深部地球的主要物相都是名义上无水矿物(nominally anhydrous minerals, NAMs), 即理想化学式中不含H的矿物, 如辉石、橄榄石及其高压变体。研究表明, H能够以缺陷的形式进入NAMs晶格中, 与O形成O-H键, 地质学上习惯称之为“水”。天然和合成样品的研究表明NAMs是构成深部地球最主要的水储库(如, Bell and Rossman, 1992; Kohlstedt et al., 1996; 夏群科等, 1998, 2007; 夏群科, 2000; Beran and Libowitzky, 2006; Skogby, 2006; Xia et al., 2013a, 2013b; Pearson et al., 2014), 而且Keppler(2014)认为地幔过渡带可能存在着一个3倍于地表海洋总水量的“隐形海洋”。这些以缺陷形式存在的水会显著影响地幔矿物的许多物理化学性质, 如导电性、弹性、辐射传热等(Hofmeister, 2004; Jacobsen and Smyth, 2006; Karato, 2006; Wang et al., 2006; Mao et al., 2011; Thomas et al., 2012; Wang et al., 2014)。总之, NAMs中水的发现是上个世纪90年代以来地球科学领域最重要的进展之一, NAMs中水的研究已经成为地球科学领域的前沿和热点之一。过去的二十几年里, 人们对地球深部NAMs中水含量及其对矿物乃至岩石系统的宏观效应的认识取得了长足进展, 但有关水效应背后的微观机制依然模糊不清。并且根据水对矿物电导率的影响, 由地球物理观察的电导率所推测的水的浓度存在争议(如, Karato and Wang, 2013; Yoshino and Katsura, 2013)。Karato(2015)认为这些分歧的原因除了实验条件的差别外, 更可能是源于OH结合(incorporate)和迁移(migrate)机理的复杂性。地球深部是高温高压的环境, 但是目前对NAMs中水的认识多是基于常温常压下的观察, 于是产生这样的问题: 能否用常温常压下获得的NAMs中水的信息解释深部地球环境下矿物的性质?已经有一些工作表明NAMs中的水在高压下的行为不同于常压(例如, Cynn and Hofmeister, 1994; Panero et al., 2013; Yang et al., 2014), 但是对其在高温下的信息依然匮乏。因此, 为了全面认识地球深部性质, 非常有必要对地球深部NAMs的结构和性质进行高温下的研究。
原位高温分子光谱能够直接测量地球内部物质在高温下的分子光谱, 揭示矿物在高温下的电子吸收、分子振动和转动特征, 进而有效地指示物质宏观性质和微观过程。杨燕等(2011)简单总结了原位变温红外光谱在名义上无水矿物中“水”的研究中的应用, 但是只局限于O-H振动光谱的应用。结合相关文献的报道和笔者最近的工作进展, 本文按照波谱频率高低的顺序, 从电子吸收到分子振动再到分子转动。首先简单介绍原位高温分子光谱在含水硅酸盐矿物和玻璃研究中的应用, 然后主要介绍其在研究名义上无水矿物中的应用, 旨在让更多的学者对矿物高温分子光谱有所了解, 从而能够在分子级尺度上认识深部地球性质和动力学过程。
1 原位高温分子光谱光和物质相互作用时, 分子中的电子能级、分子振动和转动能级发生跃迁, 对光产生的发射、吸收或散射。其中, 电子能级间距最大, 对应的波长范围750~200 nm, 由电子能级的跃迁而产生的光谱叫紫外-可见光谱。其次是振动能级间距, 对应的波长范围2.5~25 μm, 由振动能级的跃迁所产生的光谱叫中红外光谱, 也称振动光谱。最小是转动能级间距, 对应的波长范围25~600 μm, 由转动能级的跃迁所产生的光谱叫远红外光谱, 也称转动光谱。分子光谱包括紫外-可见光谱、红外光谱、拉曼光谱和荧光光谱, 是了解物质微观结构的重要工具。
原位高温分子光谱就是测量物质在高温环境下与光的相互作用。所用的高温装置为高热台, 利用的是电热板或电热丝加热, 温度可高达几百度, 甚至上千度。例如, 比较常用的热台有Linkam公司的TS1500, 最高温度可达1500℃, 还有Instec公司的HS系列热台, 最高温度也能达到1500℃。了解物质的分子光谱随温度的变化有2种方式: 淬火实验和原位高温观察。淬火实验使用的是熔炉(furnace), 先把熔炉预热到所需的温度, 然后样品放进去一段时间后, 拿出来在空气中淬火, 快速冷却, 再测谱图。因为样品又是在室温下测量的, 所以只有当加热过程中样品发生了不可逆变化, 光谱图才能有所体现。原位高温使用的是高热台和显微分子光谱仪连用, 实时测量样品在每个温度下的光谱图, 从而能够观察到淬火实验所不能观察到的可逆和细微的变化。
Hawthorne(1988)早在1988年就综述了光谱法在矿物学和地质学中的应用, 但由于实验技术有限, 这个综述仅限于常温常压的结果。随着高温装置和显微分子光谱仪的开发, 原位高温配接分子光谱的研究方兴未艾。Neuville等(2014)综述了原位高温实验的方法。原位高温分子光谱最早是材料科学领域用来研究玻璃(Wedding, 1975; Stein et al., 1981)和材料的(Aronson et al., 1970; Shankland et al., 1979)的热导率, 在地质上则广泛被用于含水硅酸盐矿物和玻璃的研究(例如, Okumura and Nakashima, 2004; Prasad et al., 2005; Watenphul et al., 2010; Le Losq and Neuville, 2013; Sawai et al., 2013; Zhang et al., 2016)。
2 含水硅酸盐矿物和玻璃的原位高温分子光谱 2.1 原位高温近-中红外光谱: 脱水机理和动力学相比较淬火实验, 原位高温实验测量脱水有以下优点: 能够在高温下直接分析脱水, 并且获得相应温度下的动力学数据。其中最大的优点是能够区别不同的水组分(water species)和观察到过程的变化。Prasad等(2005)以及Prasad和Prasad(2007)分别对架状硅酸盐矿物辉沸石和中沸石中进行原位高温红外光谱测量, 发现辉沸石在155~377℃内出现的新吸收峰(4550 cm-1), 认为脱水机理包括T-O-T链断裂而产生OH基团这一过程, 而中沸石的脱水过程包括3个阶段: 引发(197℃)、部分脱水(237℃)、完全脱水(377℃)。Zhang等(2006, 2010a, 2010b)依据白云母、绢云母与滑石等层状硅酸盐的原位高温红外光谱, 没有发现分子H2O的振动特征, 因而认为这些矿物中H是以H+或OH-而不是分子H2O的形式扩散的。基于红外显微镜的无损分析, Tokiwai和Nakashima(2010)对白云母片进行原位高温红外光谱测量, 获得了H的扩散系数。Sawai等(2013)通过对叶蛇纹石的原位高温红外光谱分析, 得到了比较高的H的扩散系数, 而且发现不同的占位的H的扩散系数和活化能差别不大, 该结果表明蛇纹石的快速脱水能够引发与俯冲板块相关的中源地震。硅酸盐玻璃或熔体中水的扩散对理解火山喷发的岩浆上升过程至关重要, 因此大量的工作致力于研究其中水的扩散系数和机制。利用原位高温红外光谱, Okumura和Nakashima(2004)报道了流纹岩玻璃中水的扩散系数, 和前人通过淬火实验得到的结果一致, 证明原位高温红外光谱是研究高温下脱水的快速有效的方法。接着, Okumura和Nakashima(2006)利用原位高温红外光谱测量了玄武岩、安山岩和英安岩玻璃中水的扩散系数。
2.2 原位高/低温近-中红外光谱: 水的红外吸收系数的温度依赖性如前所述, 原位高温红外光谱是研究高温下脱水动力学的快速有效的方法。那么, 利用朗伯比尔定律对高温下的水进行定量计算时, 能否选用常温下水的红外吸收系数?Keppler和Bagdassarov(1993)对已知水含量(300×10-3)的流纹岩玻璃加热到1300℃, 然后原位测量不同温度下的红外光谱, 结果发现其中水的红外吸收系数是随着温度而变化的。然而他们只报道了OH 3570 cm-1峰的温度依赖性。Withers和Behrens(1999)利用原位变温红外光谱测量温度为100 K和300 K时钠长石玻璃和流纹岩玻璃中水的近红外光谱, 计算出不同温度下的总水、OH、H2O的线性和积分摩尔吸收系数, 结果发现从300 K降到100 K时, 总水的线性摩尔吸收系数和积分摩尔吸收系数分别降低了16%~20%和30%。Okumura和Nakashima(2005)利用原位变温红外光谱实验报道了流纹岩玻璃中OH(4500 cm-1)和分子H2O(5230 cm-1)在室温和400~600℃下的吸收系数, 结果表明OH(4500 cm-1)的吸收系数几乎不受温度影响, 而分子H2O(5230 cm-1)的吸收系数却随着温度的升高而急剧下降。不仅是玻璃中水的红外吸收系数体现出温度依赖性, 磷灰石、滑石、绢云母、叶蜡石等层状硅酸盐矿物的原位低温(20~300 K)红外光谱表明, 随着温度的升高, OH基频振动的红外吸收系数减小, 而组频和倍频具有不同的温度依赖性(Zhang et al., 2007)。同样, 金云母中水的红外吸收系数也表现出随温度的变化(Zhang et al., 2016)。总而言之, 玻璃和含水矿物中水的红外吸收系数均体现出温度依赖性, 并且不同的振动吸收具有不同的温度依赖性, 因此, 在根据原位高温红外光谱利用朗伯比尔定律计算玻璃和含水矿物中水在高温下的含量时, 应该选择适当温度下水的红外吸收系数。
2.3 原位高/低温远红外和拉曼光谱: 相变利用原位高温远红外光谱, Zhang等(2006)发现滑石中的晶格振动随温度的不连续变化, 并且失去层状结构的特征。Trittschack等(2012)和Trittschack和Grobéty(2013)通过对利蛇纹石的原位高温拉曼光谱测量, 观察到了蛇纹石到橄榄石转化过程中的中间体。而白云母和金云母的远红外光谱随温度的变化则揭示了晶格局部构型的变化, 没有观察到结构相变(Zhang et al., 2010a, 2016)。
3 NAMs的原位高温分子光谱 3.1 原位高温可见-近红外光谱: 地幔的辐射传热地球内部热的传递方式包括对流、热传导和辐射。热传导是通过声子传热的, 而辐射是通过光子的发射和吸收传热, 这些过程可以利用物质的可见-近红外光谱间接测量。地幔矿物大部分是铁镁质的, 铁属于过渡元素, 原子结构中存在空的d轨道, 受配位场的作用会发生能级分裂, 电子在这些d-d能级间的跃迁产生紫外-可见-近红外光谱(例如, Fe2+: 5T2g-5Eg)。此外, 用电磁辐射照射化合物时, 电子从给予体向与接受体相联系的轨道上进行电荷迁移跃迁(例如, Fe2+-Fe3+), 也能产生紫外-可见光谱。早期的高压可见-近红外光谱实验表明, 地幔的大部分矿物在高压下变得不透明(Mao and Bell, 1972;Mao, 1976), 所以, 地幔的辐射传热一直以来未被人们重视。随着原位高压技术的发展, 最近几年地幔矿物的原位高压可见-近红外光谱实验表明辐射传热在地幔传热方式中占据重要的地位(Keppler and Smyth, 2005; Goncharov et al., 2006, 2008; Keppler et al., 2007, 2008; Thomas et al., 2012)。
3.1.1 无水NAMs的原位高温可见-近红外光谱透明物质的辐射传热对高温下的热传递有着显著的贡献, 并且最早用于分析星球内部和热玻璃的传热(Rosseland, 1930; Gardon, 1961)。直到Clark(1957)把黑体辐射定律应用到计算矿物的辐射传热, 研究者们开始通过地球深部矿物(主要是橄榄石)在高温下的可见-近红外吸收来估算地球内部的辐射传热(Fukao et al., 1968; Fukao, 1969; Aronson et al., 1970; Shankland et al., 1979)。然而, 这些工作用平均吸收系数来估算辐射传热, 认为辐射传热只和温度有关。Hofmeister(2005)考虑到不同峰位的吸收系数(frequency dependent absorption coefficient), 对原来公式进行了修订, 根据橄榄石的原位高温可见-近红外光谱(图 1), 估算了样品颗粒大小、温度和铁含量对上地幔辐射传热的影响。目前, 过渡带和下地幔的辐射传热估算主要是依据NAMs的原位高压可见-近红外光谱(Keppler and Smyth, 2005; Goncharov et al., 2006, 2008; Keppler et al., 2007, 2008), 但欠缺高温下的数据。
|
图 1 橄榄石的原位高温可见-近红外光谱图修改自Hofmeister, 2005) Figure 1 In situ high temperature visible-near IR spectra of forsterite(modified after Hofmeister, 2005) |
由于地幔是含水的, 水是否影响地幔的辐射传热?迄今为止, 相关报道非常有限。Hofmeister(2004)对含水的橄榄石进行原位高温红外光谱分析, 发现OH的吸收能够提高上地幔的辐射传热。而Thomas等(2012)对含水的过渡带矿物林伍德石和瓦兹利石进行的原位高温高压紫外-可见-红外光谱测量结果表明, 通过OH吸收峰对Fe离子的电子吸收的影响, 得出无水的瓦兹利石和林伍德石比含水样品的辐射传热分别高出40%和33%(图 2)。很显然, 这2组有关水对地幔矿物辐射传热的影响的方法需要进一步改善, 最好能够分别测量无水和含水的样品的电子吸收光谱来进行比较。
|
图 2 水对过渡带辐射传热的影响(修改自Thomas et al., 2012) Figure 2 Effect of water on radiative heat transfer in the transition zone(modified after Thomas et al., 2012) |
如前所述, H一般以点缺陷形式(空位、替位和填隙)进入矿物晶体中(图 3), 例如, 不等价替换(Si4++O2-+1/2H2→Al3++OH-)、M空位、Si4+空位等。由于H的高度活动性, 地球深部温度压力下, 其在矿物晶体中的位置可能会不同于常温常压(Karato, 2006)。因为水显著影响NAMs的力学性质, 所以地球内部重大过程的发生离不开水的驱动。为了深入理解水作为驱动力的微观机制, 必须了解水在NAMs中的结合机理, 尤其是在高温高压下的结合机理。随着原位高压技术的发展, 已经有些工作是利用金刚石压腔配接显微红外或拉曼光谱仪关注于NAMs中的OH在高压下状态(例如, Cynn and Hofmeister, 1994; Kleppe et al., 2002, 2006; Panero et al., 2013)。然而, 人们对NAMs中的H在高温下状态的认识欠缺, 迄今相关的报道还屈指可数。
|
图 3 MX晶体结构中点缺陷示意图(大球和小球分别代表阴离子X和阳离子M) Figure 3 Schematic representation of point defects in a crystal of composition MX(The balls represent cations and anions) |
Yang等(2011)对金红石进行原位变温红外光谱测量, 发现随着温度的改变, 金红石中的两组OH峰也分别发生强度的增强和减弱, 并且得出间隙位的H在高温下占主导, 而与三价铁耦合的H在低温下占主导的结论(图 4)。橄榄石的原位高温红外光谱表明橄榄石中的3612 cm-1峰只能在低温下稳定存在(Yang and Keppler, 2011);林伍德石的原位高温红外光谱同样显示随着温度的升高, H原子在晶体结构中发生重新排列(Mrosko et al., 2013)。Yang等(2015a)报道了长石中OH的原位变温红外光谱, 发现H在200℃发生迁移, 高温下以弱氢键的H占主导, 而低温下以强氢键的H占主导。以上结果表明在探讨H对地球内部岩石系统的影响机制时, 必须要依据矿物中H在高温下真实的状态来分析。
|
图 4 金红石中OH的原位变温红外光谱图(修改自Yang et al., 2011) Figure 4 In situ FTIR spectra of rutile at varying temperatures(modified after Yang et al., 2011) |
H以不同的结合机理进入到NAMs晶格缺陷中。例如, 单斜辉石的红外光谱图中主要有3组OH吸收峰: 3630~3640 cm-1, 3530~3540 cm-1和3460 cm-1。Skogby等(1990)发现第1组峰的吸收强度与三价离子数呈正相关关系, 对应的H和O2结合, 指向邻近的O3(Beran, 1976; Skogby et al., 1990)。第2组峰与Fe或Al有关(Skogby, 1994; Peslier et al., 2002; Koch-Müller et al., 2004), 第3组峰与M2位的空位数正相关(Smyth et al., 1991; Katayama and Nakashima, 2003; Koch-Müller et al., 2004; Katayama et al., 2005), 这2组峰对应的OH取向相同, 但是有着不同的结构环境, H的占位有着多种可能性(Koch-Müller et al., 2004;Bromiley et al., 2004;Andrut et al., 2007)。相比之下, 橄榄石中OH的结合机理更为复杂。天然橄榄石中有50组OH峰(Miller et al., 1987; Matsyuk and Langer, 2004), 可以分为高波数(3650~3450 cm-1)和低波数组(低于3400 cm-1), 这些OH峰对应的结合机理多达4种: Mg空位(3300~3100 cm-1, Berry et al., 2005; Lemaire et al., 2004; Walker et al., 2007)、Si空位(3650~3450 cm-1, Walker et al., 2007)、Ti缺陷(3572 and 3525 cm-1, Berry et al., 2005, 2007a; Walker et al., 2007), 以及三价离子缺陷(3400~3300 cm-1, Berry et al., 2007b)。
可见, NAMs中的多组OH峰的结合机理十分复杂。单斜辉石(透辉石、普通辉石、绿辉石)、斜方辉石中OH的原位变温红外光谱表明, 无论是峰位还是峰强, 不同的OH峰有着不同的温度依赖性(Yang et al., 2010, 2012)。这些工作初步揭示了不同结合机理的OH有着不同的温度依赖行为。因此, 在考虑水对NAMs物理性质的影响的时候, 不能笼统地把不同结合机理的水混合在一块讨论它们的影响机制。Yang和Keppler(2011)对橄榄石进行的原位高温红外光谱测量, 同样发现高波数和低波数组的OH的温度依赖性差别较大。为了更精确地研究不同NAMs中不同OH峰的温度依赖性, Yang等(2015a)选择其中3组OH峰信号特征非常明显的透辉石进行原位变温红外光谱测量, 结果发现随着温度的升高, 3645 cm-1峰的峰位向低波数移动, 3464 cm-1峰的峰位几乎不变, 而3361 cm-1峰的峰位向高波数移动(图 5)。对其进行原位高温(1000℃)红外光谱测量, 发现这3组OH峰的热稳定性相差极大: 3361 cm-1峰对应的OH很快就发生脱水, 而3645 cm-1峰对应的OH在1000℃依然能稳定保存(Yang and Xia, 2016)。因此, 无论是高温下的晶体化学环境还是热稳定性, 不同结合机理的OH有着不同的特点。这些工作提醒笔者在关注水的宏观效应的时候应该细化不同结合机理的OH的角色。随着实验技术的提高和对NAMs认识的加深, 已经有些工作开始关注不同结合机理的OH的行为, 例如, Kovács等(2010)给出了橄榄石中不同结合机理的OH的红外吸收系数(site-specific IR absorption coefficient);Padrón-Navarta等(2014)得出了橄榄石中不同结合机理的OH的扩散系数(site-specific diffusion coefficient);最近, Ferriss等(2016)提出了单斜辉石中不同结合机理的OH的扩散系数。笔者相信会有越来越多的工作细化不同结合机理的OH对矿物性质的影响, 从而更精确地反演地球内部性质和动力学过程。
|
图 5 透辉石中不同OH峰的不同的温度依赖性(修改自Yang et al., 2015a) Figure 5 Site-specific temperature dependence of OH in diopside (modified after Yang et al., 2015a) |
晶格振动是晶体中的原子在格点附近的振动, 振动的频率在远红外波段, 因此远红外光谱和拉曼光谱被广泛用来研究固体的晶格振动。晶格振动与许多物理性质有关, 如: 热学性质、光学性质、电学性质以及结构相变等。矿物的热力学性质是建立矿物相平衡关系的前提(Stixrude and Lithgow-Bertelloni, 2005, 2010, 2011; Saxena, 2010; Wentzcovitch et al., 2010)。地幔矿物的热力学性质是追寻地球物理所观察到的地震波不连续性的起源, 建立地球深部物质组成和反演地球动力学过程的依据(例如, Stixrude and Lithgow-Bertelloni, 2007; Saikia et al., 2008; Yu et al., 2013; Holland et al., 2013; Arafin, 2015; Boukaré et al., 2015)。由于晶体的热力学性质是晶格振动的宏观体现, 地幔矿物热力学性质的计算主要依据晶体的晶格振动特征(例如, Kolesov and Geiger, 2004; Stixrude and Lithgow-Bertelloni, 2010; Metsue and Tsuchiya, 2011; Jacobs et al., 2013; Wu, 2015; Yang et al., 2015b; De La Pierre and Belmonete, 2016)。
3.3.1 无水NAMs在高温下的晶格振动在过去的十几年, 许多研究是利用第一性原理或密度泛函理论计算镁橄榄石、林伍德石、瓦兹利石、方镁石、钙钛矿、后钙钛矿、钛铁矿等地幔矿物的振动光谱和热力学性质(Karki et al., 2000a, 2000b, 2000c; Tsuchiya et al., 2004, 2005; Yu and Wentzcovitch, 2006; Li et al., 2007; Wu and Wentzcovitch, 2007, 2009; Wu, 2010; Hernandez et al., 2015; De La Pierre and Belmonete, 2016)。理论计算方法的最大优点是能够囊括实验技术所达不到的极端温压条件。但是理论计算的参数极为复杂、结果也需与实验结果相对照, 才能获得可信的结论。Chopelas(1990a, 1990b, 1990c)和Chopelas等(1994)利用原位高压拉曼光谱获得了地幔矿物镁橄榄石、林伍德石、方镁石、钛铁矿的晶格振动模式随压力的变化, 计算出格林艾森常数、热熔、熵。随着高温技术的发展, 人们开始测量矿物的原位高温远红外和拉曼光谱, 利用高温下的晶格振动特征来推算热力学性质。Gillet等(1991, 1997)和Eckes等(2013)根据镁橄榄石的拉曼光谱在高温下的变化, 计算出镁橄榄石在上地幔温度下的格林艾森常数和热熔。Reynard等(1996)对瓦兹利石进行原位高温拉曼光谱测量, 并且根据晶格振动随温度的变化得出格林艾森常数、非谐常数和热熔。Zucker和Shim(2009)根据顽火辉石的原位高温拉曼光谱, 报道了晶格振动的非谐常数对热熔的影响。
3.3.2 水对NAMs在高温下晶格振动的影响晶体中的点缺陷可使其周围原子偏离正常排列, 并显著影响晶体的晶格振动特征(Maradudian, 1965)。由于水是以点缺陷形式存在于上地幔和过渡带的NAMs晶格中, 所以, 理论上水应该会影响NAMs的晶格振动。截至目前, 仅有少数工作报道了含水的镁橄榄石、瓦兹利石和林伍德石在高温或高压下的晶格振动(Cynn and Hofmeister, 1994; Liu et al., 1998; Kleppe et al., 2002, 2006; Hushur et al., 2009; Yang et al., 2015b)。这些工作表明, 和无水矿物相比, 水对常温常压下矿物晶格振动的影响不大, 但是却显著影响这些矿物晶格在高温或高压下的振动特征。因此, 这些微量水对真实地幔环境下与矿物晶格振动有关的性质有着不可忽略的影响。笔者对合成的含水的上地幔矿物镁橄榄石进行了原位高温(到1000℃)拉曼光谱研究(Yang et al., 2015b)并和无水的橄榄石相比, 结果表明水能够降低镁橄榄石的等压格林艾森常数。结合前人所报道的等温格林艾森常数(Hushur et al., 2009)和热膨胀系数(Ye et al., 2009), 得出水降低镁橄榄石晶格振动的非谐性(图 6), 并且使等容热熔提高11%的初步结论。这是通过水对地幔矿物的晶格振动的影响来制约其热力学性质的初次报道。
|
图 6 水对橄榄石晶格振动非谐常数的影响(修改自Yang et al., 2015b) Figure 6 Effect of water on anharmonic properties of forstertie (modified after Yang et al., 2015b) |
本文按照光谱频率的高低顺序, 从电子吸收光谱到分子振动光谱再到分子转动光谱, 主要介绍了原位高温分子光谱在研究名义上无水矿物中的应用: 研究地幔的辐射传热, 地球深部温度下NAMs中水的状态, 以及地幔的热力学性质。可见, 原位高温分子光谱是联系物质宏观性质和微观过程的重要纽带。由于地球内部处于高温的环境, 利用原位高温分子光谱研究地球内部组成和性质会得到越来越多的关注和应用。基于地球组成的复杂性, 目前还有以下方面存在不足: ①利用原位高温可见-近红外光谱地幔的辐射传热极少考虑水的影响, 并且矿物成分单一(例如, 没有辉石和石榴石的相关报道);②关于NAMs中水在高温下的行为的工作比较初步、不系统, 而且利用原位高温中红外光谱只局限于NAMs中OH的研究;③利用原位高温远红外光谱和拉曼光谱目前主要用于研究热力学性质。鉴于此, 原位高温分子光谱在NAMs中的应用还有许多值得开发: 水对地幔辐射传热的影响;化学成分对NAMs中OH在高温下行为的影响;还可以推广到其他与晶格振动有关的性质, 例如相变。
致谢: 感谢刘文娣绘制图件。
| [] | Andrut M, Wildner M, Ingrin J, Beran A. 2007. Mechanisms of OH defect incorporation in naturally occurring, hydrothermally formed diopside and jadeite. Physics and Chemistry of Minerals , 34 (8) : 543–549. DOI:10.1007/s00269-007-0169-3 |
| [] | Arafin S. 2015. Thermophysical properties and phase changes in the upper mantle. International Journal of thermophysics , 36 (10-11) : 3005–3016. DOI:10.1007/s10765-015-1957-5 |
| [] | Aronson J R, Bellotti L H, Eckroad S W, Emslie A G, McConnel R K, Von ThVng P C. 1970. Infrared spectra and radiative thermal conductivity of minerals at high temperatures. Journal of Geophysical Research , 75 (17) : 3443–3456. DOI:10.1029/JB075i017p03443 |
| [] | Bell D R, Rossman G R. 1992. Water in Earth's mantle:The role of nominally anhydrous minerals. Science , 255 (5050) : 1391–1397. DOI:10.1126/science.255.5050.1391 |
| [] | Beran A. 1976. Messung des ultrarot-pleochroismus von mineralen. XIV. der pleochroismus der OH-streckfrequenz in diopsid. Tschermaks MineralogischePetrographische Mitteilungen , 23 (2) : 79–85. |
| [] | Beran A, Libowitzky E. 2006. Water in natural mantle minerals Ⅱ:Olivine, garnet and accessory minerals. In:Keppler H, Smyth J R(eds). Water in Nominally Anhydrous Minerals. Reviews in Mineralogy and Geochemistry , 62 : 169–191. |
| [] | Berry A J, Hermann J, O'Neill H St C, Foran G J. 2005. Fingerprinting the water site in mantle olivine. Geology , 33 (11) : 869–872. DOI:10.1130/G21759.1 |
| [] | Berry A J, Walker M A, Hermann J, O'Neill H St C, Foran G J, Gale J D. 2007a. Titanium substitution mechanisms in forsterite. Chemical Geology , 242 (1-2) : 176–186. DOI:10.1016/j.chemgeo.2007.03.010 |
| [] | Berry A J, O'Neill H St C, Hermann J, Scott D R. 2007b. The infrared signature of water associated with trivalent cations in olivine. Earth and Planetary Science Letters , 261 (1-2) : 134–142. DOI:10.1016/j.epsl.2007.06.021 |
| [] | Boukaré C E, Ricard Y, Fiquet G. 2015. Thermodynamics of the MgO-FeO-SiO2 system up to 140 GPa:Application to the crystallization of Earth's magma ocean. Journal of Geophysical Research:Solid Earth , 120 (9) : 6085–6101. DOI:10.1002/2015JB011929 |
| [] | Bromiley G D, Keppler H, McCammon C, Bromiley F A, Jacobsen S D. 2004. Hydrogen solubility and speciation in natural, gem-quality chromian diopside. American Mineralogist , 89 (7) : 941–949. DOI:10.2138/am-2004-0703 |
| [] | Chopelas A. 1990a. Thermal properties of forsterite at mantle pressures derived from vibrational spectroscopy. Physics and Chemistry of Minerals , 17 (2) : 149–156. |
| [] | Chopelas A. 1990b. Thermal expansion, heat capacity, and entropy of MgO at mantle pressures. Physics and Chemistry of Minerals , 17 (2) : 142–148. |
| [] | Chopelas A. 1990c. Thermodynamic parameters of solids at high pressures from vibrational spectroscopy:MgO and MgAl2O4. High Pressure Research , 5 (1-6) : 711–713. DOI:10.1080/08957959008246235 |
| [] | Chopelas A, Boehler R, Ko J. 1994. Thermodynamics and behavior of γ-Mg2SiO4 at high pressure:Implications for Mg2SiO4 phase equilibrium. Physics and Chemistry of Minerals , 21 (6) : 351–359. |
| [] | Clark S P. 1957. Absorption spectra of some silicates in the visible and near infrared. American Mineralogist , 43 : 732–742. |
| [] | Cynn H, Hofmeister A M. 1994. High-pressure IR spectra of lattice modes and OH vibrations in Fe-bearing wadsleyite. Journal of Geophysical Research , 99 (B9) : 17717–17727. DOI:10.1029/94JB01661 |
| [] | Daniel I, Guyot F, Gillet P. 1997. Anharmonic properties of Mg2SiO4-forsterite measured from the volume dependence of the Raman spectrum. European Journal of Mineralogy , 9 (2) : 255–262. DOI:10.1127/ejm/9/2/0255 |
| [] | De La Pierre M, Belmonte D. 2016. Ab initio investigation of majorite and pyrope garnets:Lattice dynamics and vibrational spectra. American Mineralogist , 101 (1) : 162–174. DOI:10.2138/am-2016-5382 |
| [] | Eckes M, Gibert B, De Sousa Meneses D, Malki M, Echegut P. 2013. High-temperature infrared properties of forsterite. Physics and Chemistry of Minerals , 40 (4) : 287–298. DOI:10.1007/s00269-013-0570-z |
| [] | Ferriss E, Plank T, Walker D. 2016. Site-specific hydrogen diffusion rates during clinopyroxene dehydration. Contributions to Mineralogy and Petrology , 171 : 55. DOI:10.1007/s00410-016-1262-8 |
| [] | Fukao Y, Mizutani H, Uyeda S. 1968. Optical absorption spectra at high temperatures and radiative thermal conductivity of olivines. Physics of the Earth and Planetary Interiors , 1 (2) : 57–62. DOI:10.1016/0031-9201(68)90050-2 |
| [] | Fukao Y. 1969. On the radiative heat transfer and the thermal conductivity in the upper mantle. Bulletin of the Earthquake Research Institute, University of Tokyo , 47 : 549–569. |
| [] | Gardon R. 1961. A review of radiant heat transfer in glass. Journal of the American Ceramic Society , 44 (7) : 305–312. DOI:10.1111/jace.1961.44.issue-7 |
| [] | Gillet P, Richet P, Guyot F, Fiquet G. 1991. High-temperature thermodynamic properties of forsterite. Journal of Geophysical Research , 96 (B7) : 11805–11816. DOI:10.1029/91JB00680 |
| [] | Goncharov A F, Struzhkin V V, Jacobsen S D. 2006. Reduced radiative conductivity of low-spin(Mg, Fe)O in the lower mantle. Science , 312 (5777) : 1205–1208. DOI:10.1126/science.1125622 |
| [] | Goncharov A F, Haugen B D, Struzhkin W, Beck P, Jacobsen S D. 2008. Radiative conductivity in the Earth's lower mantle. Nature , 456 (7219) : 231–234. DOI:10.1038/nature07412 |
| [] | Hawthorne F C. 1988. Spectroscopic Methods in Mineralogy and Geology. Reviews in Mineralogy, Volume 18. Mineralogical Society of America |
| [] | Hernández E R, Brodholt J, Alfè D. 2015. Structural, vibrational and thermodynamic properties of Mg2SiO4 and MgSiO3 minerals from first-principles simulations. Physics of the Earth and Planetary Interiors , 240 : 1–24. DOI:10.1016/j.pepi.2014.10.007 |
| [] | Hofmeister A M. 2004. Enhancement of radiative transfer in the upper mantle by OH-in minerals. Physics of the Earth and Planetary Interiors , 146 (3-4) : 483–495. DOI:10.1016/j.pepi.2004.05.007 |
| [] | Hofmeister A M. 2005. Dependence of diffusive radiative transfer on grain-size, temperature, and Fe-content:Implications for mantle processes. Journal of Geodynamics , 40 (1) : 51–72. DOI:10.1016/j.jog.2005.06.001 |
| [] | Holland T J B, Hudson N F C, Powell R, Harte B. 2013. New thermodynamic models and calculated phase equilibria in NCFMAS for basic and ultrabasic compositions through the transition zone into the uppermost lower mantle. Journal of Petrology , 54 (9) : 1901–1920. DOI:10.1093/petrology/egt035 |
| [] | Hushur A, Manghnani M H, Smyth J R, Nestola F, Frost D J. 2009. Crystal chemistry of hydrous forsterite and its vibrational properties up to 41 GPa. American Mineralogist , 94 (5-6) : 751–760. DOI:10.2138/am.2009.2990 |
| [] | Jacobs M, Schmid-Fetzer R, Van Den Berg A. 2013. An alternative use of Kieffer's lattice dynamics model using vibrational density of states for constructing thermodynamic databases. Physics and Chemistry of Minerals , 40 (3) : 207–227. DOI:10.1007/s00269-012-0562-4 |
| [] | Jacobsen S D, Smyth J R. 2006. Effect of water on the sound velocities of ringwoodite in the transition zone. In:Jacobsen S D, Van Der Lee S(eds). Earth's Deep Water Cycle. Washington D C:American Geophysical Union |
| [] | Karato S. 2006. Influence of hydrogen-related defects on the electrical conductivity and plastic deformation of mantle minerals:A critical review. In:Jacobsen S D, Van Der Lee S(eds). Earth's Deep Water Cycle. Washington D C:American Geophysical Union |
| [] | Karato S, Wang D. 2013. Electrical conductivity of minerals and rocks. In: Karato S, Ed. Physics and Chemistry of the Deep Earth. New York:Wiley-Blackwell: 145 -182. |
| [] | Karato S I. 2015. Some notes on hydrogen-related point defects and their role in the isotope exchange and electrical conductivity in olivine. Physics of the Earth and Planetary Interiors , 248 : 94–98. DOI:10.1016/j.pepi.2015.08.007 |
| [] | Karki B B, Wentzcovitch R M, De Gironcoli S, Baroni S. 2000a. Ab initio lattice dynamics of MgSiO3 perovskite at high pressure. Physical Review B , 62 (22) : 14750–14756. DOI:10.1103/PhysRevB.62.14750 |
| [] | Karki B B, Wentzcovitch R M, De Gironcoli S, Baroni S. 2000b. High-pressure lattice dynamics and thermoelasticity of MgO. Physical Review B , 61 (13) : 8793–8800. DOI:10.1103/PhysRevB.61.8793 |
| [] | Karki B B, Duan W, Da Silva C R S, Wentzcovitch R M. 2000c. Ab initio structure of MgSiO3 ilmenite at high pressure. American Mineralogist , 85 (2) : 317–320. DOI:10.2138/am-2000-2-309 |
| [] | Katayama I, Nakashima S. 2003. Hydroxyl in clinopyroxene from the deep subducted crust:Evidence for H2O transport into the mantle. American Mineralogist , 88 (1) : 229–234. DOI:10.2138/am-2003-0126 |
| [] | Katayama I, Nakashima S, Yurimoto H. 2005. Water content in natural eclogite and implication for water transport into the deep upper mantle. Lithos , 86 (3-4) : 245–259. |
| [] | Keppler H, Bagdassarov N S. 1993. High-temperature FTIR spectra of H2O in rhyolite melt to 1300℃. American Mineralogist , 78 (12) : 1324–1327. |
| [] | Keppler H, Smyth J R. 2005. Optical and near infrared spectra of ringwoodite to 21. 5 GPa:Implications for radiative heat transport in the mantle. American Mineralogist , 90 (7) : 1209–1212. |
| [] | Keppler H, Kantor I, Dubrovinsky L S. 2007. Optical absorption spectra of ferropericlase to 84 GPa. American Mineralogist , 92 (2-3) : 433–436. DOI:10.2138/am.2007.2454 |
| [] | Keppler H, Dubrovinsky L S, Narygina O, Kantor I. 2008. Optical absorption and radiative thermal conductivity of silicate perovskite to 125 Gigapascals. Science , 322 (5907) : 1529–1532. DOI:10.1126/science.1164609 |
| [] | Keppler H. 2014. Geology:Earth's deep water reservoir. Nature , 507 (7491) : 174–175. DOI:10.1038/507174a |
| [] | Kleppe A K, Jephcoat A P, Smyth J R. 2002. Raman spectroscopic study of hydrous γ-Mg2SiO4 to 56. 5 GPa. Physics and Chemistry of Minerals , 29 (7) : 473–476. DOI:10.1007/s00269-002-0255-5 |
| [] | Kleppe A K, Jephcoat A P, Smyth J R. 2006. High-pressure Raman spectroscopic study of Fo90 hydrous wadsleyite. Physics and Chemistry of Minerals , 32 (10) : 700–709. DOI:10.1007/s00269-005-0048-8 |
| [] | Koch-Müller M, Matsyuk S, Wirth B. 2004. Hydroxyl in omphacites and omphacitic clinopyroxenes of upper mantle to lower crustal origin beneath the Siberian platform. American Mineralogist , 89 (7) : 921–931. DOI:10.2138/am-2004-0701 |
| [] | Kohlstedt D L, Keppler H, Rubie D C. 1996. Solubility of water in the α, β and γ phases of(Mg, Fe)2SiO4. Contributions to Mineralogy and Petrology , 123 (4) : 345–357. DOI:10.1007/s004100050161 |
| [] | Kolesov B A, Geiger C A. 2004. A Raman spectroscopic study of Fe-Mg olivines. Physics and Chemistry of Minerals , 31 (3) : 142–154. DOI:10.1007/s00269-003-0370-y |
| [] | Kovács I, O'Neill H St C, Hermann J, Hauri E H. 2010. Site-specific infrared O-H absorption coefficients for water substitution into olivine. American Mineralogist , 95 (2-3) : 292–299. DOI:10.2138/am.2010.3313 |
| [] | Le Losq C, Neuville D R. 2013. Effect of the Na/K mixing on the structure and the rheology of tectosilicate silica-rich melts. Chemical Geology , 346 : 57–71. DOI:10.1016/j.chemgeo.2012.09.009 |
| [] | Lemaire C, Kohn S C, Brooker R A. 2004. The effect of silica activity on the incorporation mechanisms of water in synthetic forsterite:A polarised infrared spectroscopic study. Contributions to Mineralogy and Petrology , 147 (1) : 48–57. DOI:10.1007/s00410-003-0539-x |
| [] | Li L, Wentzcovitch R M, Weidner D J, Da Silva C R S. 2007. Vibrational and thermodynamic properties of forsterite at mantle conditions. Journal of Geophysical Research , 112 (B5) : B05206. |
| [] | Liu L G, Mernagh T P, Lin C C, Xu J A, Inoue T. 1998. Raman spectra of hydrous β-Mg2SiO4 at various pressures and temperatures. In:Manghnani M H, Yagi T(eds). Properties of Earth and Planetary Materials at High Pressure and Temperature. Washington, D C:American Geophysical Union, 523-530 |
| [] | Mao H K, Bell P M. 1972. Electrical conductivity and the red shift of absorption in olivine and spinel at high pressure. Science , 176 (4033) : 403–406. DOI:10.1126/science.176.4033.403 |
| [] | Mao H K. 1976. Charge-transfer processes at high pressure. In:Strens R G J, Ed. The Physics and Chemistry of Minerals and Rocks. London:Wiley, 573-581 |
| [] | Mao Z, Jacobsen S D, Frost D J, McCammon C A, Hauri E H, Duffy T S. 2011. Effect of hydration on the single-crystal elasticity of Fe-bearing wadsleyite to 12 GPa. American Mineralogist , 96 (10) : 1606–1612. DOI:10.2138/am.2011.3807 |
| [] | Maradudin A A. 1965. Some effects of point defects on the vibrations of crystal lattices. Reports on Progress in Physics , 28 (1) : 331–380. DOI:10.1088/0034-4885/28/1/310 |
| [] | Matsyuk S S, Langer K. 2004. Hydroxyl in olivines from mantle xenoliths in kimberlites of the Siberian platform. Contributions to Mineralogy and Petrology , 147 (4) : 413–437. DOI:10.1007/s00410-003-0541-3 |
| [] | Metsue A, Tsuchiya T. 2011. Lattice dynamics and thermodynamic properties of(Mg, Fe2+)SiO3 postperovskite. Journal of Geophysical Research , 116 (B8) : B08207. |
| [] | Miller G H, Rossman G R, Harlow G E. 1987. The natural occurrence of hydroxide in olivine. Physics and Chemistry of Minerals , 14 (5) : 461–472. DOI:10.1007/BF00628824 |
| [] | Mrosko M, Lenz S, McCammon C, Taran M, Wirth R, Koch-Müller M. 2013. Hydrogen incorporation and the oxidation state of iron in ringwoodite:A spectroscopic study. American Mineralogist , 98 (4) : 629–636. DOI:10.2138/am.2013.4245 |
| [] | Neuville DR, Hennet L, Florian P, De Ligny F. 2014. In situ high-temperature experiments. Reviews in Mineralogy and Geochemistry , 78 (1) : 779–800. DOI:10.2138/rmg.2013.78.19 |
| [] | Okumura S, Nakashima S. 2004. Water diffusivity in rhyolitic glasses as determined by in situ IR spectroscopy. Physics and Chemistry of Minerals , 31 (3) : 183–189. DOI:10.1007/s00269-004-0383-1 |
| [] | Okumura S, Nakashima S. 2005. Molar absorptivities of OH and H2O in rhyolitic glass at room temperature and at 400~600℃. American Mineralogist , 90 (2-3) : 441–447. DOI:10.2138/am.2005.1740 |
| [] | Okumura S, Nakashima S. 2006. Water diffusion in basaltic to dacitic glasses. Chemical Geology , 227 (1-2) : 70–82. DOI:10.1016/j.chemgeo.2005.09.009 |
| [] | Padrón-Navarta J A, Hermann J, O'Neill H St C. 2014. Site-specific hydrogen diffusion rates in forsterite. Earth and Planetary Science Letters , 392 : 100–112. DOI:10.1016/j.epsl.2014.01.055 |
| [] | Panero W R, Smyth J R, Pigott J S, Liu Z X, Frost D J. 2013. Hydrous ringwoodite to 5 K and 35 GPa:Multiple hydrogen bonding sites resolved with FTIR spectroscopy. American Mineralogist , 98 : 637–642. DOI:10.2138/am.2013.3978 |
| [] | Pearson D G, Brenker F E, Nestola F, McNeill J, Nasdala L, Hutchison M T, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L. 2014. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature , 507 (7491) : 221–224. DOI:10.1038/nature13080 |
| [] | Peslier A H, Luhr J F, Post J. 2002. Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge. Earth and Planetary Science Letters , 201 (1) : 69–86. DOI:10.1016/S0012-821X(02)00663-5 |
| [] | Prasad P S R, Prasad K S, Murthy S R. 2005. Dehydration of natural stilbite:An in situ FTIR study. American Mineralogist , 90 (10) : 1636–1640. DOI:10.2138/am.2005.1747 |
| [] | Prasad P S R, Prasad K S. 2007. Dehydration and rehydration of mesolite:An in situ FTIR study. Microporous and Mesoporous Materials , 100 (1-3) : 287–294. DOI:10.1016/j.micromeso.2006.11.012 |
| [] | Reynard B, Takir F, Guyot F, Gwanmesia G D, Liebermann R C, Gillet P. 1996. High-temperature Raman spectroscopic and X-ray diffraction study of beta-Mg2SiO4:Insights into its high-temperature thermodynamic properties and the beta-to alpha-phase-transition mechanism and kinetics. American Mineralogist , 81 (5-6) : 585–594. DOI:10.2138/am-1996-5-605 |
| [] | Rosseland S. 1930. The principles of quantum theory. In:Eberhard G, Kohlschütter A, Luddendorff H, Milne E A, Pannekoek A, Rosseland S, Westphal W, eds. Handbuch der Astrophysikv. New York:Springer, 351-473 |
| [] | Saikia A, Frost D J, Rubie D C. 2008. Splitting of the 520-kilometer seismic discontinuity and chemical heterogeneity in the mantle. Science , 319 (5869) : 1515–1518. |
| [] | Sawai M, Katayama I, Hamada A, Maeda M, Nakashima S. 2013. Dehydration kinnetics of antigorite using in situ high-temperature infrared microspectroscopy. Physics and Chemistry of Minerals , 40 (4) : 319–330. DOI:10.1007/s00269-013-0573-9 |
| [] | Saxena S K. 2010. Thermodynamic modeling of the Earth's interior. Elememts , 6 (5) : 321–325. |
| [] | Shankland T J, Nitsan V, Duba A G. 1979. Optical absorption and radiative heat transport in olivine at high temperature. Journal of Geophysical Research , 84 (B4) : 1603–1610. DOI:10.1029/JB084iB04p01603 |
| [] | Skogby H, Bell D R, Rossman G R. 1990. Hydroxide in pyroxene:Variations in the natural environment. American Mineralogist , 75 (7-8) : 767–774. |
| [] | Skogby H. 1994. OH incorporation in synthetic clinopyroxene. American Mineralogist , 79 (3-4) : 240–249. |
| [] | Skogby H. 2006. Water in natural mantle minerals I:Pyroxenes. In:Keppler H, Smyth J R(eds). Water in Nominally Anhydrous Minerals. Reviews in Mineralogy and Geochemistry, Washington, D C:Mineralogical Society of America and Geochemical Society , 62 : 155–167. |
| [] | Smyth J R, Bell D R, Rossman G R. 1991. Incorporation of hydroxyl in upper-mantle clinopyroxenes. Nature , 351 (6329) : 732–735. DOI:10.1038/351732a0 |
| [] | Stein J, Shankland T J, Nitsan U. 1981. Radiative thermal conductivity in obsidian and estimates of heat transfer in magma bodies. Journal of Geophysical Research , 86 (B5) : 3684–3688. DOI:10.1029/JB086iB05p03684 |
| [] | Stixrude L, Lithgow-Bertelloni C. 2005. Thermodynamics of mantle minerals-I. Physical properties. Geophysical Journal International , 162 (2) : 610–632. DOI:10.1111/gji.2005.162.issue-2 |
| [] | Stixrude L, Lithgow-Bertelloni C. 2007. Influence of phase transformations on lateral heterogeneity and dynamics in Earth's mantle. Earth and Planetary Science Letters , 263 (1-2) : 45–55. DOI:10.1016/j.epsl.2007.08.027 |
| [] | Stixrude L, Lithgow-Bertelloni C. 2010. Thermodynamics of the earth's mantle. Reviews in Mineralogy and Geochemistry , 71 (1) : 465–484. DOI:10.2138/rmg.2010.71.21 |
| [] | Stixrude L, Lithgow-Bertelloni C. 2011. Thermodynamics of mantle minerals-Ⅱ. Phase equilibria. Geophysical Journal International , 184 (3) : 1180–1213. |
| [] | Thomas S M, Bina C R, Jacobsen S D, Goncharov A F. 2012. Radiative heat transfer in a hydrous mantle transition zone. Earth and Planary Science Letters , 357-358 : 130–136. DOI:10.1016/j.epsl.2012.09.035 |
| [] | Tokiwai K, Nakashima S. 2010. Dehydration kinetics of muscovite by in situ infrared microspectroscopy. Physics and Chemistry of Minerals , 37 (2) : 91–101. DOI:10.1007/s00269-009-0313-3 |
| [] | Trittschack R, Grobéty B, Koch-Müller M. 2012. In situ high-temperature Raman and FTIR spectroscopy of the phase transformation of lizardite. American Mineralogist , 97 (11-12) : 1965–1976. DOI:10.2138/am.2012.4162 |
| [] | Trittschack R, Grobéty B. 2013. The dehydroxylation of chrysotile:A combined in situ micro-Raman and micro-FTIR study. American Mineralogist , 98 (7) : 1113–1145. |
| [] | Tsuchiya J, Tsuchiya T, Wentzcovitch R M. 2005. Vibrational and thermodynamic properties of MgSiO3 postperovskite. Journal of Geophysical Research , 110 (B2) : B02204. |
| [] | Tsuchiya T, Caracas R, Tsuchiya J. 2004. First principles determination of the phase boundaries of high-pressre polymorphs of silica. Geophysical Research Letters , 31 (11) : L11610. |
| [] | Walker A M, Hermann J, Berry A J, O'Neill H St C. 2007. Three water sites in upper mantle olivine and the role of titanium in the water weakening mechanism. Journal of Geophysical Research:Solid Earth , 112 (B5) : B05211. DOI:10.1029/2006JB004620 |
| [] | Wang D J, Mookherjee M, Xu Y S, Karato S I. 2006. The effect of water on the electrical conductivity of olivine. Nature , 443 (7114) : 977–980. DOI:10.1038/nature05256 |
| [] | Wang Q, Bagdassarov N, Xia Q K, Zhu B B. 2014. Water contents and electrical conductivity of peridotite xenoliths from the North China Craton:Implications for water distribution in the upper mantle. Lithos , 189 : 105–126. DOI:10.1016/j.lithos.2013.08.005 |
| [] | Watenphul A, Libowitzky E, Wunder B, Gottschalk M. 2010. The OH site in topaz:An IR spectroscopic investigation. Physics and Chemistry of Minerals , 37 (9) : 653–664. DOI:10.1007/s00269-010-0365-4 |
| [] | Wedding B. 1975. Measurements of high-temperature absorption coefficients of glasses. Journal of the American Ceramic Society , 58 (3-4) : 102–105. DOI:10.1111/jace.1975.58.issue-3-4 |
| [] | Wentzcovitch R M, Yu Y G, Wu Z Q. 2010. Thermodynamic properties and phase relations in mantle minerals investigated by first principles quasiharmonic theory. Reviews in Mineralogy and Geochemistry , 71 (1) : 59–98. DOI:10.2138/rmg.2010.71.4 |
| [] | Withers A C, Behrens H. 1999. Temperature-induced changes in the NIR spectra of hydrous albitic and rhyolitic glasses between 300 and 100 K. Physics and Chemistry of Minerals , 27 (2) : 119–132. DOI:10.1007/s002690050248 |
| [] | Wu Z Q, Wentzcovitch R M. 2007. Vibrational and thermodynamic properties of wadsleyite:A density functional study. Journal of Geophysical Research , 112 (B12) : B12202. DOI:10.1029/2007JB005036 |
| [] | Wu Z Q, Wentzcovitch R M. 2009. Effective semiempirical ansatz for computing anharmonic free energies. Physical Review B , 79 (10) : 104304. DOI:10.1103/PhysRevB.79.104304 |
| [] | Wu Z Q. 2010. Calculating the anharmonic free energy from first principles. Physical Review B , 81 (17) : 172301. DOI:10.1103/PhysRevB.81.172301 |
| [] | Wu Z Q. 2015. Thermodynamic properties of wadsleyite with anharmonic effect. Earthquake Science , 28 (1) : 11–16. DOI:10.1007/s11589-015-0110-7 |
| [] | Xia Q K, Hao Y T, Liu S C, Gu X Y, Feng M. 2013a. Water contents of the Cenozoic lithospheric mantle beneath the western part of the North China Craton:Peridotite xenolith constraints. Gondwana Research , 23 (1) : 108–118. DOI:10.1016/j.gr.2012.01.010 |
| [] | Xia Q K, Liu J, Liu S C, Kovács I, Feng M, Dang L. 2013b. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth and Planetary Science Letters , 361 : 85–97. DOI:10.1016/j.epsl.2012.11.024 |
| [] | Yang X Z, Keppler H. 2011. In-situ infrared spectra of OH in olivine to 1100℃. American Mineralogist , 96 (2-3) : 451–454. DOI:10.2138/am.2011.3717 |
| [] | Yang X Z, Keppler H, Dubrovinsky L, Kurnosov A. 2014. In-situ infrared spectra of hydroxyl in wadsleyite and ringwoodite at high pressure and temperature. American Mineralogist , 99 (4) : 724–729. DOI:10.2138/am.2014.4634 |
| [] | Yang Y, Xia Q K, Feng M, Zhan P P. 2010. Temperature dependence of IR absorption of OH species in clinopyroxene. American Mineralogist , 95 (10) : 1439–1443. DOI:10.2138/am.2010.3501 |
| [] | Yang Y, Xia Q K, Feng M, Gu X Y. 2011. In situ FTIR investigations at varying temperatures on hydrous components in rutile. American Mineralogist , 96 (11-12) : 1851–1855. DOI:10.2138/am.2011.3826 |
| [] | Yang Y, Xia Q K, Feng M, Liu S C. 2012. OH in natural orthopyroxene:An in situ FTIR investigation at varying temperatures. Physics and Chemistry of Minerals , 39 (5) : 413–418. DOI:10.1007/s00269-012-0496-x |
| [] | Yang Y, Xia Q, Zhang P. 2015a. Evolutions of OH groups in diopside and feldspars with temperature. European Journal of Mineral , 27 (2) : 185–192. DOI:10.1127/ejm/2015/0027-2424 |
| [] | Yang Y, Wang Z P, Smyth J R, Liu J, Xia Q K. 2015b. Water effects on the anharmonic properties of forsterite. American Mineralogist , 100 (10) : 2185–2190. DOI:10.2138/am-2015-5241 |
| [] | Yang Y, Xia Q. 2016. In situ high temperature FTIR specroscopic investigation of OH in clinopyroxene to 1000℃. In preparation for American Mineralogist. |
| [] | Ye Y, Schwering R A, Smyth J R. 2009. Effects of hydration on thermal expansion of forsterite, wadsleyite, and ringwoodite at ambient pressure. American Mineralogist , 94 (7) : 899–904. DOI:10.2138/am.2009.3122 |
| [] | Yoshino T, Katsura T. 2013. Electrical conductivity of mantle minerals:Role of water in conductivity anomalies. Annual Review of Earth and Planetary Sciences , 41 : 605–628. DOI:10.1146/annurev-earth-050212-124022 |
| [] | Yu Y G, Wentzcovitch R M. 2006. Density functional study of vibrational and thermodynamic properties of ringwoodite. Journal of Geophysical Research , 111 (B12) : B12202. |
| [] | Yu Y G, Vinograd V L, Winkler B, Wentzcovitch R M. 2013. Phase equilibria of(Mg, Fe)2SiO4 at the Earth's upper mantle conditions from first-principles studies. Physics of the Earth and Planetary Interiors , 217 : 36–47. DOI:10.1016/j.pepi.2013.01.004 |
| [] | Zhang M, Hui Q, Lou X J, Redfem S A T, Salje E K H, Tarantino S C. 2006. Dehydroxylation, proton migration, and structural changes in heated talc:An infrared spectroscopic study. American Mineralogist , 91 (5-6) : 816–825. DOI:10.2138/am.2006.1945 |
| [] | Zhang M, Salje E K H, Carpenter M A, Wang J Y, Groat L A, Lager G A, Wang L, Beran A, Bismayer U. 2007. Temperature dependence of IR absorption of hydrous/hydroxyl species in minerals and synthetic materials. American Mineralogist , 92 (8-9) : 1502–1517. DOI:10.2138/am.2007.2586 |
| [] | Zhang M, Redfem S A T, Salje E K H, Carpenter M A, Hayward C L. 2010a. Thermal behavior of vibrational phonons and hydroxyls of muscovite in dehydroxylation:In situ high-temperature infrared spectroscopic investigations. American Mineralogist , 95 (10) : 1444–1457. DOI:10.2138/am.2010.3472 |
| [] | Zhang M, Redfem S A T, Salje E K H, Carpenter M A, Wang L. 2010b. H2O and the dehydroxylation of phyllosilicates:An infrared spectroscopic study. American Mineralogist , 95 (11-12) : 1686–1693. DOI:10.2138/am.2010.3561 |
| [] | Zhang M, Tarantino S C, Su W, Lou X J, Ren X B, Salje E K H, Carpenter M A, Redfern S A T. 2016. Phonons, OH vibrations, and structural modifications of phlogopite at high temperatures:An in-situ infrared spectroscopic study. American Mineralogist , 101 (8) : 1873–1883. DOI:10.2138/am-2016-5630 |
| [] | Zucker R, Shim S H. 2009. In situ Raman spectroscopy of MgSiO3 enstatite up to 1550 K. American Mineralogist , 94 (11-12) : 1638–1646. DOI:10.2138/am.2009.3210 |
| [] | 夏群科, 陈道公, 郭立鹤. 1998. 女山幔源单斜辉石巨晶中的结构OH. 科学通报 , 43 (16) : 1764–1767. |
| [] | 夏群科. 2000. 上地幔矿物中的氢. 地学前缘 , 7 (1) : 160. |
| [] | 夏群科, 杨晓志, 郝艳涛, 盛英明, 李佩. 2007. 深部地球中水的分布和循环. 地学前缘 , 14 (2) : 10–23. |
| [] | 杨燕, 夏群科, 冯敏. 2011. 名义上无水矿物中"水"的原位变温红外光谱研究. 岩石学报 , 27 (2) : 566–578. |
2017, Vol. 36
