] 张铭杰, 余明, 汤庆艳, 杨扬, 陈思童, 李中平, 史基安. 2017. 新疆准噶尔盆地西北部二叠纪玄武岩浆作用流体介质条件:流体化学组成及碳同位素制约. 岩石学报, 33(1): 93–103.