期权定价的保险精算方法由Mogens Bladt和Tina Hviid Rydberg[1]在1998年首次提出.由于保险精算方法没有任何的市场假设,所以该方法不仅对均衡、完备、无套利的金融市场适用,而且对非均衡的、不完备的、有套利的金融市场也有效.文献[2]研究了广义B-S模型基于保险精算方法的期权定价问题.其他一些研究者也对期权保险精算方法进行了深入研究[3-4].上述文献中的无风险利率都是时间的确定函数,但是大量的实证分析表明,在现代的金融市场中利率具有均值回复特征.因此,把利率仅视为时间的确定函数并不能很好地描述利率的实际变化特征.文献[5]给出了欧式期权和交换期权在随机利率及Ornstein-Uhlenback模型下的保险精算定价方法.
随机利率下的期权定价问题不但依赖于风险资产价格的波动率,而且也依赖于随机利率模型的漂移参数和波动率参数,这些量在金融市场中都是无法观测的.鉴于此,本文研究随机利率下的广义B-S模型欧式期权的保险精算定价问题.首先,引入服从Hull-White模型的无风险利率,利用标的资产价格过程的实际概率测度和公平保费原理,得到了在期权有效期内有无红利支付两种情况下欧式期权的保险精算定价公式.然后,考虑到期权的保险定价问题依赖于未知的模型参数,一方面,利用风险资产价格的观测数据构造了风险资产价格波动率的强相合估计量;另一方面,在无风险利率模型满足局部平稳过程的条件下,基于随机利率的观测样本,利用加权最小二乘方法和Kolmogorov向前方程,分别得到了随机利率过程中漂移参数和波动率参数的相合估计量.最后,基于时变扩散模型参数的估计量,给出了欧式期权的保险精算定价公式,并讨论了所得定价公式的相合性.本文所得到的期权保险精算定价公式可以直接应用于金融实践,提高了期权定价公式在实际应用中的有效性和便捷性.
1 市场模型和基础知识考虑在金融市场中存在两种资产,一种是风险资产(如股票),另一种是无风险资产(如债券).假设风险资产的价格{St, t≥0}是定义在完备滤子空间(Ω, F, (Ft)t≥0, P)上的随机过程,满足如下变系数Black-Scholes模型
| $ \frac{{{\text{d}}{S_t}}}{{{S_t}}} = \mu \left( t \right){\text{d}}t + \sigma \left( t \right){\text{d}}{B_t}, $ | (1) |
其中:μ(t)是风险资产的期望回报率;σ(t)是波动率函数;{Bt, t≥0}是定义在完备滤子空间(Ω, F, (Ft)t≥0, P)上的标准布朗运动.风险资产在0时刻的价格记为S0,且S0 > 0.无风险资产的价格过程{Pt, t≥0}满足的随机微分方程是dPt=r(t)Ptdt, 其中r(t)为t时刻的无风险利率,它满足Hull-White短期利率模型
| $ {\text{d}}r\left( t \right) = \left( {\alpha \left( t \right) + \beta \left( t \right)r\left( t \right)} \right){\text{d}}t + {\sigma _r}\left( t \right){\text{d}}{W_t}, $ | (2) |
其中:α(t)、β(t)、σr(t)是时间t的函数,参数α(t)描述了利率的长期平均水平,β(t)是反映利率均值回复特征的量,σr(t)表示利率的波动率;{Wt, t≥0}是定义在完备滤子空间(Ω, F, (Ft)t≥0, P)上的标准布朗运动;Bt和Wt的相关系数为ρ.首先给出期权保险精算定价的有关概念[1].
定义1 风险资产价格过程{St, t≥0}在时间区间[0,T]上的期望收益率
| $ \exp\left( {\int_0^T {\psi \left( t \right){\text{d}}t} } \right) = \frac{{E\left( {{S_T}} \right)}}{{{S_0}}}, $ | (3) |
其中ψ(t)为t时刻St的连续复利收益率.
定义2 标的资产欧式期权保险精算的价值定义为:期权被执行时,到期日标的资产价格的折现值与执行价的折现值之差在标的资产价格实际概率测度下的数学期望,其中风险资产(如标的资产的价格)按其期望收益率(如(3)式所定义)折现,无风险资产价格(如执行价)按无风险利率折现.
设C(K, T)和P(K, T)分别表示风险资产价格为St,敲定价格为K, 到期日为T的欧式看涨期权和欧式看跌期权在t=0时刻的价值,则欧式期权在到期日T被执行的充分必要条件,欧式看涨看跌期权分别为:
| $ \exp\left( {\int_0^T {\psi \left( t \right){\text{d}}t} } \right){S_T} > \exp\left( {\int_0^T {r\left( t \right){\text{d}}t} } \right)K, $ |
| $ \exp\left( {\int_0^T {\psi \left( t \right){\text{d}}t} } \right){S_T} < \exp\left( {\int_0^T {r\left( t \right){\text{d}}t} } \right)K. $ |
由定义2,欧式期权的保险精算定价为:
| $ C\left( {K,T} \right) = \\ E\left[ {\left( {\exp \left( {\int_0^T {\psi \left( t \right){\text{d}}t} } \right){S_T} - \exp \left( {\int_0^T {r\left( t \right){\text{d}}t} } \right)K} \right){I_{\left\{ {\exp \left( {\int_0^T {\psi \left( t \right){\text{d}}t} } \right){S_T} > \exp \left( {\int_0^T {r\left( t \right){\text{d}}t} } \right)K} \right\}}}} \right], $ |
| $ P\left( {K,T} \right) =\\ E\left[ {\left( {\exp \left( {\int_0^T {r\left( t \right){\text{d}}t} } \right)K - \exp \left( {\int_0^T {\psi \left( t \right){\text{d}}t} } \right){S_T}} \right){I_{\left\{ {\exp \left( {\int_0^T {\psi \left( t \right){\text{d}}t} } \right){S_T} < \exp \left( {\int_0^T {r\left( t \right){\text{d}}t} } \right)K} \right\}}}} \right], $ |
其中E表示风险资产价格过程实际概率测度下的数学期望.
2 Hull-White随机利率下期权的保险精算定价本节将讨论在Hull-White随机利率模型下,广义Black-Scholes模型的欧式期权的保险精算定价问题.首先给出如下引理[6].
引理1 设随机变量ξ~N(0,1), η~N(0,1), 且Cov(ξ, η)=ρ,则对任意的实数a、b、c、d、k, 有
| $ E\left[ {\exp \left( {c\xi + d\eta } \right){I_{\left\{ {a\xi + b\eta \geqslant k} \right\}}}} \right] = \exp \left( {\frac{1}{2}\left( {{c^2} + {d^2} + 2\rho cd} \right)} \right)\mathit{\Phi }\left( {\frac{{ac + bd + \rho \left( {ad + bc} \right)}}{{\sqrt {{a^2} + {b^2} + 2ab\rho } }}} \right). $ |
下面的定理1给出了变系数扩散模型在随机利率及无红利支付下欧式期权的保险精算定价公式和买权、卖权的平价关系.
定理1 假设风险资产的价格过程{St, t≥0}满足模型(1),无风险利率过程{r(t), t≥0}满足短期利率模型(2), 且风险资产在期权有效期内无红利支付,则欧式看涨期权和欧式看跌期权的保险精算定价公式分别为:
| $ C\left( {K,T} \right) = {S_0}\mathit{\Phi }\left( {{d_1}} \right) - K\exp \left( {\frac{1}{2}\int_0^T {\sigma _r^2\left( t \right){h^2}\left( {t,T} \right){\text{d}}t} - H\left( T \right)} \right)\mathit{\Phi }\left( {{d_2}} \right), $ | (4) |
和
| $ P\left( {K,T} \right) = K\exp \left( {\frac{1}{2}\int_0^T {\sigma _r^2\left( t \right){h^2}\left( {t,T} \right){\text{d}}t} - H\left( T \right)} \right)\mathit{\Phi }\left( { - {d_2}} \right) - {S_0}\mathit{\Phi }\left( { - {d_1}} \right). $ | (5) |
二者的平价关系为
| $ C\left( {K,T} \right) + K\exp \left( {\frac{1}{2}\int_0^T {\sigma _r^2\left( t \right){h^2}\left( {t,T} \right){\text{d}}t} - H\left( T \right)} \right) = P\left( {K,T} \right) + {S_0}, $ | (6) |
其中:
| $ h\left( {t,T} \right) = \int_t^T {\exp \left( {n\left( t \right) - n\left( s \right)} \right){\text{d}}s} ,n\left( t \right) = - \int_0^T {\beta \left( s \right){\text{d}}s} ;H\left( T \right) =\\ r\left( 0 \right)h\left( {0,T} \right) + \int_0^T {\alpha \left( t \right)h\left( {t,T} \right){\text{d}}t} ; $ |
| $ {d_1} = \frac{{\ln {S_0} - \ln K + H\left( T \right) + \int_0^T {{\sigma ^2}\left( t \right){\text{d}}t/2} + A\left( T \right)}}{{\sqrt {\int_0^T {\sigma _r^2\left( t \right){h^2}\left( {t,T} \right){\text{d}}t} + \int_0^T {{\sigma ^2}\left( t \right){\text{d}}t} + 2A\left( T \right)} }};\\ A\left( T \right) = \rho \sqrt {\left( {\int_0^T {\sigma _r^2\left( t \right){h^2}\left( {t,T} \right){\text{d}}t} } \right)\left( {\int_0^T {{\sigma ^2}\left( t \right){\text{d}}t} } \right)} ; $ |
| $ {d_2} = \frac{{\ln {S_0} - \ln K + H\left( T \right) - \int_0^T {\sigma _r^2\left( t \right){h^2}\left( {t,T} \right){\text{d}}t} - \int_0^T {{\sigma ^2}\left( t \right){\text{d}}t} /2 - A\left( T \right)}}{{\sqrt {\int_0^T {\sigma _r^2\left( t \right){h^2}\left( {t,T} \right){\text{d}}t} + \int_0^T {{\sigma ^2}\left( t \right){\text{d}}t} + 2A\left( T \right)} }}. $ |
证明 由定义2可得
| $ C\left( {K,T} \right) = E\left[ {\left( {\exp \left( {\int_0^T {\psi \left( t \right){\text{d}}t} } \right){S_T}} \right){I_{\left\{ {\exp \left( {\int_0^T {\psi \left( t \right){\text{d}}t} } \right){S_T} > \exp \left( {\int_0^T {r\left( t \right){\text{d}}t} } \right)K} \right\}}}} \right] -\\ E\left[ {\left( {\exp \left( {\int_0^T {r\left( t \right){\text{d}}t} } \right)K} \right){I_{\left\{ {\exp \left( {\int_0^T {\psi \left( t \right){\text{d}}t} } \right){S_T} > \exp \left( {\int_0^T {r\left( t \right){\text{d}}t} } \right)K} \right\}}}} \right]. $ |
由Itô引理(1),模型(1)有唯一解
| $ {S_t} = {S_0}\exp \left( {\int_0^t {\left( {\mu \left( s \right) - {\sigma ^2}\left( s \right)/2} \right){\text{d}}s} + \int_0^t {\sigma \left( s \right){\text{d}}{B_s}} } \right), $ |
特别地,有
| $ {S_T} = {S_0}\exp \left( {\int_0^T {\left( {\mu \left( s \right) - {\sigma ^2}\left( s \right)/2} \right){\text{d}}s} + \int_0^T {\sigma \left( s \right){\text{d}}{B_s}} } \right), $ |
两边取期望得到
| $ \int_0^T {\psi \left( t \right){\text{d}}t} = \ln \left( {E\left[ {{S_T}} \right]/{S_0}} \right) = \int_0^T {\mu \left( t \right){\text{d}}t} . $ |
又有
| $ \exp \left( { - \int_0^T {\psi \left( t \right){\text{d}}t} } \right){S_T} = \exp \left( {\ln {S_0} - \frac{1}{2}\int_0^T {{\sigma ^2}\left( t \right){\text{d}}t} + \int_0^T {\sigma \left( t \right){\text{d}}{B_t}} } \right). $ |
由短期利率模型(2)和Itô公式得
| $ \int_0^T {r\left( t \right){\text{d}}t} = H\left( T \right) + \int_0^T {{\sigma _r}\left( t \right)h\left( {t,T} \right){\text{d}}{W_t}} . $ |
注意到,条件
| $ \exp \left( {\ln {S_0} - \frac{1}{2}\int_0^T {{\sigma ^2}\left( t \right){\text{d}}t} + \int_0^T {\sigma \left( t \right){\text{d}}{B_t}} } \right) > K\exp \left( { - H\left( T \right) - \int_0^T {{\sigma _r}\left( t \right)h\left( {t,T} \right){\text{d}}{W_t}} } \right), $ |
上式等价于
| $ \int_0^T {{\sigma _r}\left( t \right)h\left( {t,T} \right){\text{d}}{W_t}} + \int_0^T {\sigma \left( t \right){\text{d}}{B_t}} > \ln K - \ln {S_0} - H\left( T \right) + \frac{1}{2}\int_0^T {{\sigma ^2}\left( t \right){\text{d}}t} . $ | (7) |
令
| $ E\left( \xi \right) = E\left( \eta \right) = 0,\sigma _\xi ^2 = {\text{Var}}\left( \xi \right) = \int_0^T {\sigma _r^2\left( t \right){h^2}\left( {t,T} \right){\text{d}}t} ,\sigma _\eta ^2 = \int_0^T {{\sigma ^2}\left( t \right){\text{d}}t} . $ |
因此,(7)式变为
| $ \xi + \eta > \ln K - \ln {S_0} - H\left( T \right) + \frac{1}{2}\sigma _\eta ^2. $ |
故由引理1可得:
| $ E\left[ {\left( {\exp \left( { \int_0^T {\psi \left( t \right){\text{d}}t} } \right){S_T}} \right){I_{\left\{ {\exp \left( {\int_0^T {\psi \left( t \right){\text{d}}t} } \right){S_T} > \exp \left( {\int_0^T {r\left( t \right){\text{d}}t} } \right)K} \right\}}}} \right] = {S_0}\mathit{\Phi }\left( {{d_1}} \right), $ |
| $ E\left[ {\left( {\exp \left( {\int_0^T {r\left( t \right){\text{d}}t} } \right)K} \right){I_{\left\{ {\exp \left( {\int_0^T {\psi \left( t \right){\text{d}}t} } \right){S_T} > \exp \left( {\int_0^T {r\left( t \right){\text{d}}t} } \right)K} \right\}}}} \right] =\\ K\exp \left( {\frac{1}{2}\int_0^T {\sigma _r^2\left( t \right){h^2}\left( {t,T} \right){\text{d}}t} - H\left( T \right)} \right)\mathit{\Phi }\left( {{d_2}} \right). $ |
故(4)式成立,类似地,(5)式和(6)式也成立.证毕.
下面的定理2给出了欧式期权在有红利支付下的保险精算定价公式.
定理2 假设风险资产的价格过程{St, t≥0}满足模型(1),无风险利率过程{r(t), t≥0}满足短期利率模型(2), 且风险资产在期权有效期内有连续的红利支付,红利率为q(t),则欧式看涨期权和欧式看跌期权的保险精算定价公式分别为:
| $ {C_q}\left( {K,T} \right) = {S_0}\exp \left( { - \int_0^T {q\left( t \right){\text{d}}t} } \right)\mathit{\Phi }\left( {{d_{1q}}} \right) -\\ K\exp \left( {\frac{1}{2}\int_0^T {\sigma _r^2\left( t \right){h^2}\left( {t,T} \right){\text{d}}t} - H\left( T \right)} \right)\mathit{\Phi }\left( {{d_{2q}}} \right), $ |
和
| $ {P_q}\left( {K,T} \right) = K\exp \left( {\frac{1}{2}\int_0^T {\sigma _r^2\left( t \right){h^2}\left( {t,T} \right){\text{d}}t} - H\left( T \right)} \right)\\ \mathit{\Phi }\left( { - {d_{2q}}} \right) - {S_0}\exp \left( { - \int_0^T {q\left( t \right){\text{d}}t} } \right)\mathit{\Phi }\left( { - {d_{1q}}} \right), $ |
其中:
| $ {d_{1q}} = \frac{{\ln {S_0} - \ln K + H\left( T \right) - \exp \left( { - \int_0^T {q\left( t \right){\text{d}}t} } \right) + \int_0^T {{\sigma ^2}\left( t \right){\text{d}}t/2} + A\left( T \right)}}{{\sqrt {\int_0^T {\sigma _r^2\left( t \right){h^2}\left( {t,T} \right){\text{d}}t} + \int_0^T {{\sigma ^2}\left( t \right){\text{d}}t} + 2A\left( T \right)} }}; $ |
| $ {d_{2q}} = \frac{{\ln {S_0} - \ln K + H\left( T \right) - \exp \left( { - \int_0^T {q\left( t \right){\text{d}}t} } \right) - \int_0^T {\sigma _r^2\left( t \right){h^2}\left( {t,T} \right){\text{d}}t} - \int_0^T {{\sigma ^2}\left( t \right){\text{d}}t} /2 - A\left( T \right)}}{{\sqrt {\int_0^T {\sigma _r^2\left( t \right){h^2}\left( {t,T} \right){\text{d}}t} + \int_0^T {{\sigma ^2}\left( t \right){\text{d}}t} + 2A\left( T \right)} }}. $ |
定理2的证明类似于定理1的证明思路,这里不再赘述.
3 基于扩散模型时变参数估计的保险精算定价公式本节基于时变扩散模型中参数的估计量,给出随机利率下欧式期权的保险精算定价公式.事实上,在期权的保险精算定价公式(4)和(5)中,包含着风险资产价格的波动率σ2(t),Hull-White短期利率模型的漂移参数α(t)、β(t)和波动率参数σr2(t).这些量在金融市场中都是无法直接观测的,是未知的量.因此,严格来说,由(5)式和(6)式给出的期权保险精算定价公式并不能直接应用于实践.下面基于时变参数的估计,给出期权的保险精算定价公式,并研究所得定价公式的大样本性质.
首先考虑风险资产价格{St, t≥0}的波动率σ2(t)的估计问题.设0=t0 < t1 < t2 < … < tn=t,将时间区间[0, t]等分为n个小区间,Sti表示风险资产价格在时刻ti的观测值, i=0, 1, 2, …, n.令
| $ {{\hat \sigma }^2}\left( t \right) = \sum\limits_{i = 1}^n {{{\left[ {\log \left( {{S_{{t_i}}}} \right) - \log \left( {{S_{{t_{i - 1}}}}} \right)} \right]}^2}} , $ | (8) |
则把
下面讨论Hull-White短期利率模型(2)中漂移参数α(t)、β(t)和波动率σr2(t)的估计问题.假设由模型(2)给出的无风险利率{r(t), t≥0}满足局部平稳过程,则在时间区间[0, T]上,{r(t), t≥0}可表示为
| $ {\text{d}}{r_t} = \left( {\alpha \left( {\frac{t}{T}} \right) + \beta \left( {\frac{t}{T}} \right){r_t}} \right){\text{d}}t + {\sigma _r}\left( {\frac{t}{T}} \right){\text{d}}{W_t}, $ | (9) |
由文献[8]中的定理1知,模型(9)是局部平稳的充分条件是:
设{r(t), t=1, 2, …, T}是无风险利率过程的离散观测数据.对任意的u∈[0, 1],令
| $ {\left( {\hat \alpha \left( u \right),\hat \beta \left( u \right)} \right)^T} = {\left[ {\sum\limits_{t = 1}^T {{K_{ut}}{\mathit{\boldsymbol{Z}}_t}\mathit{\boldsymbol{Z}}_t^T} } \right]^{ - 1}}\sum\limits_{t = 1}^T {{K_{ut}}{\mathit{\boldsymbol{Z}}_t}{Y_t}} , $ | (10) |
其中:Zt=[1, rt]T, Yt=rt+1-rt, Kut=K([u-t/T]/h), t=1, 2, …, T;K(·)是核函数;h是带宽参数.由(10)式给出的估计即为漂移参数(α(u), β(u))T的估计量.
又由Kolmogorov向前方程[9]得
| $ \sigma _r^2\left( u \right) = \frac{2}{{{f_1}\left( u \right)}}\int_{ - \infty }^{ + \infty } {\left( {\alpha \left( u \right) + \beta \left( u \right)y} \right)f\left( {u,y} \right){\text{d}}y} , $ |
其中:f1(u)是时间分布的密度函数;f(u, y)是平稳密度函数.令
| $ \hat \sigma _r^2\left( u \right) = \frac{2}{{{f_1}\left( u \right)}}\int_{ - \infty }^{ + \infty } {\left( {\hat \alpha \left( u \right) + \hat \beta \left( u \right)y} \right)\hat f\left( {u,y} \right){\text{d}}y} , $ | (11) |
其中:
类似于文献[8]中定理2的证明思路,当T→∞时:
| $ \hat \alpha \left( u \right)\xrightarrow{P}\alpha \left( u \right),\hat \beta \left( u \right)\xrightarrow{P}\beta \left( u \right),\hat \sigma _r^2\left( u \right)\xrightarrow{P}\sigma _r^2\left( u \right), $ | (12) |
因此,由式(12)给出的估计是相合估计量.更多关于波动率的研究可以参见文献[10].
下面的定理3给出了基于时变扩散模型参数估计量的保险精算定价公式.
定理3 假设风险资产的价格过程{St, t≥0}满足模型(1),无风险利率过程{r(t), t≥0}满足短期利率模型(2), 并满足局部平稳性条件,且风险资产在期权有效期内无红利支付,则基于估计量式(10)和(11)的欧式看涨期权和欧式看跌期权的保险精算定价公式分别为:
| $ \hat C\left( {K,T} \right) = {S_0}\mathit{\Phi }\left( {{{\hat d}_1}} \right) - K\exp \left( {\frac{1}{2}\int_0^T {\hat \sigma _r^2\left( t \right){{\hat h}^2}\left( {t,T} \right){\rm{d}}t} - \hat H\left( T \right)} \right)\mathit{\Phi }\left( {{{\hat d}_2}} \right), $ | (13) |
| $ \hat P\left( {K,T} \right) = K\exp \left( {\frac{1}{2}\int_0^T {\hat \sigma _r^2\left( t \right){{\hat h}^2}\left( {t,T} \right){\rm{d}}t} - \hat H\left( T \right)} \right)\mathit{\Phi }\left( { - {{\hat d}_2}} \right) - {S_0}\mathit{\Phi }\left( { - {{\hat d}_1}} \right), $ | (14) |
其中:
| $ \hat h\left( {t,T} \right) = \int_t^T {\exp \left( {\hat n\left( t \right) - \hat n\left( s \right)} \right){\rm{d}}s} ;\hat n\left( t \right) = \\ - \int_0^T {\hat \beta \left( s \right){\rm{d}}s} ;\hat H\left( T \right) = r\left( 0 \right)\hat h\left( {0,T} \right) + \int_0^T {\hat \alpha \left( t \right)\hat h\left( {t,T} \right){\rm{d}}t} ; $ |
| $ {{\hat d}_1} = \frac{{\ln {S_0} - \ln K + \hat H\left( T \right) + \int_0^T {{{\hat \sigma }^2}\left( t \right){\rm{d}}t/2} + \hat A\left( T \right)}}{{\sqrt {\int_0^T {\hat \sigma _r^2\left( t \right){{\hat h}^2}\left( {t,T} \right){\rm{d}}t} + \int_0^T {{{\hat \sigma }^2}\left( t \right){\rm{d}}t} + 2\hat A\left( T \right)} }}; $ |
| $ {{\hat d}_2} = \frac{{\ln {S_0} - \ln K + \hat H\left( T \right) - \int_0^T {\hat \sigma _r^2\left( t \right){{\hat h}^2}\left( {t,T} \right){\rm{d}}t} - \int_0^T {{{\hat \sigma }^2}\left( t \right){\rm{d}}t/2} - \hat A\left( T \right)}}{{\sqrt {\int_0^T {\hat \sigma _r^2\left( t \right){{\hat h}^2}\left( {t,T} \right){\rm{d}}t} + \int_0^T {{{\hat \sigma }^2}\left( t \right){\rm{d}}t} + 2\hat A\left( T \right)} }}, $ |
这里
由时变扩散模型参数估计量的大样本性质、利率过程的局部平稳性和Slutsky′s定理知,由式(13)和(14)给出的保险精算定价公式是相合的.
4 结语本文主要研究了在随机利率下,广义B-S模型欧式期权的保险精算定价问题.首先,利用标的资产价格过程的实际概率测度和公平保费原理,讨论了在期权有效期内有无红利支付两种情况下欧式期权的保险精算定价公式.然后,考虑到期权的保险定价问题依赖于未知的模型参数-标的资产价格的波动率、随机利率过程的漂移参数和波动率参数,本文利用资产价格和随机利率的观测数据,给出了模型参数的估计量,并得到了基于所得估计量的期权保险精算定价公式,同时讨论了所得定价公式的相合性.
| [1] |
BLADT M, RYDBERG T H. An actuarial approach to option pricing under the physical measure and without market assumptions[J]. Insurance mathematics and economics, 1998, 22(1): 65-73. DOI:10.1016/S0167-6687(98)00013-4 ( 0) |
| [2] |
闫海峰, 刘三阳. 广义Black-Scholes模型期权定价新方法-保险精算方法[J]. 应用数学和力学, 2003, 24(7): 730-738. ( 0) |
| [3] |
王永茂, 李丹, 魏静. 随机利率下基于Tsallis熵及O-U过程的幂式期权定价[J]. 郑州大学学报(理学版), 2017, 49(3): 2-4. ( 0) |
| [4] |
张东云. 短期利率动态模型收益率和波动参数的估计[J]. 河南师范大学学报(自然科学版), 2015, 43(1): 14-18. ( 0) |
| [5] |
刘坚, 文凤华, 马超群. 欧式期权和交换期权在随机利率及O-U过程下的精算定价方法[J]. 系统工程理论与实践, 2009, 29(12): 118-124. ( 0) |
| [6] |
陈松男. 金融数学[M]. 上海: 复旦大学出版社, 2002, 106-133.
( 0) |
| [7] |
肖庆宪, 郑祖康. 股票价格过程方差函数的统计推断[J]. 应用概率统计, 2000, 16(2): 182-190. ( 0) |
| [8] |
KOO B, LINTON O. Semiparametric estimation of locally stationary diffusion models[J]. Lse research online documents on economics, 2010, 170(1): 439-477. ( 0) |
| [9] |
KARATZAS I, SHREVE S. Brownian motion and stochastic calculus[M]. New York: Springer, 2000.
( 0) |
| [10] |
吕海娟, 彭江艳, 武德安. 变利率相依风险模型破产概率的积分方程和界[J]. 郑州大学学报(理学版), 2016, 48(1): 39-44. ( 0) |
| [11] |
闫海峰, 刘三阳. 股权价格遵循Ornstein-Uhlenback过程的期权定价[J]. 系统工程学报, 2003, 18(6): 547-551. ( 0) |
| [12] |
聂淑媛. 基于X-12-ARIMA和AR-GARCH模型的房价波动研究[J]. 河南师范大学学报(自然科学版), 2016, 44(4): 39-44. ( 0) |
2018, Vol. 50


0)