碳在人类文明中扮演着关键元素的角色,它是生命的基础元素,是化石燃料的主要组成,同时大气圈中CO2、CH4等的含量又影响着全球气候变化。因此,伴随全球变暖及碳减排,碳在地球各系统间的循环问题受到了越来越多的关注。2008年5月在美国Carnegie研究所召开的“深部碳循环”研讨会,更是拉开了全球多机构、多学科对地球深部碳起源、组成、分布和循环演化进行系统研究的序幕 (http://deepcarbon.net/)。2009年11月11日在中国科学院地质与地球物理研究所召开的“地球深部过程和碳循环”学术研讨会进一步促进了中国科学家广泛参与全球“深部碳循环”的研究工作。
地球碳循环可分为地球表层碳循环 (气圈-水圈-生物圈-土壤圈之间的碳循环) 和地球深部碳循环 (地球表层系统-地球壳幔系统之间的碳循环)。尽管地球上90%以上的碳储藏在地球深部 (Dasgupta and Hirschmann, 2010),但有关地球深部碳的存在方式及变化等的认识非常有限 (Hazen and Schiffries, 2013)。深部碳循环不仅影响全球气候变化,同时会影响壳-幔物质组成和演化 (Foley, 2010),是壳-幔物质循环研究的重要组成部分。一方面,幔源火山作用会向大气释放巨量CO2 (源),而显著影响全球气候变化。这不仅被认为导致了地球从新元古代雪球地球寒冷气候恢复升温 (Caldeira and Kasting, 1992; Hoffman et al., 1998),而且也可能是形成白垩纪和古新世-始新世暖期的重要因素 (Kerrick, 2001; Storey et al., 2007)。另一方面,大气中的CO2被海水吸收形成沉积碳酸盐,或者通过玄武岩和橄榄岩的碳酸盐化作用被固定在地壳岩石中 (Kelemen et al., 2011)。在漫长的地质历史中,这些沉积碳酸盐岩和蚀变洋壳中的碳酸盐大部分可能随板块俯冲作用循环进入了深部地幔 (Kerrick and Connolly, 2001; Thomsen and Schmidt, 2008),并引起壳-幔组成物质的物理性质和化学组成变化 (Ballhaus et al., 1990; Chen et al., 2009; Foley, 2010; Tsuno et al., 2012)。近几十年来,地球表层系统碳循环对保持地球为一个适宜人类居住的星球已获得足够重视和进行了深入研究,获得了碳循环有关各方面的大量信息。但对于各种碳储库和循环过程之间的耦合作用和反馈作用的认识才刚刚可开始 (Falkowski et al., 2000)。俯冲带作为地球表层碳返回地球深部的唯一方式,在维持地球深部碳循环方面有着不可替代的作用。本文结合天然样品、理论模拟和高温高压的研究成果,初步总结了俯冲过程中沉积碳酸盐岩的深部地幔再循环近年来的研究成果,并着重讨论沉积碳酸盐是否可返回地幔,碳酸盐在俯冲带中的物理和化学变化及其存在深度,碳酸盐在俯冲作用中的微量元素迁移和C-O同位素分馏等问题。
1 沉积碳酸盐是否可返回地幔 1.1 理论模拟及实验证据长久以来人们认为洋壳上覆的沉积碳酸盐岩在俯冲过程中会经历脱碳作用,碳酸盐会转化为CO2并经岛弧岩浆作用重新返回地表 (Gorman et al., 2006; Santosh and Omori, 2008)。然而,Javoy等 (1982) 计算出地球通过MORB喷发到表面的碳是现今地球表层碳含量的22倍。这表明一定有地球表层碳通过俯冲作用返回了地球深部,沉积碳酸盐岩返回地幔进入人们视野。热动力学相平衡模拟计算表明尽管沉积碳酸盐在经历洋壳俯冲的高温高压变质过程中由于脱碳作用会导致一些CO2经岛弧岩浆作用重新返回地表,但70%~80%以上的碳酸盐会以碳酸盐化榴辉岩或者碳酸盐化泥岩的形式幸存下来,并在板块聚合边缘返回深部地幔 (尤其是较冷的俯冲带) (Connolly, 2005; Gorman et al., 2006; Kerrick and Connolly, 2001),该认识得到了高温、高压试验结果的支持 (Dasgupta and Hirschmann, 2010; Grassi and Schmidt, 2011b; Thomsen and Schmidt, 2008)。
1.2 天然样品证据碳酸盐通过俯冲作用返回深部地幔的推断首先来自于造山带中经历了超高压变质作用的大理岩 (Becker and Altherr, 1992; Schertl and Okay, 1994;Ogasawara et al., 2000)。Becker和Altherr (1992) 对来自波希米亚高地 (Bohemian massif) 的钙硅酸盐大理岩的研究发现,其中的单斜辉石含有富K斜长石出熔体,原生单斜辉石中钾含量指示其结晶压力大于3~4 GPa。Schertl和Okay (1994) 在大别山的白云岩中发现了柯石英包裹体,指示碳酸盐岩被俯冲到深部地幔经历了超高压变质作用。Ogasawara等 (2000) 在科克切塔夫高地 (Kokchetav Massif) 白云质大理岩中发现了大量显微金刚石 (主要集中在石榴子石和透辉石中),并根据金刚石和白云石的稳定性推测其形成压力为4.2~7 GPa。这些发现于造山带中经历了超高压变质作用的含柯石英或者金刚石的大理岩指示沉积物碳酸盐 (岩) 通过深俯冲作用可以被带入深部地幔。
1.3 碳同位素证据的有效性指示碳酸盐被循环进入深部地幔的另一方面“可能的证据”来自金伯利岩中金刚石的碳同位素组成和其中的硅酸盐包裹体。碳同位素对于区分地表的有机碳和无机碳的效果很好,地表有机碳δ13 C小于-15‰,而无机碳大于-10‰ (Cartigny, 2005)。因此,一些研究者根据金刚石中稀有气体同位素组成 (Mohapatra and Honda, 2006)、火成碳酸岩 (Ray et al., 1999) 和金刚石偏轻的C同位素组成及金刚石中的矿物包裹体 (如,巴西Juina-5金伯利岩中金刚石的δ13 C=-1‰~-24‰,金刚石中含有在下地幔条件下由玄武岩结晶而来的硅酸盐矿物相) (Bulanova et al., 2010; Walter et al., 2008; Walter et al., 2011) 推测地表碳 (有机碳) 循环进入了深部地幔。然而,在开放体系中含碳矿物相的少量连续分离也可以产生显著的C同位素分馏 (Cartigny, 2005; Cartigny et al., 1998)。例如,同一个橄榄岩包体中碳酸盐矿物的δ13 C组成可以从-5‰变化到24‰ (Deines, 1968)。而金刚石的形成与地幔中含C的C-H-O流体活动密切相关,因此,金刚石碳同位素组成到底反映的是地幔特征还是俯冲的碳,取决于地幔流体的迁移和金刚石结晶过程中的碳同位素分馏行为 (Shirey et al., 2013)。因此,榴辉岩型金刚石中偏轻的碳同位素组成并不一定指示地球表层碳被俯冲到了深部地幔 (Cartigny et al., 1998;Cartigny, 2005)。
1.4 经历完整深部地幔再循环天然样品沉积碳酸盐岩是地球表层碳酸盐矿物的主要存在形式。然而,除了造山带中经历了超高压变质作用的大理岩外,迄今为止未发现地球表层的“沉积碳酸盐岩”通过俯冲作用循环进入深部地幔的其他直接的天然证据。而且这些天然样品这能表明沉积碳酸盐岩可随着俯冲板块进入地幔,然而沉积碳酸盐岩其后的命运如何?是一直保存在俯冲板块上,其后随着构造作用返回地表,还是进入上覆地幔楔?Liu等 (2015) 在兴蒙造山带的新生代玄武岩中发现的碳酸盐质包体可能为沉积碳酸盐岩通过俯冲作用返回地幔,经历完整深部碳循环的首个直接证据。这些包体中不仅出现了常规的地幔橄榄岩矿物,而且发现了微粒金刚石、碳硅石、石墨 (包括无序石墨和有序石墨)、自然金属及合金类矿物等 (Gao and Liu, 2008; Liu et al., 2015) (图 1)。但这些包体保留了和沉积碳酸盐岩一致的微量元素和相似的O-Sr-Pb同位素组成特征,初步指示其原岩应为地表沉积碳酸盐岩。包体中残留橄榄石、单斜辉石和斜方辉石的高Mg# (91.1~92.7) 以及石墨和自然金属等矿物 (Liu et al., 2015) 的出现排除了他们是玄武岩喷发到地表过程中捕获石灰岩并和石灰岩发生反应的可能性。达里湖碳酸岩质包体内的原位金刚石及退变质石墨证明沉积碳酸盐岩曾俯冲到至少120 km的深度。而伴生的尖晶石二辉石橄榄岩表明其曾停留在浅部岩石圈地幔。这些现象表明俯冲入地幔深部的沉积碳酸盐岩可脱离俯冲板块,进入地幔楔,进而上升到浅部岩石圈地幔,经历完整的深部地幔再循环过程。
|
Cpx-单斜辉石;Opx-斜方辉石;CP1-随机或转绕硅酸盐矿物分布的方解石斑晶;CP2-围绕空洞的放射状方解石斑晶;CP3-贯穿CP2脉中的纯净方解石斑晶 图 1 兴蒙造山带新生代玄武岩中的碳酸岩质包体及其中的残余单斜辉石、斜方辉石 (据Liu et al., 2015) Figure 1 The carbonatitic xenoliths entrapment within the Cenozoic basalt in XMOB and clinopyroxene, orthopyroxene within them (after Liu et al., 2015) |
通过洋壳俯冲作用进入地幔的碳的命运 (物理和化学变化) 对长期的全球碳循环具有重要影响 (Kerrick, 2001; Sleep and Zahnle, 2001)。前人对碳酸盐在俯冲带中发生的物理和化学反应的研究主要集中在相平衡模拟计算 (Kerrick and Connolly, 2001;Connolly, 2005; Gorman et al., 2006) 和对碳酸盐化榴辉岩 (Yaxley and Green, 1994;Molina and Poli, 2000; Hammouda, 2003; Dasgupta et al., 2004; Yaxley and Brey, 2004; Dasgupta et al., 2005; Poli et al., 2009) 及碳酸盐化泥岩 (Thomsen and Schmidt, 2008; Grassi and Schmidt, 2011b; Tsuno et al., 2012) 的高温高温实验研究上。2009年以前的工作集中在对碳酸盐化榴辉岩的研究上,2008年以后人们才开始进行碳酸盐化泥岩的实验研究。目前,对于碳酸盐岩在俯冲带条件下的物理和化学变化的高温、高压实验研究非常少,认识还很有限 (Chepurov et al., 2011; Suito et al., 2001)。
2.1 俯冲带中碳酸盐的物理化学变化对蚀变玄武岩的实验研究表明,显著的脱CO2作用仅可能发生在年轻俯冲带的高温、低压 (弧前区域) 条件下 (Molina and Poli, 2000)。在俯冲开始阶段的中低压、低温条件下 ( < 2.5 GPa、 < 600℃),俯冲板片中的大量含水矿物会发生脱水反应,释放流体。方解石在水中的溶解度随温度和压力增大而增加 (尤其在 < 0.6 GPa、600℃条件下,溶解度随压力的增加幅度高达3个数量级) (Caciagli and Manning, 2003)。Frezzotti等 (2011) 估算认为在~600℃、> 3.2 GPa条件下,CaCO3在纯水中的溶解度超过105×10-6,比在地表条件下高出7个数量级。因此,一部分碳酸盐会被溶解于俯冲脱水流体或超临界流体中而被带入到上覆地幔楔 (Frezzotti et al., 2011; Ague and Nicolescu, 2014)。在蛇纹岩中或者与蛇纹岩接触部位的碳酸盐在俯冲带浅部则可能会被部分地还原成稳定的石墨,因而可以被带入到更深部的地幔 (Galvez et al., 2013)。
经历了浅部脱CO2和脱水后的碳酸盐化榴辉岩和碳酸盐化泥岩中的碳酸盐的稳定性和能到达的深度主要取决于这些岩石的固相线。碳酸盐化榴辉岩体系的固相线温度尽管受多种因素影响 (Dasgupta et al., 2005),但通常高于大部分俯冲带上部的温度,因此能够将碳酸盐矿物带入深部地幔 (Dasgupta and Hirschmann, 2010)。随着俯冲深度增加,碳酸盐矿物的稳定形态会发生改变。在较低压力条件 (通常低于3~4 GPa),含钙碳酸盐是稳定的 (Dalton and Wood, 1993; Hammouda, 2003; Yaxley and Brey, 2004) ;在中等压力条件下 (2~4 GPa),白云石是稳定的 (Wallace and Green, 1988;Falloon and Green, 1989, 1990) ;在更高压力条件下 (4~5 GPa),则菱镁矿是稳定的 (Brey et al., 2008; Ghosh et al., 2009; Litasov and Ohtani, 2009)。“逃脱了”在俯冲带浅部的脱CO2分解和被水溶解作用的碳酸盐在俯冲带深部会通过碳酸盐岩 (或者碳酸岩熔体) -橄榄岩反应作用 (形成菱镁矿和单斜辉石) 使得部分碳迁移进入上覆地幔楔 (Martin et al., 2011)。
相对于碳酸盐化榴辉岩,碳酸盐化泥岩更富集碱金属元素和其他一些不相容元素,因此更加易熔。干碳酸盐化泥质岩在8 GPa条件下的固相线温度 (1075℃) 比碳酸盐化榴辉岩的固相线温度和地幔等温线分别低约100℃和150~300℃ (Grassi and Schmidt, 2011a)。Grassi和Schmidt (2011b) 通过对比碳酸盐化泥岩固相线和典型俯冲带温度发现,碳酸盐化泥岩会在2个不同深度发生熔融:6~9 GPa和地幔转换带底部。Tsuno等 (2012) 认为碳酸盐化泥岩能够穿过弧下地幔深度 (170 km),并在200~250 km的深度范围内发生熔融。
碳酸盐岩和碳酸盐化硅酸岩 (如玄武岩及泥质岩) 具有完全不同的性质 (如密度、变形强度、熔点等),因此,在俯冲作用中可能会表现出和碳酸盐化榴辉岩及碳酸盐化泥岩完全不同的物理和化学行为。碳酸盐岩 (CaCO3±MgCO3±K2CO3+Na2CO3) 的固相线与其化学组成密切相关,但是有关碳酸盐岩的部分熔融条件和流变学特征的实验研究非常有限 (Suito et al., 2001;Chepurov et al., 2011; Jones et al., 2013)。现有的研究表明,在同等压力条件下,纯CaCO3的熔点 (Suito et al., 2001) 显著高于碳酸盐化硅酸岩 (Dasgupta et al., 2004; Grassi and Schmidt, 2011b)。如果不考虑不同岩石在俯冲带的抗变形强度和密度,仅从纯CaCO3更难被熔融的角度考虑,钙碳酸盐岩可能会被俯冲携带到更深的地幔。因此,再循环进入深部地幔的表层碳与橄榄岩地幔之间除了发生碳酸岩熔体-橄榄岩作用外,另外一种重要的作用方式可能是沉积碳酸盐岩在高温条件下对橄榄岩地幔的塑性底劈作用 (Behn et al., 2011)。但是,现有的实验研究均未涉及沉积碳酸盐岩在俯冲带条件下的流变学行为,这些碳酸盐从俯冲板片和沉积物进入上覆地幔楔的机制仍旧很不清楚 (Frezzotti et al., 2011)。
2.2 碳酸盐的俯冲深度经历过深部碳循环的天然样品中保留着一些记录深度的矿物学信息。陆壳俯冲超高压变质带中,一些碳酸盐矿物中含有微粒金刚石 (Zhang et al., 1997;Ishida et al., 2003),表明陆壳上的沉积碳酸盐岩可俯冲入至少120 km的深部地幔。在洋壳俯冲超高压变质带中,暂时还没有金刚石的报道。但是伴生的榴辉岩 (Zhai et al., 2011) 及热力学模型计算 (Lü et al., 2013) 表明洋壳上的沉积碳酸盐岩可俯冲入70~90 km深度。Liu等 (2015) 于经历过深部地幔再循环的达里湖碳酸岩质包体中发现了微粒金刚石 (图 2),表明洋壳上的沉积碳酸盐岩可以俯冲入至少120 km深度。
|
Cpx-单斜辉石;Opx-斜方辉石 图 2 达里湖碳酸岩质包体中微粒金刚石 (据Liu et al., 2015) Figure 2 Fine diamond in the Dalihu carbonatitic xenolith (after Liu et al., 2015) |
俯冲板块可穿过地幔转换带进入下地幔 (Hirose et al., 1999),沉积碳酸盐岩是否也可随着俯冲板块进入下地幔呢?由于金刚石只能确定压力的下限,无法得到压力的最大值,需要其他的信息综合判定沉积碳酸盐岩是否可以俯冲入超深地幔。目前还没有沉积碳酸盐岩返回超深地幔的记录,但是,有一些间接证据表明地表的沉积碳酸盐矿物可返回超深部地幔。巴西Junia金刚石内包含有以铁方镁石为代表的下地幔矿物包裹体组合,表明这些金刚石来源于超深地幔 (Kaminsky et al., 2001)。Walter等 (2008) 于这些超深成金刚石中发现了硅酸盐矿物包裹体。利用实验岩石学及地球化学数据证明了这些硅酸盐矿物从原始或演化碳酸岩质熔体在地幔过渡带及上地幔底部结晶而来,暗示了沉积碳酸盐矿物可俯冲入地幔转换带。但是,Thomson等 (2016) 利用高温高压实验表明地表沉积碳酸盐矿物无法穿过地幔转换带。实验表明从13 GPa开始,碳酸盐化洋壳的固相线急剧转折,这使得大部分的俯冲带在深于13 GPa下均可发生熔融,并在300~700 km处形成碳酸盐矿物深部循环障,使其无法进入下地幔 (Thomson et al., 2016)。由于压力对Fe3+/Fe2+平衡的控制作用,地幔越深处的还原性越强 (Foley, 2011),有研究表明地幔在深度大于250 km时,自然铁便可饱和 (Rohrbach et al., 2007)。超深部地幔再循环的碳酸盐岩发生熔融后,其形成的碳酸岩质熔体进入上覆地幔后会被还原为单质碳 (石墨、金刚石) (Rohrbach and Schmidt, 2011)。
3 碳酸盐在俯冲作用中的微量元素迁移和C-O同位素分馏 3.1 俯冲作用中碳酸盐的微量元素迁移碳酸盐在俯冲作用中对微量元素迁移的影响主要发生在浅部的脱H2O和CO2过程和深部碳酸盐化榴辉岩/泥岩的熔融过程。方解石在水中的溶解度随温度和压力增大而增加 (尤其在小于0.6 GPa、600℃条件下,溶解度随压力的增加可高达3个数量级) (Caciagli and Manning, 2003),这会导致微量元素在碳酸盐介质中的溶解度显著增加 (Berkesi et al., 2012)。俯冲前期释放的CO2加入流体后可显著改变很多元素的迁移行为 (Kokh et al., 2016)。例如,富含CO2的流体可携带多达数十到数百×10-6的金属 (如Cu、Au和Pd) (Hanley and Gladney, 2011; Rauchenstein-Martinek et al., 2014;Kokh et al., 2016),非常有利于各种贵金属成矿。
碳酸盐化榴辉岩发生低度部分熔融时碱土金属元素 (Ca、Sr和Ba)、碱金属元素和其他一些高度不相容元素 (例如U、Th) 会在碳酸岩熔体中富集 (Adam and Green, 2001; Hammouda et al., 2009),而一些高场强元素则会富集在残余的钛氧化物和石榴子石中 (Klemme et al., 2002; Xiong et al., 2005)。因此,碳酸岩熔体中会出现高场强元素和一些高度不相容元素间分异的现象 (Manthilake et al., 2008)。前人的研究多集中在碳酸盐化榴辉岩固相线及相平衡的问题上,对于微量元素在碳酸盐岩和碳酸盐化硅酸岩部分熔融过程中的变化行为的实验研究非常少 (Hammouda et al., 2009),不利于辨别碳酸岩熔体的来源 (碳酸盐化橄榄岩/碳酸盐化榴辉岩)。
碳酸盐化橄榄岩只需经历0.1%的部分熔融,所产生的碳酸岩熔体即可带走30%~60%的高度不相容元素,但这种熔体中的REE含量仍旧低于天然火成碳酸岩 (Dasgupta et al., 2009)。因此,Dasgupta等 (2009) 认为天然碳酸岩的REE高度富集特征要么形成于碳酸盐化橄榄岩部分熔融体的结晶分异作用,要么是来自于更加富集REE的源区。在北苏格兰Loch Loyal地区 (Walters et al., 2013) 和中国四川冕宁-德昌稀土成矿带 (Hou et al., 2009) 上的碳酸岩富集REE、Ba和Sr,但HFSE含量很低,并具有演化的Sr-Nd同位素特征。已有研究表明俯冲板块上部的沉积物富集REE及Sr、Ba且具有演化的同位素特征 (Plank and Langmuir, 1998),如果这种碳酸岩的源区中存在5%~10%的俯冲沉积物即可解释上述地球化学特征 (Hou et al., 2006; Walters et al., 2013)。
3.2 俯冲作用中碳酸盐的C-O同位素分馏在热俯冲带的高温、低压条件下,碳酸盐会发生脱CO2作用,引起C-O同位素分馏。理论计算 (Chacko et al., 1991) 和实验研究 (Scheele and Hoefs, 1992) 表明,CO2比与之平衡的碳酸盐更富集13 C。因此,进入深部地幔的、经历了脱CO2的残余碳酸盐会更亏损13 C,其δ13 C值甚至可以低至-25‰ (Deines, 2002)。同样地,脱CO2过程形成的CO2比碳酸盐更富集18O,以至于残余体会具有低δ18O特征 (Matthews and Kolodny, 1978;Chacko et al., 1991)。另外,由于压力对Fe3+/Fe2+平衡的控制作用,地幔越深处的还原性越强 (Foley, 2010),因此碳酸盐矿物在深部地幔会被还原为单质碳 (石墨、金刚石) 或者碳化物 (如SiC)。Deines和Eggler (2009) 利用碳酸盐-石墨体系进行的高温、高压实验研究表明,碳酸盐和石墨之间的C同位素分馏作用与温度有关,在高温条件下 (如1400℃) 方解石和石墨之间的C同位素变化可达50‰。金刚石-石墨之间也存在着C同位素平衡分馏作用,高压冲击形成的金刚石比初始石墨具有更低的δ13 C值 (Maruoka et al., 2003)。Satish-Kumar等 (2011) 的实验研究 (5 GPa和10 GPa,1200~2000℃) 表明单质碳和碳化物之间同样存在着碳同位素平衡分馏作用,铁的碳化物更倾向于富集12 C。Mikhail等 (2014) 对金伯利岩中含碳化铁的金刚石的研究也发现碳化铁更富集12 C,金刚石和碳化铁之间的δ13 C值相差达7.2‰±1.3‰。总之,现有的实验数据表明含碳矿物在热力学平衡条件下,13 C的富集顺序可能为CO2 > 碳酸盐 > 石墨 > 金刚石 > 碳化物。但这些研究工作还非常有限 (尤其是对天然样品的研究),需要进一步的深入研究和确证。
4 结论长期以来科学界多着重于表层碳循环的研究,较少关注深部碳循环。只是在研究表层碳循环时偶提及地幔碳的释放对表层碳循环的影响。但本世纪以来学者们开展了一系列的高温高压试验,从实验岩石学方面阐述了表层碳的俯冲形式、深部熔融等深部碳循环的关键问题,将深部碳循环推向了国际地质学研究的前沿。但是之前的研究主要集中在沉积碳酸盐岩于俯冲带中的行为,对于再循环入地球深部后沉积碳酸盐岩的研究较少,不利于我们全面认识深部碳循环。主要包括:俯冲入地幔后沉积碳酸盐岩于不同位置的行为差别;沉积碳酸盐岩对地幔行为的改造;地幔再循环沉积碳酸盐岩如何返回地表完成完整的碳循环;再循环沉积碳酸盐岩对地幔元素迁移及成矿作用的影响。今后深部碳循环的研究工作应主要集中在利用高温高压实验及天然样品理解再循环沉积碳酸盐岩在地幔中的变化及其对地幔的影响。
| [] | Adam J, Green T. 2001. Experimentally determined partition coefficients for minor and trace elements in peridotite minerals and carbonatitic melt, and their relevance to natural carbonatites. European Journal of Mineralogy, 13(5): 815–827. DOI:10.1127/0935-1221/2001/0013/0815 |
| [] | Ague J J, Nicolescu S. 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nature Geoscience, 7(5): 355–360. DOI:10.1038/ngeo2143 |
| [] | Ballhaus C, Berry R F, Green D H. 1990. Oxygen fugacity controls in the Earth's upper mantle. Nature, 348(6300): 437–440. DOI:10.1038/348437a0 |
| [] | Becker H, Altherr R. 1992. Evidence from ultra-high-pressure marbles for recycling of sediments into the mantle. Nature, 358(6389): 745–748. DOI:10.1038/358745a0 |
| [] | Behn M D, Kelemen P B, Hirth G, Hacker B R, Massonne H J. 2011. Diapirs as the source of the sediment signature in arc lavas. Nature Geoscience, 4(9): 641–646. DOI:10.1038/ngeo1214 |
| [] | Berkesi M, Guzmics T, Szabó C, Dubessy J, Bodnar R J, Hidas K, Ratter K. 2012. The role of CO2-rich fluids in trace element transport and metasomatism in the lithospheric mantle beneath the Central Pannonian Basin, Hungary, based on fluid inclusions in mantle xenoliths. Earth and Planetary Science Letters, 331-332: 8–20. |
| [] | Brey G P, Bulatov V K, Girnis A V. 2008. Geobarometry for peridotites:Experiments in simple and natural systems from 6 to 10 GPa. Journal of Petrology, 49(1): 3–24. |
| [] | Bulanova G P, Walter M J, Smith C B, Kohn S C, Armstrong L S, Blundy J, Gobbo L. 2010. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil:Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contributions to Mineralogy and Petrology, 160(4): 489–510. DOI:10.1007/s00410-010-0490-6 |
| [] | Caciagli N C, Manning C N. 2003. The solubility of calcite in water at 6-16 kbar and 500~800℃. Contributions to Mineralogy and Petrology, 146(3): 275–285. DOI:10.1007/s00410-003-0501-y |
| [] | Caldeira K, Kasting J F. 1992. Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds. Nature, 359(6392): 226–228. DOI:10.1038/359226a0 |
| [] | Cartigny P, Harris J W, Javoy M. 1998. Eclogitic diamond formation at jwaneng:No room for a recycled component. Science, 280(5368): 1421–1424. DOI:10.1126/science.280.5368.1421 |
| [] | Cartigny P. 2005. Stable isotopes and the origin of diamond. Elements, 1(2): 79–84. DOI:10.2113/gselements.1.2.79 |
| [] | Chacko T, Mayeda T K, Clayton R N, Goldsmith J R. 1991. Oxygen and carbon isotope fractionations between CO2 and calcite. Geochimica et Cosmochimica Acta, 55(10): 2867–2882. DOI:10.1016/0016-7037(91)90452-B |
| [] | Chen L H, Zeng G, Jiang S Y, Hofmann A W, Xu X S, Pan M B. 2009. Sources of Anfengshan basalts:Subducted lower crust in the Sulu UHP belt, China. Earth and Planetary Science Letters, 286(3-4): 426–435. DOI:10.1016/j.epsl.2009.07.006 |
| [] | Chepurov A I, Sonin V M, Zhimulev E I, Chepurov A A, Tomilenko A A. 2011. On the formation of element carbon during decomposition of CaCO3 at High P-T parameters under reducing conditions. Doklady Earth Sciences, 441(2): 1738–1741. DOI:10.1134/S1028334X11120233 |
| [] | Connolly J A D. 2005. Computation of phase equilibria by linear programming:A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 236(1-2): 524–541. DOI:10.1016/j.epsl.2005.04.033 |
| [] | Dalton J A, Wood B J. 1993. The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth and Planetary Science Letters, 119(4): 511–525. DOI:10.1016/0012-821X(93)90059-I |
| [] | Dasgupta R, Hirschmann M M, Withers A C. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth and Planetary Science Letters, 227(1-2): 73–85. DOI:10.1016/j.epsl.2004.08.004 |
| [] | Dasgupta R, Hirschmann M, Dellas N. 2005. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contributions to Mineralogy and Petrology, 149(3): 288–305. DOI:10.1007/s00410-004-0649-0 |
| [] | Dasgupta R, Hirschmann M M, McDonough W F, Spiegelman M, Withers A C. 2009. Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chemical Geology, 262(1-2): 57–77. DOI:10.1016/j.chemgeo.2009.02.004 |
| [] | Dasgupta R, Hirschmann M M. 2010. The deep carbon cycle and melting in Earth's interior. Earth and Planetary Science Letters, 298(1-2): 1–13. DOI:10.1016/j.epsl.2010.06.039 |
| [] | Deines P. 1968. The carbon and oxygen isotopic composition of carbonates from a mica peridotite dike near Dixonville, Pennsylvania. Geochimica et Cosmochimica Acta, 32(6): 613–625. DOI:10.1016/0016-7037(68)90052-5 |
| [] | Deines P. 2002. The carbon isotope geochemistry of mantle xenoliths. Earth-Science Reviews, 58(3-4): 247–278. DOI:10.1016/S0012-8252(02)00064-8 |
| [] | Deines P, Eggler D H. 2009. Experimental determination of carbon isotope fractionation between CaCO3 and graphite. Geochimica et Cosmochimica Acta, 73(24): 7256–7274. DOI:10.1016/j.gca.2009.09.005 |
| [] | Falkowski P, Scholes R J, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie F T, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Seitzinger V, Steffen W. 2000. The global carbon cycle:A test of our knowledge of earth as a system. Science, 290(5490): 291–296. DOI:10.1126/science.290.5490.291 |
| [] | Falloon T J, Green D H. 1989. The solidus of carbonated, fertile peridotite. Earth and Planetary Science Letters, 94(3-4): 364–370. DOI:10.1016/0012-821X(89)90153-2 |
| [] | Falloon T J, Green D H. 1990. Solidus of carbonated fertile peridotite under fluid-saturated conditions. Geology, 18(3): 195–199. DOI:10.1130/0091-7613(1990)018<0195:SOCFPU>2.3.CO;2 |
| [] | Foley S F. 2010. A Reappraisal of Redox Melting in the Earth's Mantle as a Function of Tectonic Setting and Time. Journal of Petrology, 52(7-8): 1363–1391. |
| [] | Frezzotti M L, Selverstone J, Sharp Z D, Compagnoni R. 2011. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nature Geoscience, 4(10): 703–706. DOI:10.1038/ngeo1246 |
| [] | Galvez M E, Beyssac O, Martinez I, Benzerara K, Chaduteau C, Malvoisin B, Malavieille J. 2013. Graphite formation by carbonate reduction during subduction. Nature Geosci, 6(6): 473–477. DOI:10.1038/ngeo1827 |
| [] | Gao C G, Liu Y S. 2008. Moissanite-bearing carbonatite xenoliths from Cenozoic basalt, North China:Products of ancient oceanic crust subduction?. Geochimica et Cosmochimica Acta, 72(12): A292. |
| [] | Ghosh S, Ohtani E, Litasov K D, Terasaki H. 2009. Solidus of carbonated peridotite from 10 to 20 GPa and origin of magnesiocarbonatite melt in the Earth's deep mantle. Chemical Geology, 262(1-2): 17–28. DOI:10.1016/j.chemgeo.2008.12.030 |
| [] | Gorman P J, Kerrick D M, Connolly J A D. 2006. Modeling open system metamorphic decarbonation of subducting slabs. Geochemistry, Geophysics, Geosystems, 7(4): Q4007. |
| [] | Grassi D, Schmidt M W. 2011a. Melting of carbonated pelites at 8~13 GPa:Generating K-rich carbonatites for mantle metasomatism. Contributions to Mineralogy and Petrology, 162(1): 169–191. DOI:10.1007/s00410-010-0589-9 |
| [] | Grassi D, Schmidt M W. 2011b. The melting of carbonated pelites from 70 to 700 km depth. Journal of Petrology, 52(4): 765–789. DOI:10.1093/petrology/egr002 |
| [] | Hammouda T. 2003. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth and Planetary Science Letters, 214(1-2): 357–368. DOI:10.1016/S0012-821X(03)00361-3 |
| [] | Hammouda T, Moine B N, Devidal J L, Vincent C. 2009. Trace element partitioning during partial melting of carbonated eclogites. Physics of the Earth and Planetary Interiors, 174(1-4): 60–69. DOI:10.1016/j.pepi.2008.06.009 |
| [] | Hanley J J, Gladney E R. 2011. The presence of carbonic-dominant volatiles during the crystallization of sulfide-bearing mafic pegmatites in the North Roby Zone, lac des iles Complex, Ontario. Economic Geology, 106(1): 33–54. DOI:10.2113/econgeo.106.1.33 |
| [] | Hazen R M, Schiffries C M. 2013. Why Deep Carbon?. Reviews in Mineralogy and Geochemistry, 75(1): 1–6. DOI:10.2138/rmg.2013.75.1 |
| [] | Hirose K, Fei Y W, Ma Y Z, Mao H K. 1999. The fate of subducted basaltic crust in the Earth's lower mantle. Nature, 397(6714): 53–56. DOI:10.1038/16225 |
| [] | Hoffman P F, Kaufman A J, Halverson G P, Schrag D P. 1998. A Neoproterozoic Snowball Earth. Science, 281(5381): 1342–1346. DOI:10.1126/science.281.5381.1342 |
| [] | Hou Z Q, Tian S H, Yuan Z X, Xie Y L, Yin S P, Yi L S, Fei H C, Yang Z M. 2006. The Himalayan collision zone carbonatites in western Sichuan, SW China:Petrogenesis, mantle source and tectonic implication. Earth and Planetary Science Letters, 244(1-2): 234–250. DOI:10.1016/j.epsl.2006.01.052 |
| [] | Hou Z Q, Tian S H, Xie Y L, Yang Z S, Yuan Z X, Yin S P, Yi L S, Fei H C, Zou T R, Bai G, Li X Y. 2009. The Himalayan Mianning-Dechang REE belt associated with carbonatite-alkaline complexes, eastern Indo-Asian collision zone, SW China. Ore Geology Reviews, 36(1-3): 65–89. DOI:10.1016/j.oregeorev.2009.03.001 |
| [] | Ishida H, Ogasawara Y, Ohsumi K, Saito A. 2003. Two stage growth of microdiamond in UHP dolomite marble from Kokchetav Massif, Kazakhstan. Journal of Metamorphic Geology, 21(6): 515–522. DOI:10.1046/j.1525-1314.2003.00459.x |
| [] | Javoy M, Pineau F, Allègre C J. 1982. Carbon geodynamic cycle. Nature, 300(5888): 171–173. DOI:10.1038/300171a0 |
| [] | Jones A P, Genge M, Carmody L. 2013. Carbonate melts and carbonatites. Reviews in Mineralogy and Geochemistry, 75(1): 289–322. DOI:10.2138/rmg.2013.75.10 |
| [] | Kaminsky F, Zakharchenko O, Davies R, Griffin W, Khachatryan-Blinova G, Shiryaev A. 2001. Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contributions to Mineralogy and Petrology, 140(6): 734–753. DOI:10.1007/s004100000221 |
| [] | Kelemen P B, Matter J, Streit E E, Rudge J F, Curry W B, Blusztajn J. 2011. Rates and mechanisms of mineral carbonation in peridotite:Natural processes and recipes for enhanced, in situ CO2 capture and storage. Annual Review of Earth and Planetary Sciences, 39(1): 545–576. DOI:10.1146/annurev-earth-092010-152509 |
| [] | Kerrick D M. 2001. Present and past nonanthropogenic CO2 degassing from the solid earth. Reviews of Geophysics, 39(4): 565–585. DOI:10.1029/2001RG000105 |
| [] | Kerrick D M, Connolly J A D. 2001. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature, 411(6835): 293–296. DOI:10.1038/35077056 |
| [] | Klemme S, Blundy J D, Wood BJ. 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta, 66(17): 3109–3123. DOI:10.1016/S0016-7037(02)00859-1 |
| [] | Kokh M A, Lopez M, Gisquet P, Lanzanova A, Candaudap F, Besson P, Pokrovski G S. 2016. Combined effect of carbon dioxide and sulfur on vapor-liquid partitioning of metals in hydrothermal systems. Geochimica et Cosmochimica Acta, 187: 311–333. DOI:10.1016/j.gca.2016.05.010 |
| [] | Lü Z, Bucher K, Zhang L F. 2013. Omphacite-bearing calcite marble and associated coesite-bearing pelitic schist from the meta-ophiolitic belt of Chinese western Tianshan. Journal of Asian Earth Sciences, 76: 37–47. DOI:10.1016/j.jseaes.2013.07.034 |
| [] | Litasov K D, Ohtani E. 2009. Phase relations in the peridotite-carbonate-chloride system at 7.0-16.5 GPa and the role of chlorides in the origin of kimberlite and diamond.. Chemical Geology, 262(1-2): 29–41. DOI:10.1016/j.chemgeo.2008.12.027 |
| [] | Liu Y S, He D T, Gao C G, Foley S, Gao S, Chu S, Hu Z C, Zong K Q, Chen H H. 2015. First direct evidence of sedimentary carbonate recycling in subduction-related xenoliths. Scientific Reports, 5: 11547. DOI:10.1038/srep11547 |
| [] | Manthilake M A G M, Sawada Y, Sakai S. 2008. Genesis and evolution of Eppawala carbonatites, Sri Lanka. Journal of Asian Earth Sciences, 32(1): 66–75. DOI:10.1016/j.jseaes.2007.10.015 |
| [] | Martin A M, Laporte D, Koga K T, Kawamoto T, Hammouda T. 2011. Experimental study of the stability of a dolomite + coesite assemblage in contact with peridotite:Implications for sediment-mantle interaction and diamond formation during subduction. Journal of Petrology, 53(2): 391–417. |
| [] | Maruoka T, Koeberl C, Matsuda J I, Syono Y. 2003. Carbon isotope fractionation between graphite and diamond during shock experiments. Meteoritics & Planetary Science, 38(8): 1255–1262. |
| [] | Matthews A, Kolodny Y. 1978. Oxygen isotope fractionation in decarbonation metamorphism:The Mottled Zone event. Earth and Planetary Science Letters, 39(1): 179–192. DOI:10.1016/0012-821X(78)90154-1 |
| [] | Mikhail S, Guillermier C, Franchi I A, Beard A D, Crispin K, Verchovsky A B, Jones A P, Milledge H J. 2014. Empirical evidence for the fractionation of carbon isotopes between diamond and iron carbide from the Earth's mantle. Geochemistry, Geophysics, Geosystems, 15(4): 855–866. DOI:10.1002/ggge.v15.4 |
| [] | Mohapatra R K, Honda M. 2006. ″Recycled″ volatiles in mantle-derived diamonds-Evidence from nitrogen and noble gas isotopic data. Earth and Planetary Science Letters, 252(1-2): 215–219. DOI:10.1016/j.epsl.2006.09.025 |
| [] | Molina J F, Poli S. 2000. Carbonate stability and fluid composition in subducted oceanic crust:An experimental study on H2O-CO2-bearing basalts. Earth and Planetary Science Letters, 176(3-4): 295–310. DOI:10.1016/S0012-821X(00)00021-2 |
| [] | Ogasawara Y, Ohta M, Fukasawa K, Katayama I, Maruyama S. 2000. Diamond-bearing and diamond-free metacarbonate rocks from Kumdy-Kol in the Kokchetav Massif, northern Kazakhstan. Island Arc, 9(3): 400–416. DOI:10.1046/j.1440-1738.2000.00285.x |
| [] | Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4): 325–394. DOI:10.1016/S0009-2541(97)00150-2 |
| [] | Poli S, Franzolin E, Fumagalli P, Crottini A. 2009. The transport of carbon and hydrogen in subducted oceanic crust:An experimental study to 5 GPa. Earth and Planetary Science Letters, 278(3-4): 350–360. DOI:10.1016/j.epsl.2008.12.022 |
| [] | Rauchenstein-Martinek K, Wagner T, Walle M, Heinrich C A. 2014. Gold concentrations in metamorphic fluids:A LA-ICPMS study of fluid inclusions from the Alpine orogenic belt. Chemical Geology, 385: 70–83. DOI:10.1016/j.chemgeo.2014.07.018 |
| [] | Ray J S, Ramesh R, Pande K. 1999. Carbon isotopes in Kerguelen plume-derived carbonatites:Evidence for recycled inorganic carbon. Earth and Planetary Science Letters, 170(3): 205–214. DOI:10.1016/S0012-821X(99)00112-0 |
| [] | Rohrbach A, Ballhaus C, Golla-Schindler U, Ulmer P, Kamenetsky V S, Kuzmin D V. 2007. Metal saturation in the upper mantle. Nature, 449(7161): 456–458. DOI:10.1038/nature06183 |
| [] | Rohrbach A, Schmidt M W. 2011. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling. Nature, 472(7342): 209–212. DOI:10.1038/nature09899 |
| [] | Santosh M, Omori S. 2008. CO2 flushing:A plate tectonic perspective. Gondwana Research, 13(1): 86–102. DOI:10.1016/j.gr.2007.07.003 |
| [] | Satish-Kumar M, So H, Yoshino T, Kato M. 2011. Experimental determination of carbon isotope fractionation between iron carbide melt and carbon:12C-enriched carbon in the Earth's core?. Earth and Planetary Science Letters, 310(3-4): 340–348. DOI:10.1016/j.epsl.2011.08.008 |
| [] | Scheele N, Hoefs J. 1992. Carbon isotope fractionation between calcite, graphite and CO2:An experimental study. Contributions to Mineralogy and Petrology, 112(1): 35–45. DOI:10.1007/BF00310954 |
| [] | Schertl H P, Okay A I. 1994. A coesite inclusion in dolomite in Dabie Shan, China:Petrological and rheological significance. European Journal of Mineralogy, 6(6): 995–1000. DOI:10.1127/ejm/6/6/0995 |
| [] | Shirey S B, Cartigny P, Frost D J, Keshav S, Nestola F, Nimis P, Pearson D G, Sobolev N V, Walter M J. 2013. Diamonds and the geology of mantle carbon. Reviews in Mineralogy and Geochemistry, 75(1): 355–421. DOI:10.2138/rmg.2013.75.12 |
| [] | Sleep N H, Zahnle K. 2001. Carbon dioxide cycling and implications for climate on ancient Earth. Journal of Geophysical Research, 106(E1): 1373–1399. DOI:10.1029/2000JE001247 |
| [] | Storey M, Duncan R A, Swisher C C. 2007. Paleocene-eocene thermal maximum and the opening of the northeast atlantic. Science, 316(5824): 587–589. DOI:10.1126/science.1135274 |
| [] | Suito K, Namba J, Horikawa T, Taniguchi Y, Sakurai N, Kobayashi M, Onodera A, Shimomura O, Kikegawa T. 2001. Phase relations of CaCO3 at high pressure and high temperature. American Mineralogist, 86(9): 997–1002. DOI:10.2138/am-2001-8-906 |
| [] | Thomsen T B, Schmidt M W. 2008. Melting of carbonated pelites at 2.5-5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth and Planetary Science Letters, 267(1-2): 17–31. DOI:10.1016/j.epsl.2007.11.027 |
| [] | Thomson A R, Walter M J, Kohn S C, Brooker R A. 2016. Slab melting as a barrier to deep carbon subduction. Nature, 529(7584): 76–79. DOI:10.1038/nature16174 |
| [] | Tsuno K, Dasgupta R, Danielson L, Righter K. 2012. Flux of carbonate melt from deeply subducted pelitic sediments:Geophysical and geochemical implications for the source of Central American volcanic arc. Geophysical Research Letters, 39(16): L16307. |
| [] | Wallace M E, Green D H. 1988. An experimental determination of primary carbonatite magma composition. Nature, 335(6188): 343–346. DOI:10.1038/335343a0 |
| [] | Walter M J, Bulanova G P, Armstrong L S, Keshav S, Blundy J D, Gudfinnsson G, Lord O T, Lennie A R, Clark S M, Smith C B, Gobbo L. 2008. Primary carbonatite melt from deeply subducted oceanic crust. Nature, 454(7204): 622–625. DOI:10.1038/nature07132 |
| [] | Walter M J, Kohn S C, Araujo D, Bulanova G P, Smith C B, Gaillou E, Wang J, Steele A, Shirey S B. 2011. Deep mantle cycling of oceanic crust:Evidence from diamonds and their mineral inclusions. Science, 334(6052): 54–57. DOI:10.1126/science.1209300 |
| [] | Walters A S, Goodenough K M, Hughes H S R, Roberts N M W, Gunn A G, Rushton J, Lacinska A. 2013. Enrichment of Rare Earth Elements during magmatic and post-magmatic processes:A case study from the Loch Loyal Syenite Complex, northern Scotland. Contributions to Mineralogy and Petrology, 166(4): 1177–1202. DOI:10.1007/s00410-013-0916-z |
| [] | Xiong X L, Adam J, Green T H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt:Implications for TTG genesis. Chemical Geology, 218(3-4): 339–359. DOI:10.1016/j.chemgeo.2005.01.014 |
| [] | Yaxley G M, Green D H. 1994. Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime. Earth and Planetary Science Letters, 128(3-4): 313–325. DOI:10.1016/0012-821X(94)90153-8 |
| [] | Yaxley G M, Brey G P. 2004. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa:Implications for petrogenesis of carbonatites.. Contributions to Mineralogy and Petrology, 146(5): 606–619. DOI:10.1007/s00410-003-0517-3 |
| [] | Zhai Q G, Zhang R Y, Jahn B M, Li C, Song S G, Wang J. 2011. Triassic eclogites from central Qiangtang, northern Tibet, China:Petrology, geochronology and metamorphic P-T path. Lithos, 125(1-2): 173–189. DOI:10.1016/j.lithos.2011.02.004 |
| [] | Zhang R Y, Liou J G, Ernst W G, Coleman R G, Coleman N V, Shatsky V S. 1997. Metamorphic evolution of diamond-bearing and associated rocks from the Kokchetav Massif, northern Kazakhstan. Journal of Metamorphic Geology, 15(4): 479–496. DOI:10.1111/j.1525-1314.1997.00035.x |
2017, Vol. 36

