矿物岩石地球化学通报  2016, Vol. 35 Issue (4): 789-799   PDF    
海底蛇纹岩化伴生的碳酸盐岩研究进展
冯俊熙1 , 罗敏1,2 , 胡钰1,2 , 陈多福1,2     
1 中国科学院 广州地球化学研究所, 边缘海地质重点实验室, 广州 510640;
2 上海海洋大学 海洋科学学院, 深渊科学技术研究中心, 上海 201306
摘要: 现代海洋环境中超基性岩广泛发生蛇纹岩化,导致富氢气(H2)和无机成因甲烷(CH4)的流体渗漏活动和化能自养生物群的发育,该过程常伴有自生碳酸盐岩和水镁石沉积的形成。本文综述了现代不同海洋环境(洋中脊、弧前泥火山与海沟等)与海底蛇纹岩化有关的碳酸盐岩的地质地球化学及标志性生物特征,介绍了自生碳酸盐岩及其中生物标志物研究无机成因CH4记录的研究现状以及古代蛇纹岩化相关的碳酸盐岩的地质地球化学特征,指出了该领域存在的关键问题以及研究重点。
关键词: 蛇纹岩化      自生碳酸盐岩      CH4      微生物作用     
Progress of the Research on Authigenic Carbonates Associated with Oceanic Serpentinization
FENG Jun-xi1, LUO Min1,2, HU Yu1,2, CHEN Duo-fu1,2     
1 Key Laboratory of Marginal Sea Geology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
2 Hadal Science and Technology Research Center, College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
Abstract: Serpentinization of ultramafic rocks, occurred widely in the modern ocean, results in the venting of hydrogen and abiogenic methane-rich fluids, thedevelopment of chemosynthetic communities, and the formation of authigenic carbonates and brucite. This paper has comprehensively reviewed the geological, geochemical and biomarker characteristics of authigenic carbonates associated with the serpentinization of ultramafic rocks in different modern oceanic settings(mid-ocean ridges, forearc of subduction zones and trench slope), introduced the research status of record of abiogenic methane in the authigenic carbonates and their biomarkers, and the geological and geochemical characteristics of the carbonates associated with the acient serpentinization, and finally pointed out some critical problems and key issues of the research in this discipline.
Key words: serpentinization     authigenic carbonates     methane     microbial acitivity    

蛇纹岩化是指超基性岩的一种水热蚀变,产物主要为蛇纹石、水镁石、滑石、磁铁矿和H2(Mg1.8Fe0.2SiO4+1.37H2O → 0.5Mg3Si2O5(OH)4+0.3Mg(OH)2+0.067Fe3O4+0.067H2)。在此过程中,橄榄石和辉石中释放出的Fe2+被氧化成Fe3+,同时水中的氢被还原为H2并释放还原能,然后以Fe-Ni合金、铬铁矿和含Co磁铁矿等为催化剂,H2与体系中的CO2通过费托反应(CO2+ H2 →(1/n)CnHm+2H2O)或萨巴蒂尔反应(CO2+4H2 → CH4+2H2O)生成无机成因CH4和低分子量烷烃化合物(Proskurowski et al.,2008Bradley and Summons,2010)。蛇纹岩化通常发生在缓慢扩张的洋中脊、俯冲带及大陆蛇绿岩等环境。在这些环境中,超基性岩分别与循环海水、俯冲板块脱水流体及大气降水反应,形成富含CH4、H2的流体。海底蛇纹岩化流体向上渗漏并与下渗海水混合,在海底附近形成碳酸盐岩和水镁石等自生沉淀,并发育有由微生物席、贻贝、蛤、虾和螃蟹等组成的化能自养生物群(Schrenk et al.,2013)。古代蛇纹岩化流体活动常记录在大陆造山带蛇绿岩系富碳酸盐的蛇纹岩中(常称为蛇绿质碳酸盐岩)(Campbell et al.,2002Lavoie and Chi,2010)。

蛇纹岩化产生无机成因烷烃等有机物,可能为地球最早的生命系统——化能自养生物群落提供初始物质和能量。对蛇纹岩流体系统的深入研究,有助于进一步理解地球与地外行星生命的起源与演化(Parnell et al.,2010Schrenk et al.,2013)。此外,蛇纹岩化产生的无机成因烷烃具有巨大的资源潜力与环境效应。估计全球的蛇纹岩化可产生H2约(4.5~9)×1013t,CH4约2×1013t,其总量在数量级上大于世界上已知的所有油气资源(Dmitriev et al.,2000)。蛇纹岩化伴生的碳酸盐岩在全球碳循环中也颇为重要,估算每年约有(1.1~2.7)×1012g的来自深部微生物的有机碳和来自海水的无机碳存储在大洋蛇纹岩中,其中30%~40%的碳主要以碳酸盐的形式被固定在最上层20~50 m的部分(Schwarzenbach et al.,2013)。因此,研究蛇纹岩化过程中碳的转换,有助于深入认识全球碳循环过程。

综上所述,海底蛇纹岩流体系统研究具有重要意义,是国际地质学的前沿课题之一,但目前国内对该研究领域的了解并不多。因此,本文综合国外研究的最新成果,对蛇纹岩伴生碳酸盐岩的地质地球化学特征进行介绍,以推动我国科学界对该领域的研究。

1 现代海底蛇纹岩化伴生的碳酸盐岩 1.1 慢速-超慢速洋中脊 1.1.1 矿物学与岩石学

在慢速-超慢速扩张洋中脊的侧翼,大洋岩石圈可通过拆离断层出露海底而形成大洋核杂岩,从而与海水和幔源CO2反应,产生H2、CH4和Ca2+,形成富含Ca2+、CH4、H2及低含量CO2和金属元素的中温(约40~90℃)碱性热液流体,如位于大西洋洋中脊轴部以西15 km的Lost City热液场(Kelley et al.,20012005)。此外,在扩张轴上岩浆热液活动常与蛇纹岩化同时发生,并形成富含CH4、H2、Ca2+和金属元素的高温(>300℃)酸性热液流体,如大西洋洋中脊的Logatchev和Rainbow热液场(Charlou et al.,2002Schmidt et al.,2007)。

洋中脊蛇纹岩化热液流体向海底渗漏过程中与海水混合,导致自生碳酸盐岩沉淀和化能自养生物群的发育。这些自生碳酸盐岩常以烟囱、结壳、脉和胶结物等形式产出(图 1a1d)(Kelley et al.,2005Ludwig et al.,2006Lein et al.,2007a,2007bLartaud et al.,20102011Andreani et al.,2014)。自生碳酸盐脉包括围岩破裂过程中同期形成的方解石脉和后期形成的文石脉(Bonatti et al.,19741980Ribeiro da Costa et al.,2008Eickmann et al.,2009a2009bBach et al.,2011)。热液活动区发育有稠密的化能自养生物群,主要有微生物席、腹足类、片脚类、多毛类、线虫类、介形虫类、双壳类和蛤类等(Kelly et al.,2005Lartaud et al.,20102011)。

图 1 现代和古代海洋蛇纹岩化伴生碳酸盐岩的主要产状特征 Figure 1 Modes of occurence of authigenic carbonates associated with modern and ancient oceanic serpentinization (a)~(d)为Lost City热液场活动和不活动渗漏结构(Ludwig et al.,2006):(a)基底蛇纹岩裂隙中的碳酸盐岩;(b)白色蜂窝状碳酸盐烟囱,正在渗漏pH为10.7的91℃流体;(c)固结程度高的深褐色碳酸盐烟囱;(d)由倒塌的烟囱碎片组成的岩堆。(e)~(g)为马里亚纳弧前蛇纹岩海山上的烟囱(Fryer et al.,2006Fryer,2012),(e)Conical海山上10 m高的碳酸盐烟囱。(f)Quaker海山顶部断层崖上直径1~3 cm的螺旋状碳酸盐烟囱。(g)Pacman海山东南端1~10 cm高的水镁石烟囱。(h)马里亚纳南部海沟陡坡上的Shinkai渗漏场海底疑似烟囱的碎块(Ohara et al.,2012);(i)加拿大RPOM蛇绿混杂岩中的蛇绿质碳酸盐岩,空隙中充填有层状泥晶(白色笔尖)和葡萄状方解石(黑色箭头),超基性岩角砾(白色箭头)胶结于碳酸盐基质中(Lavoie and Chi,2010);(j)Wilbur Springs蛇纹岩带的冷泉碳酸盐岩碎块,含有富含化石的泥晶和冷泉环境特有的腕足类化石(Campbell et al.,2002)

洋中脊蛇纹岩化伴生碳酸盐岩中最常见的自生矿物是文石和方解石,也有水镁石、白云石、高镁方解石、钙芒硝状方解石,并有黄铁矿等硫化物发育(Ludwig et al.,2006Delacour et al.,2008Eickmann et al.,2009aBach et al.,2011; Lautard et al.,2011Schwarzenbach et al.,2012)。在流体活动基本停止后,烟囱外表面产生铁锰氧化物沉淀,从而使得烟囱外表面变黑,并有底栖生物在上面栖息(Ludwig et al.,2006)。

1.1.2 碳同位素

洋中脊蛇纹岩化伴生碳酸盐岩的δ13 C值在-7‰~+13‰之间(表 1),表明碳存在不同的来源: ①海水的溶解无机碳(DIC)(δ13 C=0‰±3‰)(如Bonatti et al.,1980);②岩浆碳或幔源碳(δ13 C=-7‰~-5‰)(Eickmann et al.,2009aBach et al.,2011); ③蛇纹岩化产生的无机成因CH4(-18‰<δ13 C<-6‰)(Früh-Green et al.,2003Charlou et al.,2010Lartaud et al.,2011); ④无机成因或生物成因CH4形成后的残余CO213 C可高达13‰)(Früh-Green et al.,2003Kelley et al.,2005Eickmann et al.,2009aBach et al.,2011)。

表 1 现代海洋蛇纹岩化伴生碳酸盐岩的碳氧同位素特征 Table 1 Carbon and oxygen isotope values of authigenic carbonates associated with modern oceanic serpentinization

由于蛇纹岩化热液流体DIC主要来源于海水,因此伴生碳酸盐岩的δ13 C通常具有海水DIC的特征(表 1)。部分偏负的碳同位素组成反映了无机成因CH4的混入,CH4经过微生物调控的有氧和缺氧氧化作用转化为DIC(Früh-Green et al.,2003Eickmann et al.,2009aBradley and Summons,2010Lartaud et al.,20102011Schwarzenbach et al.,2013),而碳酸盐岩偏正的碳同位素组成指示碳源中含有CH4形成后残余CO2

1.1.3 氧同位素

洋中脊蛇纹岩化伴生碳酸盐岩的 δ18 O值常高达+5‰左右(表 1),这很可能是由于蛇纹岩化热液流体与围岩反应过程导致 18O的富集所致(Mével,2003Kelley et al.,2005)。同时伴生碳酸盐岩的 δ18 O值也有可至约-20‰(表 1),很可能是由于高温条件下 18O亏损所致(如Früh-Green et al.,2003Eickmann et al.,2009aBach et al.,2011)。流体组成、温度和微生物活动在地理上和时间上的差异,可导致碳酸盐岩的氧同位素组成有较大变化,如Lost City热液场烟囱和裂隙充填物的 δ18 O值在-7‰~+5‰之间,而基底碳酸盐脉的 δ18 O值低至-19‰(Kelley et al.,2005)。

1.1.4 锶同位素

自生碳酸盐岩的 87 Sr/86 Sr 值一般取决于底层海水和热液的混合比例。如Logatchev热液场及其附近蛇纹岩中的碳酸盐脉的 87 Sr/86 Sr 值为0.70387~0.70917,在Logatchev热液(0.70387)与海水(0.70916)2个端元之间(Eickmann et al.,2009bBach et al.,2011)。因此,可以依锶质量守恒的混合模型估算渗漏流体与海水的混合比例(Ludwig et al.,2006Eickmann et al.,2009b),如基于Logatchev热液场蛇纹岩中方解石脉的 87 Sr/86 Sr 的计算结果显示混合流体中热液占65%~73%,基于文石脉的 87 Sr/86 Sr 的计算结果显示混合流体主要由98.9%~99.9%的海水组成(Eickmann et al.,2009b)。

1.1.5 生物地球化学

蛇纹岩热液流体系统中的化能自养微生物群落主要与氢、CH4、硫循环和发酵过程有关,包括产CH4古菌、CH4缺氧氧化古菌、氢/硫/CH4氧化细菌、硫酸盐还原细菌及产氢细菌等(Schrenk et al.,2013)。典型的Lost City热液场活动烟囱表面发育有球状、棒状和丝状菌组成的几厘米厚的生物膜(Kelly et al.,2001Schrenk et al.,2004Lein et al.,2007a,2007b),烟囱外部生长的细指状碳酸盐岩可能是文石晶体在丝状细菌上成核而形成的(Kelly et al.,2005,2007)。微生物生命活动,特别是产CH4作用,可形成微晶碳酸盐凝块和哑铃状白云石(Lein et al.,2007a,2007bEickmann et al.,2009a)。此外,硫酸盐还原作用可在碳酸盐岩中形成直径10 μm的草莓状黄铁矿(Delacour et al.,2008)。

在较高温热液喷口处,高H2浓度有利于产CH4作用,单一种群的产CH4古菌与消耗H2的硫酸盐还原菌共存(Kelley et al.,2005Bradley et al.,2009aLang et al.,2012)。由这种产CH4古菌组成的生物膜在碳酸盐烟囱基质内维持着缺氧的微环境,含有不同生理特性的细胞,进行互养的CH4产生和氧化反应,细菌群落在烟囱中海水混入的部分繁殖,有些活动烟囱内部发育产CH4古菌,而外部发育CH4氧化古菌ANME-1(Brazelton et al.,2006; 2011)。在渗漏较弱而逐渐冷却的烟囱上,ANME-1取代产CH4古菌,但没有发现互养的细菌或硫酸盐还原菌(Kelley et al.,2005Brazelton et al.,2006)。

蛇纹岩化热液碳酸盐岩中保存的生物标志物主要有: ①来源于古菌的脂类化合物,可能均由产CH4古菌合成,主要有古醇(Archaeol)、sn-2-/sn-3-羟基古醇(sn-2-/sn-3-hydroxyarchaeol)、二羟基古醇(Dihydroxyarchaeol)、2,6,10,15,19-五甲基二十碳烷(2,6,10,15,19-Pentamethylicosane,PMI)、类异戊二烯甘油二醚类和四醚类(Isoprenoid glycerol di-and tetraethers)、类异戊二烯二醚类(Isoprenoiddiethers)等(Kelley et al.,2005Bradley et al.,2009a2009bMéhay et al.,2013)。含有0~3个五元环的甘油二烷基甘油四醚类化合物(GDGTs 0-3)可能来自ANME-1(Lincoln et al.,2013); ②硫酸盐还原细菌来源的代表性生物标志物,主要是非类异戊二烯甘油单醚类和二醚类化合物(Kelly et al.,2005Bradley et al.,2009a); ③从属关系不太明确的细菌来源生物标志物,包括脂肪酸、藿烷类和非类异戊二烯二醚类化合物; ④浮游生物和真核生物来源的生物标志物主要为多环三萜系化合物(Bradley et al.,2009a2009b)。

根据碳酸盐岩总有机碳的14 C含量推算,生物中的碳来源于海水DIC和幔源碳,幔源碳最可能赋存在无机成因甲酸之中(Lang et al.,2012)。来自产CH4古菌的脂类化合物富13 C,δ13 C值可高达+24.6‰,指示渗漏流体中的生物可利用碳几乎被完全消耗,碳同位素分馏很小。而来自细菌的脂肪酸明显亏损13 C,δ13 C值可低至-45‰,与古菌脂类化合物在同位素组成上达到质量平衡(Kelley et al.,2005Bradley et al.,2009aMéhay et al.,2013)。来自ANME-1的古醇具有极负的δ13 C值(-77‰),指示ANME-1消耗极度亏损13 C的CH4。细菌醚脂类化合物的δ13 C值变化范围约30‰,指示细菌具有不同类型或不同的碳源。由于AOM可能由ANME-1单独调控,因此以前被认为来自硫酸盐还原细菌的非类异戊二烯醚脂类化合物的真实来源存在疑问(Bradley et al.,2009a)。

1.1.6 年代学

洋中脊蛇纹岩化热液活动和微生物群落的演化年代主要依据伴生碳酸盐岩及生物壳体的14 C和U-Th定年(Früh-Green et al.,2003Brazelton et al.,2010Lartaud et al.,20102011Bach et al.,2011Ludwig et al.,2011Lang et al.,2012)。Lost City热液场的热液活动最早发育时间早于10万年,并且至少持续了3万年,是已知的寿命最长的热液系统(Ludwig et al.,2011)。

1.2 弧前蛇纹岩泥火山环境 1.2.1 矿物学与岩石学

在活动大陆边缘,俯冲板片脱水产生的流体导致上驮板块的地幔橄榄岩发生蛇纹岩化,伸展构造作用使以泥质和碎屑状蛇纹岩为主的蚀变产物沿断裂通道上升,在弧前海底形成蛇纹岩泥火山(Fryer,2012)。关岛以北的马里亚纳弧前发育有南北向分布的仍在活动的蛇纹岩泥火山群(图 2)(Fryer,1996)。

图 2 马里亚纳弧前蛇纹岩海山分布图(据Savov et al.,2005修改) Figure 2 Bathymetry map of serpentinite seamounts in Mariana forearc(modified from Savov et al.,2005)

活动的蛇纹岩泥火山渗漏低温(约1.5℃)碱性流体(pH最高达12.5),相对海水高度亏损Mg、Si、Li、F与 87 Sr,且富集 18O(Mottl et al.,2004)。俯冲板片逐渐发生脱水反应,使得渗漏流体组成依与海沟的距离有较系统的变化: 在靠近海沟处渗漏流体的Ca和Sr含量比海水高很多,而碳酸盐碱度、SO2-4、Na/Cl、K、Rb和B浓度又比海水低很多; 反之,具有相反的趋势,相比海水富含H2、CH4、乙烷(C2H6)、丙烷(C3H8)、甲酸和乙酸(Haggerty and Fisher,1992Fryer and Wheat,1999Mottl et al.,20032004Hulme et al.,2010)。渗漏流体中CH4富集13 C和高的CH4/C2H6值,指示烷烃可能是无机成因(Mottl et al.,2003)。

蛇纹岩泥火山自生碳酸盐岩的沉淀主要取决于流体中的碳酸盐碱度(Mottl et al.,2004)。因此,与流体组成相对应,距离海沟轴90 km的Conical海山上发育数厘米至数米高,最高超过10 m的碳酸盐烟囱群(图 1e)和2~3.5 m高的硅酸盐烟囱群(Fryer et al.,1990Fryer,2012Tran et al.,2014)。距离海沟轴68 km的Quaker海山上发育直径1~3 cm的螺旋状碳酸盐烟囱(图 1f)(Fryer et al.,2006)。距离海沟轴52 km的Pacman海山上的流体渗漏区则形成几厘米到近1 m高的指状水镁石烟囱(图 1g)(Fryer and Wheat,1999)。

蛇纹岩泥火山碳酸盐岩的自生矿物主要为文石和方解石,还含有少量无定形硅酸镁(Haggerty,19871991Fryer et al.,1990Tran et al.,2014)。碳酸盐烟囱通常多孔且固结程度低,主要由针状文石和块状方解石组成,孔隙中分布有少量凝胶状或球状无定形硅酸镁(Haggerty,19871991)。早期以海水为主的混合流体富Mg2+,因此文石快速沉淀,首先形成骨架式的外壁,在烟囱内部渗漏流体浓度升高而Mg2+浓度下降,方解石在文石的空隙中沉淀(Tran et al.,2014)。针状文石可形成近乎等厚边的层状胶结物,围绕可能曾是渗漏通道的区域生长,并在每层的边缘缩短为泥微晶层,这种结构可能指示小型渗漏的发生。部分碳酸盐岩具有细粒结构,由等粒亮晶低镁方解石组成,存在多个生长期次(Haggerty,1987)。

1.2.2 碳同位素

蛇纹岩泥火山碳酸盐岩的δ13 C值为-27.4‰~+10.2‰(表 1),表明碳具有不同的来源: ①烃类物质,主要是蛇纹岩化产生的无机成因CH413 C=-19‰~-4‰),也可能包括有机质的热成因CH413 C=-50‰~-30‰)和生物成因CH413 C<-65‰)(Haggerty,19871991Mottl et al.,2003Yamanaka et al.,2003Komor and Mottl,2005Gharib,2006); ②海水DIC(δ13 C=0‰±3‰)(Tran et al.,2014); ③俯冲沉积物中的碳酸盐沉积物(δ13 C约为0‰±3‰)(Alt and Shanks,2006); ④海水蚀变超基性岩形成的碳酸盐中的海水源碳(δ13 C约为0‰±3‰)(Tran et al.,2014); ⑤产CH4作用残余CO213 C高达10.2‰)(Gharib,2006)。

这种自生碳酸盐岩常具有极负的碳同位素组成(表 1),富12 C的碳可能来源于渗漏流体中的无机成因CH4,CH4在嗜极古菌单独调控下的AOM作用中转化为CO2-3(Mottl et al.,20032004Gharib,2006),但Wilbur Springs地区的自生碳酸盐岩中生物标志物的研究结果显示,无机成因CH4不是碳酸盐岩的重要碳源(Birgel et al.,2006)。因此,弧前蛇纹岩中自生碳酸盐岩偏负的δ13 C指示CH4为主要碳源,其生物标志物的δ13 C可用于判识CH4的成因。

1.2.3 氧同位素

蛇纹岩泥火山自生碳酸盐岩氧同位素通常具有高于海水的氧同位素组成范围(0‰±2‰),最高可达12.3‰(表 1),这种富 18O流体源于俯冲板片脱水产生的低温流体(Haggerty,1991Tran et al.,2014),如Conical海山顶部渗漏流体的 δ18 O值达4.0‰±0.5‰(Mottl et al.,2003)。部分碳酸盐矿物具有贫 18O的特征(低至-10.2‰)(表 1),可能是由于深部较高温流体在泥火山周期性喷发期间渗漏到达海底附近(Gharib,2006)。

1.2.4 锶同位素

马里亚纳弧前蛇纹岩泥火山碳酸盐烟囱的 87 Sr/86 Sr 值为0.70669~0.70921,为渗漏流体(0.70624)与当地海水(0.70921)的混合(Mottl,1992Tran et al.,2014)。根据碳酸盐矿物、渗漏流体和海水的 87 Sr/86 Sr 值,可估算出渗漏流体与海水的比例,如根据 87 Sr/86 Sr 值,Conical海山某烟囱的文石部分渗漏流体占8%~18%,而海水占82%~92%,方解石部分由93%~94%的渗漏流体和6%~7%的海水组成。由于渗漏流体中Sr含量低,并且海水源的Sr会优先在文石中富集,因此依碳酸盐岩的 87 Sr/86 Sr 值估算的混合比例可能不太准确(Tran et al.,2014)。

1.2.5 生物地球化学

马里亚纳弧前发育的7座蛇纹岩泥火山的微生物种群均以古菌为主(Curtis and Moyer,2005),在海底附近存在微生物硫酸盐还原作用(Mottl et al.,20032004)。South Chamorro海山的钻探发现,沉积物中的细菌数量从海底往下逐渐减少,在53.8~53.9 m的深度上只存在古菌群落(Mottl et al.,2003)。古菌依靠渗漏流体中的无机成因CH4和营养物质来生存,并单独调控AOM作用。且孔隙流体对流速率越高,群落越复杂(Mottl et al.,20032004Wheat et al.,2008Hulme et al.,2010Curtis et al.,2013)。此外,South Chamorro海山顶部发育的贻贝的软组织δ13 C为-21.4‰~-18.9‰,δ34 S为-21.4‰~-18.9‰,表明其中存在CH4氧化和硫酸盐还原细菌共生体(Yamanaka et al.,2003)。

蛇纹岩泥火山碳酸盐烟囱的流体包裹体中含有CH4、海水、长链烃类、芳香烃和乙酸等,与孔隙流体的组成类似,指示其形成与渗漏流体中的CH4和海水有关,烷烃、芳香烃和有机酸等可能由费托聚合反应产生,属于无机成因(Haggerty,1991Haggerty and Fisher,1992Holm,1996)。然而,这种碳酸盐岩的生物标志化合物还缺乏研究。

1.3 海沟陡坡Shinkai渗漏场

关岛以南的马里亚纳弧前发育大量正断层和走滑断层,但没有发现蛇纹岩泥火山的存在。大量蛇纹岩化橄榄岩出露于弧内坡海底(Ohara and Ishii,1998)。俯冲板片产生的低温流体沿断层通道向海底渗漏,在马里亚纳海沟挑战者深渊北坡水深5600 m的海底形成了Shinkai渗漏场。这里出露的蛇纹岩高度破碎,文石脉充填裂隙和孔隙。海底还分布有疑似的烟囱碎块(图 1 h),它主要由薄片状水镁石和针状文石组成,指示渗漏流体组成与近海沟的蛇纹岩泥火山渗漏流体组成类似(Ohara et al.,2012)。

在Shinkai渗漏场水深5622 m的蛇纹岩角砾带发育由巨蛤、海葵、六放珊瑚、栉水母、蛾螺和小蟹等组成的海底生态系统。巨蛤软组织的δ13 C为-34.9‰~-33.7‰,与具有硫氧化共生菌的其他巨蛤一致,共生菌利用海水和渗漏流体中的溶解CO2作为碳源。因此Shinkai渗漏场是一个重要的蛇纹岩低温流体系统(Ohara et al.,2012)。

1.4 小结

现代海底蛇纹岩出露区的地质条件决定了参与蛇纹岩化水的来源和渗漏流体的地球化学特征。洋中脊蛇纹岩化热液流体来源于海水,弧前蛇纹岩泥火山和海沟陡坡蛇纹岩出露区的渗漏流体来源于俯冲板片脱水产生的低温流体。伴生碳酸盐岩的特征受到蛇纹岩化流体和海水控制。主要自生矿物包括文石、方解石和水镁石。洋中脊热液碳酸盐岩的碳源多以海水源DIC为主,而蛇纹岩泥火山自生碳酸盐岩的碳源中烃类物比例常常很高。在微生物作用方面,洋中脊蛇纹岩热液活动区古菌代谢以产CH4作用为主,蛇纹岩泥火山流体活动区古菌代谢以AOM作用为主。此外,2种环境中的古菌均单独调控AOM作用。

2 古代蛇纹岩化伴生碳酸盐岩

大陆造山带蛇绿岩系的蛇纹岩和蛇绿混杂岩中常常含有蛇绿质碳酸盐岩,包括富碳酸盐脉的蛇纹岩、碳酸盐-蛇纹石角砾及围岩为蛇纹岩的碳酸盐岩体(图 1i)。它们的成因存在很大的争议。现代海底的研究进展,与海底热液活动准同期的构造沉积成因模式得到广泛认可。虽然会受到后期热液和变质作用的改造,蛇绿质碳酸盐岩的形成可能与古代海底蛇纹岩化流体活动有关(Artemyev and Zaykov,2010Lavoie and Chi,2010DeFelipe et al.,2012Schwarzenbach et al.,2013)。

ODP钻探发现,蛇绿质碳酸盐岩呈网状脉在蛇纹岩流体活动区基底最上层发育(Beard and Hopkinson,2000Hopkinson et al.,2004Schwarzenbach et al.,2013)。泥微晶、针状文石、葡萄状纤维状方解石及块状亮晶可先后在碳酸盐脉中形成(Morgan and Milliken,1996Lavoie and Chi,2010)。碳酸盐脉中常常胶结有海洋生物碎屑和围岩碎屑,部分碳酸盐脉富含有机质,可保存有石化的微生物及团粒和葡萄状方解石等微生物组构(Lavoie and Chi,2010Klein et al.,2015)。

表 2显示了古代蛇纹岩伴生碳酸盐岩的δ13 C值常在海水的δ13 CDIC值范围内,可能是由于开放系统中过量的海水无机碳掩盖了富12 C无机碳信号,而其中低的氧同位素组成(表 2)可能来源于同时期海水或热液流体的值(如Lavoie and Chi,2010),也可能记录了后期成岩作用和变质作用的信号(如Eickmann et al.,2009a)。

表 2 古代蛇纹岩伴生碳酸盐岩的碳氧同位素特征 Table 2 Carbon and oxygen isotope values of authigenic carbonates hosted in ancient serpentinite

古代汇聚边缘中保存了不少来源于俯冲带之上蛇绿岩套的沉积蛇纹岩,它们可能是古代蛇纹岩泥火山,其中常赋存有自生碳酸盐岩和化能自养生物化石,如美国加州的Wilbur Springs、Rice Valley和New Idria地区的蛇纹岩带,及日本Sanbagawa、Kamuikotan、Mineoka和Setogawa的蛇纹岩带与台湾利吉混杂岩中的蛇纹岩块(Yui and Jeng,1990Wada et al.,1994Fryer et al.,1995Fujioka et al.,1995Campbell et al.,2002Keenan,2010)。Wilbur Springs地区的自生碳酸盐岩可能形成于蛇纹岩泥火山的顶部或侧翼,后随泥石流移动而进入浊积岩中,呈透镜体分散产出(图 1j)(Carlson,1984)。其中的泥微晶和纹层状胶结物可能是石化的残余微生物席(Campbell et al.,2002)。碳酸盐岩中来源于古菌和细菌的脂类均具有极负的δ13 C值,其中PMI的δ13 C为-100.8‰,植烷(Phytane)和2,6,11,15-四甲基十六碳烷(Crocetane)的δ13 C为-98.4‰,指示增生型俯冲带弧前地区蛇纹岩化伴生的碳酸盐岩可能仍以生物成因CH4为主要碳源(Birgel et al.,2006)。而俄勒冈Seneca地区弧前蛇纹岩中存在烃类渗漏形成的灰岩岩层和小块体,以及烃类冷泉特有的腕足类化石,这些岩石很可能通过逆冲作用并置在一起,渗漏CH4很可能是热成因,但蛇纹岩化成因也不能被排除(Peckmann et al.,2013)。

3 问题与展望

蛇纹岩化过程中产生的无机成因CH4、流体活动、自养生物群等受到广泛关注。然而,蛇纹岩化流体体系中的有机化合物存在无机成因和有机成因,需要准确鉴别它们的来源。其次,微生物在蛇纹岩生态系统中的作用仍不清楚。此外,为了利用蛇纹岩化体系实现碳封存,需要深入认识微生物在迁移深部碳或诱导碳酸盐沉淀方面的能力(Kelemen and Matter,2008)。

些问题,目前国际上除了研究蛇纹岩化流体中CH4等有机物的碳同位素组成之外,还探索研究蛇纹岩化伴生碳酸盐岩中有机质和生物标志化合物的组成和碳同位素(13 C,14 C)特征,用于鉴别流体体系中有机化合物的来源与认识微生物在有关生物地球化学过程中的作用(Schrenk et al.,2013)。此外,在流体活动区开展更多的地球化学和分子生物学观测,并发展长期原位观测也是当前国际上的研究重点,将会更有效地认识蛇纹岩化过程中的流体活动和微生物作用(Wheat et al.,2008Schrenk et al.,2013)。

中国科学家可在马里亚纳海沟前缘蛇纹岩泥火山和挑战者深渊北坡蛇纹岩出露区开展沉积物和孔隙水地球化学研究,探明深渊海底的蛇纹岩化流体和微生物活动特征。此外,对于古代蛇绿岩系中的蛇纹岩出露区,开展蛇绿质碳酸盐岩岩石学和地球化学(特别是生物标志物)研究,如台湾利吉蛇纹岩、西藏申扎索尔蛇纹岩碎屑岩和青海玛沁德尔尼铜矿(Yui and Jeng,1990;徐梦婧等,2014;张华添等,2014),从而可能认识到中国古代海底蛇纹岩化流体活动和化能自养微生物群落的特征。

参考文献
[1] Alt J C, Shanks Ⅲ W C. 2006. Stable isotope compositions of serpentinite seamounts in the Mariana forearc:Serpentinization processes, fluid sources and sulfur metasomatism[J]. Earth and Planetary Science Letters , 242 (3-4) : 272–285. DOI:10.1016/j.epsl.2005.11.063
[2] Andreani M, Escartin J, Delacour A, Ildefonse B, Godard M, Dyment J, Fallick A E, Fouquet Y. 2014. Tectonic structure, lithology, and hydrothermal signature of the Rainbow massif(Mid-Atlantic Ridge 36°14'N)[J]. Geochemistry, Geophysics, Geosystems , 15 (9) : 3543–3571. DOI:10.1002/ggge.v15.9
[3] Artemyev D A, Zaykov V V. 2010. The types and genesis of ophicalcites in Lower Devonian olistostromes at cobalt-bearing massive sulfide deposits in the West Magnitogorsk paleoisland arc(South Urals)[J]. Russian Geology and Geophysics , 51 (7) : 750–763. DOI:10.1016/j.rgg.2010.06.003
[4] Bach W, Rosner M, Jöns N, Rausch S, Robinson L F, Paulick H, Erzinger J. 2011. Carbonate veins trace seawater circulation during exhumation and uplift of mantle rock:Results from ODP Leg 209[J]. Earth and Planetary Science Letters , 311 (3-4) : 242–252. DOI:10.1016/j.epsl.2011.09.021
[5] Barbieri M, Masi U, Tolomeo L. 1979. Stable isotope evidence for a marine origin of ophicalcites from the north-central Apennines(Italy)[J]. Marine Geology , 30 (3-4) : 193–204. DOI:10.1016/0025-3227(79)90015-X
[6] Beard J S, Hopkinson L. 2000. A fossil, serpentinization-related hydrothermal vent, Ocean Drilling Program Leg 173, Site 1068(Iberia Abyssal Plain):Some aspects of mineral and fluid chemistry[J]. Journal of Geophysical Research:Solid Earth(1978-2012) , 105 (B7) : 16527–16539. DOI:10.1029/2000JB900073
[7] Birgel D, Thiel V, Hinrichs K U, Elvert M, Campbell K A, Reitner J, Farmer J D, Peckmann J. 2006. Lipid biomarker patterns of methane-seep microbialites from the Mesozoic convergent margin of California[J]. Organic Geochemistry , 37 (10) : 1289–1302. DOI:10.1016/j.orggeochem.2006.02.004
[8] Bonatti E, Emiliani C, Ferrara G, Honnorez J, Rydell H. 1974. Ultramafic-carbonate breccias from the equatorial Mid Atlantic Ridge[J]. Marine Geology , 16 (2) : 83–102. DOI:10.1016/0025-3227(74)90057-7
[9] Bonatti E, Lawrence J R, Hamlyn P R, Breger D. 1980. Aragonite from deep sea ultramafic rocks[J]. Geochimica et Cosmochimica Acta , 44 (8) : 1207–1214. DOI:10.1016/0016-7037(80)90074-5
[10] Bradley A S, Hayes J M, Summons R E. 2009a. Extraordinary 13C enrichment of diether lipids at the Lost City hydrothermal field indicates a carbon-limited ecosystem[J]. Geochimica et Cosmochimica Acta , 73 (1) : 102–118. DOI:10.1016/j.gca.2008.10.005
[11] Bradley A S, Fredricks H, Hinrichs K U, Summons R E. 2009b. Structural diversity of diether lipids in carbonate chimneys at the Lost City hydrothermal field[J]. Organic Geochemistry , 40 (12) : 1169–1178. DOI:10.1016/j.orggeochem.2009.09.004
[12] Bradley A S, Summons R E. 2010. Multiple origins of methane at the Lost City hydrothermal field[J]. Earth and Planetary Science Letters , 297 (1-2) : 34–41. DOI:10.1016/j.epsl.2010.05.034
[13] Brazelton W J, Schrenk M O, Kelley D S, Baross J A. 2006. Methane-and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem[J]. Applied and Environmental Microbiology , 72 (9) : 6257–6270. DOI:10.1128/AEM.00574-06
[14] Brazelton W J, Ludwig K A, Sogin M L, Andreishcheva E N, Kelley D S, Shen C C, Edwards R L, Baross J A. 2010. Archaea and bacteria with surprising microdiversity show shifts in dominance over 1, 000-year time scales in hydrothermal chimneys[J]. Proceedings of the National Academy of Sciences of the United States of America , 107 (4) : 1612–1617. DOI:10.1073/pnas.0905369107
[15] Brazelton W J, Mehta M P, Kelley D S, Baross J A. 2011. Physiological differentiation within a single-species biofilm fueled by serpentinization[J]. MBio , 2 (4) : E00127–11.
[16] Campbell K A, Farmer J D, Des Marais D. 2002. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California:Carbonate geochemistry, fluids and palaeoenvironments[J]. Geofluids , 2 (2) : 63–94. DOI:10.1046/j.1468-8123.2002.00022.x
[17] Carlson C. 1984. Stratigraphic and structural significance of foliate serpentinite breccias, Wilbur Springs. In:Carlson C(ed.). Depositional facies of sedimentary serpentinite:Selected examples from the coast ranges, california. Tulsa:Pacific Section, Society of Economic Paleontologists and Mineralogists, 108-112
[18] Charlou J L, Donval J P, Fouquet Y, Jean-Baptiste P, Holm N. 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the rainbow hydrothermal field(36°14'N, MAR)[J]. Chemical Geology , 191 (4) : 345–359. DOI:10.1016/S0009-2541(02)00134-1
[19] Charlou J L, Donval J P, Konn C, OndréAs H, Fouquet Y, Jean-Baptiste P, Fourré E. 2010. High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. In:Rona P, Devey C, Dyment J, Murton B(eds.). Diversity of hydrothermal systems on slow-spreading ocean ridges. Washington DC:Geophysical Monograph Series, 265-296
[20] Clerc C, Boulvais P, Lagabrielle Y, de Saint Blanquat M. 2014. Ophicalcites from the northern Pyrenean belt:A field, petrographic and stable isotope study[J]. International Journal of Earth Sciences , 103 (1) : 141–163. DOI:10.1007/s00531-013-0927-z
[21] Curtis A C, Moyer C L. 2005.Mariana forearc serpentine mud volcanoes harbor novel communities of extremophilic Archaea. In:American Geophysical Union, Fall Meeting 2005. Washington, DC:AGU, V51C-1510
[22] Curtis A C, Wheat C G, Fryer P, Moyer C L. 2013. Mariana forearc serpentinite mud volcanoes harbor novel communities of extremophilic archaea[J]. Geomicrobiology Journal , 30 (5) : 430–441. DOI:10.1080/01490451.2012.705226
[23] DeFelipe I, Pedreira D, Pulgar J A, Iriarte E, Mendia M. 2012. Petrography and C and O stable isotope composition of ophicalcites in the Western Pyrenees/Eastern Cantabrian Mountains:Geodynamic implications. In:Poster programme GMPV5.4. EGU General Assembly Conference. Vienna:EGU, 12448
[24] Delacour A, Früh-Green G L, Bernasconi S M, Kelley D S. 2008. Sulfur in peridotites and gabbros at Lost City(30°N, MAR):Implications for hydrothermal alteration and microbial activity during serpentinization[J]. Geochimica et Cosmochimica Acta , 72 (20) : 5090–5110. DOI:10.1016/j.gca.2008.07.017
[25] Dmitriev L V, Bazylev B A, Silant'ev S A, Borisov M V, Sokolov S Y, Bugo A. 2000. Formation of hydrogen and methane by serpentinization of mantle ultramafic rocks and origin of oil[J]. Ros Zhurn Nauko Zemle , 1 (1) : 1–13.
[26] Eickmann B, Bach W, Peckmann J. 2009a. Authigenesis of carbonate minerals in modern and devonian ocean-floor hard rocks[J]. The Journal of Geology , 117 (3) : 307–323. DOI:10.1086/597362
[27] Eickmann B, Bach W, Rosner M, Peckmann J. 2009b. Geochemical constraints on the modes of carbonate precipitation in peridotites from the logatchev hydrothermal vent field and Gakkel Ridge[J]. Chemical Geology , 268 (1-2) : 97–106. DOI:10.1016/j.chemgeo.2009.08.002
[28] Früh-Green G L, Kelley D S, Bernasconi S M, Karson J A, Ludwig K A, Butterfield D A, Boschi C, Proskurowski G. 2003. 30,000 years of hydrothermal activity at the Lost City vent field[J]. Science , 301 (5632) : 495–498. DOI:10.1126/science.1085582
[29] Fryer P, Saboda K L, Johnson L E, Mackay M E, Moore G F, Staffers P. 1990. Conical Seamount:SeaMARC Ⅱ, Alvin submersible, and seismic-reflection studies[J]. In:Fryer P, Pearce J A, Stokking L B(eds.). Proceedings of the ocean drilling program initial reports. College Station:Ocean Drilling Program , 125 : 3–11.
[30] Fryer P, Mottl M, Johnson L, Haggerty J, Phipps S, Maekawa H. 1995. Serpentine bodies in the forearcs of Western Pacific convergent margins:Origin and associated fluids. In:Taylor B, Natland J(eds.). Active margins and marginal basins of the Western Pacific. Washington D C:American Geophysical Union, 259-279
[31] Fryer P. 1996. Tectonic evolution of the Mariana convergent margin[J]. Review of Geophysics , 34 (1) : 89–125. DOI:10.1029/95RG03476
[32] Fryer P, Wheat C G. 1999. Mariana blueschist mud volcanism:Implications for conditions within the subduction zone[J]. Geology , 27 (2) : 103–106. DOI:10.1130/0091-7613(1999)027<0103:MBMVIF>2.3.CO;2
[33] Fryer P, Gharib J, Ross K, Savov I, Mottl M J. 2006. Variability in serpentinite mudflow mechanisms and sources:ODP drilling results on Mariana forearc seamounts[J]. Geochemistry, Geophysics, Geosystems , 7 (8) : Q08014.
[34] Fryer P. 2012. Serpentinite mud volcanism:Observations, processes, and implications[J]. Annual Review of Marine Science , 4 : 345–373. DOI:10.1146/annurev-marine-120710-100922
[35] Fujioka K, Tanaka T, Aoike K. 1995. Serpentine seamount in Izu-Bonin and Mariana forearcs-observation by a submersible and its relation to onland serpentinite belt[J]. Journal of Geography , 104 (3) : 473–494. DOI:10.5026/jgeography.104.3_473
[36] Gharib J J. 2006. Clastic metabasites and authigenic minerals within serpentinite protrusions from the Mariana forearc:Implications for sub-forearc subduction processes. Ph. D. Dissertation. Honolulu:University of Hawaii
[37] Haggerty J A. 1987. Petrology and geochemistry of neocene sedimentary rocks from mariana forearc seamounts:Implications for emplacement of the seamounts. In:Keating B, Fryer P, Batiza R, Boehlert G(eds.). Seamounts, islands, and atolls. Washington, DC:AGU, 175-185
[38] Haggerty J A. 1991. Evidence from fluid seeps atop serpentine seamounts in the Mariana Forearc:Clues for emplacement of the seamounts and their relationship to forearc tectonics[J]. Marine Geology , 102 (1-4) : 293–309. DOI:10.1016/0025-3227(91)90013-T
[39] Haggerty J A, Fisher J B. 1992. Short-chain organic acids in interstitial waters from Mariana and Bonin forearc serpentines:Leg 125[J]. In:Fryer P, Pearce J A, Stokking L B(eds.). Proceedings of the ocean drilling program, scientific results. College Station:Ocean Drilling Program , 125 : 387–395.
[40] Holm N G. 1996. Serpentinization of ultramafic rocks and abiotic synthesis of organic compounds[J]. GFF , 118 (S4) : 52.
[41] Hopkinson L, Beard J S, Boulter C A. 2004. The hydrothermal plumbing of a serpentinite-hosted detachment:Evidence from the West Iberia non-volcanic rifted continental margin[J]. Marine Geology , 204 (3-4) : 301–315. DOI:10.1016/S0025-3227(03)00374-8
[42] Hulme S M, Wheat C G, Fryer P, Mottl M J. 2010. Pore water chemistry of the Mariana serpentinite mud volcanoes:A window to the seismogenic zone[J]. Geochemistry, Geophysics, Geosystems , 11 (1) : Q01X09.
[43] Keenan K E. 2010. Hydrocarbon seeps of the Mesozoic Great Valley Group forearc strata and Franciscan complex, northern and central California, U.S.A. Ph. D. Dissertation. Riverside:University of California
[44] Kelemen P B, Matter J. 2008. In situ carbonation of peridotite for CO2 storage[J]. Proceedings of the National Academy of Sciences of the United States of America , 105 (45) : 17295–17300. DOI:10.1073/pnas.0805794105
[45] Kelley D S, Karson J A, Blackman D K, Früh-Green G L, Butterfield D A, Lilley M D, Olson E J, Schrenk M O, Roe K K, Lebon G T, Rivizzigno P, The AT3-60 Shipboard Party. 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N[J]. Nature , 412 (6843) : 145–149. DOI:10.1038/35084000
[46] Kelley D S, Karson J A, Früh-Green G L, Yoerger D R, Shank T M, Butterfield D A, Hayes J M, Schrenk M O, Olson E J, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley A S, Brazelton W J, Roe K, Elend M J, Delacour A, Bernasconi S M, Lilley M D, Baross J A, Summons R E, Sylva S P. 2005. A serpentinite-hosted ecosystem:The Lost City hydrothermal field[J]. Science , 307 (5714) : 1428–1434. DOI:10.1126/science.1102556
[47] Kelley D S, Früh-Green G L, Karson J A, Ludwig K A. 2007. The Lost City hydrothermal field revisited[J]. Oceanography , 20 (4) : 90–99. DOI:10.5670/oceanog
[48] Klein F, Humphris S E, Guo W F, Schubotz F, Schwarzenbach E M, Orsi W D. 2015. Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin[J]. Proceedings of the National Academy of Sciences , 112 (39) : 12036–12041. DOI:10.1073/pnas.1504674112
[49] Komor S C, Mottl M J. 2005. Data report:Stable isotope compositions of dissolved inorganic carbon, methane, sulfate, and sulfide in pore water from the South Chamorro serpentinite mud volcano, Mariana subduction complex[J]. In:Shinohara M, Salisbury M H, Richter C(eds.). Proceedings of the ocean drilling program, scientific results. College Station:Ocean Drilling Program , 195 : 1–12.
[50] Kuznetsov K, Cherkashev G, Lein A, Shilov V, Maksimov F, Arslanov K, Stepanova T, Baranova N, Chernov S, Tarasenko D. 2006. 230Th/U dating of massive sulfides from the Logatchev and Rainbow hydrothermal fields(Mid-Atlantic Ridge)[J]. Geochronometria , 25 : 51–55.
[51] Lang S Q, Früh-Green G L, Bernasconi S M, Lilley M D, Proskurowski G, Méhay S, Butterfield D A. 2012. Microbial utilization of abiogenic carbon and hydrogen in a serpentinite-hosted system[J]. Geochimica et Cosmochimica Acta , 92 : 82–99. DOI:10.1016/j.gca.2012.06.006
[52] Lartaud F, de Rafelis M, Oliver G, Krylova E, Dyment J, Ildefonse B, Thibaud R, Gente P, Hoisé E, Meistertzheim A L, Fouquet Y, Gaill F, Le Bris N. 2010. Fossil clams from a serpentinite-hosted sedimented vent field near the active smoker complex Rainbow, MAR, 36°13'N:Insight into the biogeography of vent fauna[J]. Geochemistry, Geophysics, Geosystems , 11 (8) : Q0AE01.
[53] Lartaud F, Little C T S, de Rafelis M, Bayon G, Dyment J, Ildefonse B, Gressier V, Fouquet Y, Gaill F, Le Bris N. 2011. Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages[J]. Proceedings of the National Academy of Sciences of the United States of America , 108 (19) : 7698–7703. DOI:10.1073/pnas.1009383108
[54] Lavoie D, Chi G X. 2010. An ordovician "Lost City"-venting serpentinite and life oases on Iapetus seafloor[J]. Canadian Journal of Earth Sciences , 47 (3) : 199–207. DOI:10.1139/E10-013
[55] Lein A Y, Bogdanova O Y, Bogdanov Y A, Magazina L I. 2007a. Mineralogical and geochemical features of authigenic carbonates on seepings and hydrothermal fields(by the examples of the Black Sea reefs and the mounds of the Lost City field)[J]. Oceanology , 47 (4) : 537–553. DOI:10.1134/S000143700704011X
[56] Lein A Y, Galkin S V, Maslennikov V V, Bogdanov Y A, Bogdanova O Yu, Dara O M, Ivanov M V. 2007b. A new type of carbonate rocks on the ocean floor(Mid-Atlantic Ridge, 30° 07'N)[J]. Doklady Earth Sciences , 412 (1) : 136–140. DOI:10.1134/S1028334X0701031X
[57] Lincoln S A, Bradley A S, Newman S A, Summons R E. 2013. Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in chimneys of the Lost City hydrothermal field[J]. Organic Geochemistry , 60 : 45–53. DOI:10.1016/j.orggeochem.2013.04.010
[58] Ludwig K A, Kelley D S, Butterfield D A, Nelson B K, Früh-Green G. 2006. Formation and evolution of carbonate chimneys at the Lost City hydrothermal field[J]. Geochimica et Cosmochimica Acta , 70 (14) : 3625–3645. DOI:10.1016/j.gca.2006.04.016
[59] Ludwig K A, Shen C C, Kelley D S, Cheng H, Edwards R L. 2011. U-Th systematics and230Th ages of carbonate chimneys at the Lost City hydrothermal field[J]. Geochimica et Cosmochimica Acta , 75 (7) : 1869–1888. DOI:10.1016/j.gca.2011.01.008
[60] Méhay S, Früh-Green G L, Lang S Q, Bernasconi S M, Brazelton W J, Schrenk M O, Schaeffer P, Adam P. 2013. Record of archaeal activity at the serpentinite-hosted Lost City hydrothermal field[J]. Geobiology , 11 (6) : 570–592. DOI:10.1111/gbi.2013.11.issue-6
[61] Mével C. 2003. Serpentinization of abyssal peridotites at mid-ocean ridges:Serpentinisation des péridotites abysales aux dorsales océaniques[J]. Comptes Rendus Geoscience , 335 (10-11) : 825–852. DOI:10.1016/j.crte.2003.08.006
[62] Morgan J K, Milliken K L. 1996. Petrography of calcite veins in serpentinized peridotite basement rocks from the Iberia Abyssal Plain, sites 897 and 899:Kinematic and environmental implications[J]. In:Whitmarsh R B, Sawyer D S, Klaus A, Masson D G(eds.). Proceedings of the ocean drilling program, scientific results. College Station, TX:Ocean Drilling Program , 149 : 559–570.
[63] Mottl M J. 1992. Pore waters from serpentinite seamounts in the Mariana and Izu-Bonin forearcs, Leg 125:Evidence for volatiles from the subducting slab[J]. In:Fryer P, Pierce J, Stokking L B(eds.). Proceedings of the ocean drilling program, scientific results. College Station, TX:Ocean Drilling Program , 125 : 373–385.
[64] Mottl M J, Komor S C, Fryer P, Moyer C L. 2003. Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano:Ocean Drilling Program Leg 195[J]. Geochemistry, Geophysics, Geosystems , 4 (11) : 9009.
[65] Mottl M J, Wheat C G, Fryer P, Gharib J, Martin J B. 2004. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate[J]. Geochimica et Cosmochimica Acta , 68 (23) : 4915–4933. DOI:10.1016/j.gca.2004.05.037
[66] Ohara Y, Ishii T. 1998. Peridotites from the southern Mariana forearc:Heterogeneous fluid supply in mantle wedge[J]. Island Arc , 7 (3) : 541–558. DOI:10.1046/j.1440-1738.1998.00209.x
[67] Ohara Y, Reagan M K, Fujikura K, Watanabe H, Michibayashi K, Ishii T, Stern R J, Pujana I, Martinez F, Girard G, Ribeiro J, Brounce M, Komori N, Kino M. 2012. A serpentinite-hosted ecosystem in the Southern Mariana Forearc[J]. Proceedings of the National Academy of Sciences of the United States of America , 109 (8) : 2831–2835. DOI:10.1073/pnas.1112005109
[68] Parnell J, Boyce A J, Blamey N J F. 2010. Follow the methane:The search for a deep biosphere, and the case for sampling serpentinites, on Mars[J]. International Journal of Astrobiology , 9 (4) : 193–200. DOI:10.1017/S1473550410000200
[69] Peckmann J, Sandy M R, Taylor D G, Gier S, Bach W. 2013. An Early Jurassic brachiopod-dominated seep deposit enclosed by serpentinite, eastern Oregon, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology , 390 : 4–16. DOI:10.1016/j.palaeo.2013.01.003
[70] Proskurowski G, Lilley M D, Seewald J S, Früh-Green G L, Olson E J, Lupton J E, Sylva S P, Kelley D S. 2008. Abiogenic hydrocarbon production at Lost City hydrothermal field[J]. Science , 319 (5863) : 604–607. DOI:10.1126/science.1151194
[71] Ribeiro da Costa I, Barriga F J A S, Taylor R N. 2008. Late seafloor carbonate precipitation in serpentinites from the Rainbow and Saldanha sites(Mid-Atlantic Ridge)[J]. European Journal of Mineralogy , 20 (2) : 173–181. DOI:10.1127/0935-1221/2008/0020-1803
[72] Savov I P, Guggino S, Ryan J G, Fryer P, Mottl M J. 2005. Geochemistry of serpentinite muds and metamorphic rocks from the Mariana forearc, ODP Sites 1200 and 778-779, South Chamorro and Conical Seamounts[J]. In:Shinohara M, Salisbury M H, Richter C(eds.). Proceedings of the ocean drilling program, scientific results. College Station, TX:Ocean Drilling Program , 195 : 1–49.
[73] Schmidt K, Koschinsky A, Garbe-Schönberg D, de Carvalho L M, Seifert R. 2007. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge:Temporal and spatial investigation[J]. Chemical Geology , 242 (1-2) : 1–21. DOI:10.1016/j.chemgeo.2007.01.023
[74] Schrenk M O, Kelley D S, Bolton S A, Baross J A. 2004. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City hydrothermal field, Mid-Atlantic Ridge[J]. Environmental Microbiology , 6 (10) : 1086–1095. DOI:10.1111/emi.2004.6.issue-10
[75] Schrenk M O, Brazelton W J, Lang S Q. 2013. Serpentinization, carbon, and deep life[J]. Reviews in Mineralogy and Geochemistry , 75 (1) : 575–606. DOI:10.2138/rmg.2013.75.18
[76] Schwarzenbach E M, Früh-Green G L, Bernasconi S M, Alt J C, Shanks Ⅲ W C, Gaggero L, Crispini L. 2012. Sulfur geochemistry of peridotite-hosted hydrothermal systems:Comparing the Ligurian ophiolites with oceanic serpentinites[J]. Geochimica et Cosmochimica Acta , 91 : 283–305. DOI:10.1016/j.gca.2012.05.021
[77] Schwarzenbach E M, Früh-Green G L, Bernasconi S M, Alt J C, Plas A. 2013. Serpentinization and carbon sequestration:A study of two ancient peridotite-hosted hydrothermal systems[J]. Chemical Geology , 351 : 115–133. DOI:10.1016/j.chemgeo.2013.05.016
[78] Tran T H, Kato K, Wada H, Fujioka K, Matsuzaki H. 2014. Processes involved in calcite and aragonite precipitation during carbonate chimney formation on Conical Seamount, Mariana Forearc:Evidence from geochemistry and carbon, oxygen, and strontium isotopes[J]. Journal of Geochemical Exploration , 137 : 55–64. DOI:10.1016/j.gexplo.2013.11.013
[79] Wada H, Ohashi F, Fujioka K. 1994. Stable isotopic studies on the origin of magnesite deposits in the Setogawa Group, Shizuoka, central Japan(memorial volume to the late professor teruhiko sameshima)[J]. Geoscience Reports of Shizuoka University , 20 : 167–173.
[80] Wheat C G, Fryer P, Fisher A T, Hulme S, Jannasch H, Mottl M J, Becker K. 2008. Borehole observations of fluid flow from South Chamorro Seamount, an active serpentinite mud volcano in the Mariana forearc[J]. Earth and Planetary Science Letters , 267 (3-4) : 401–409. DOI:10.1016/j.epsl.2007.11.057
[81] Yamanaka T, Mizota C, Satake H, Kouzumad F, Gamod T, Tsunogaid U, Miwae T, Fujioka K. 2003. Stable isotope evidence for a putative endosymbiont-based lithotrophic Bathymodiolus sp[J]. mussel community atop a serpentine seamount. Geomicrobiology Journal , 20 (3) : 185–197.
[82] Yui T F, Jeng R C. 1990. A stable-isotope study of the hydrothermal alteration of the East Taiwan Ophiolite[J]. Chemical Geology , 89 (1-2) : 65–85. DOI:10.1016/0009-2541(90)90060-K
[83] 徐梦婧, 李才, 吴彦旺, 张修政. 2014. 西藏申扎县索尔碎屑岩岩石学特征及其成因[J]. 世界地质 , 33 (2) : 330–336.
[84] 张华添, 李江海, 李洪林, 王洪浩. 2014. 慢速扩张洋中脊热液成矿的典型实例:青藏高原北部德尔尼铜矿地质对比研究[J]. 海洋学报 , 36 (4) : 40–51.