2. 中国航空计算技术研究所 航空气动力数值模拟重点实验室 陕西 西安 710068
2. Aeronautical Laboratory of Computational Fluid Dynamics, Aeronautics Computing Technique Research Institute, Xi′an 710068, China
近年来随着流体力学的迅速发展,业内人士提出了许多计算流体力学的数值方法[1-2]。迎风格式以其高分辨率和清晰的物理解而深受相关人士的青睐,其中低耗散E-CUSP是一种迎风对流差分格式[3],主要是将无黏通量分为守恒项和压力项,避免了矩阵运算,使得运算效率大幅度提高,但是其在间断处抹平现象比较严重,分辨率不高,为此需要耦合加权本质无振荡(WENO)格式[4-7]来提高分辨率。WENO格式利用各个备选模板的凸组合方式进行重构,并且每个模板权重的选取依赖于该模板光滑因子的局部光滑性。Embedded-WENO格式[8]的主要思想是在间断处WENO格式表现为低阶精度,但是仍然可以使用剩余的光滑模板重构间断模板,同时引入内模板和外模板,使得在间断处格式收敛到精度较高的内模板,在光滑处收敛到外模板,这样可以很好地消除截断误差[9]和提高分辨率。本文通过数值实验证明了所提出的新格式E-CUSP-Embedded-WENO5具有良好的收敛效果和更高的分辨率,为二维欧拉方程的进一步研究奠定基础。
1 数值方法 1.1 控制方程控制方程为一维欧拉方程,其守恒形式为
| $ \frac{{\partial \mathit{\boldsymbol{U}}}}{{\partial t}} + \frac{{\partial \mathit{\boldsymbol{F}}}}{{\partial x}} = 0, $ | (1) |
式中:U=[ρ, ρu, ρe]T为守恒型变量,ρ为密度,u为速度,e为单位质量的内能;F=[ρu, ρu2+p, (ρe+p)u]T为数值通量,p为压强且
对方程(1)在区间单元上利用有限差分法可得
| $ \mathit{\boldsymbol{A}} = \frac{{\partial \mathit{\boldsymbol{F}}}}{{\partial \mathit{\boldsymbol{U}}}} = \mathit{\boldsymbol{T \boldsymbol{\varLambda} }}{\mathit{\boldsymbol{T}}^{ - 1}}, $ |
式中:
| $ \mathit{\boldsymbol{F}} = \mathit{\boldsymbol{T}}\left[ {\begin{array}{*{20}{l}} u&0&0\\ 0&u&0\\ 0&0&u \end{array}} \right]{\mathit{\boldsymbol{T}}^{ - 1}}\mathit{\boldsymbol{U}} + \mathit{\boldsymbol{T}}\left[ {\begin{array}{*{20}{r}} { - a}&0&0\\ 0&0&0\\ 0&0&a \end{array}} \right]{\mathit{\boldsymbol{T}}^{ - 1}}\mathit{\boldsymbol{U}} = {\mathit{\boldsymbol{F}}^{\rm{c}}} + {\mathit{\boldsymbol{F}}^{\rm{p}}}, $ |
式中:Fc=u[ρ, ρu, ρe]T表示守恒型通量;Fp=[0, p, ρu]T表示压力型通量。这样数值通量F就被分解为守恒型通量Fc与压力型通量Fp之和。守恒型通量Fc可表示为
| $ \mathit{\boldsymbol{F}} = \frac{1}{2}[{(\rho u)_{\frac{1}{2}}}(\mathit{\boldsymbol{U}}_{\rm{L}}^{\rm{c}} + \mathit{\boldsymbol{U}}_{\rm{R}}^{\rm{c}}) - |\rho u{|_{\frac{1}{2}}}(\mathit{\boldsymbol{U}}_{\rm{R}}^{\rm{c}} - \mathit{\boldsymbol{U}}_{\rm{L}}^{\rm{c}})] + [0, {P^ + }p, \frac{1}{2}p(u + {a_{\frac{1}{2}}})]_{\rm{L}}^{\rm{T}} + [0, {P^ - }p, \frac{1}{2}p(u - {a_{\frac{1}{2}}})]_{\rm{R}}^{\rm{T}}。$ |
五阶WENO重构为
| $ \left\{ \begin{array}{l} {\beta _0} = \frac{{13}}{{12}}{({\mathit{\boldsymbol{U}}_{i - 2}} - 2{\mathit{\boldsymbol{U}}_{i - 1}} + {\mathit{\boldsymbol{U}}_i})^2} + \frac{1}{4}{({\mathit{\boldsymbol{U}}_{i - 2}} - 4{\mathit{\boldsymbol{U}}_{i - 1}} + 3{\mathit{\boldsymbol{U}}_i})^2}, \\ {\beta _1} = \frac{{13}}{{12}}{({\mathit{\boldsymbol{U}}_{i - 1}} - 2{\mathit{\boldsymbol{U}}_i} + {\mathit{\boldsymbol{U}}_{i + 1}})^2} + \frac{1}{4}{({\mathit{\boldsymbol{U}}_{i - 1}} - {\mathit{\boldsymbol{U}}_{i + 1}})^2}, \\ {\beta _2} = \frac{{13}}{{12}}{({\mathit{\boldsymbol{U}}_i} - 2{\mathit{\boldsymbol{U}}_{i + 1}} + {\mathit{\boldsymbol{U}}_{i + 2}})^2} + \frac{1}{4}{(3{\mathit{\boldsymbol{U}}_i} - 4{\mathit{\boldsymbol{U}}_{i + 1}} + {\mathit{\boldsymbol{U}}_{i + 2}})^2}。\end{array} \right. $ | (2) |
由非线性权重ωk可得
| $ \left\{ \begin{array}{l} {\beta _0} = {(\mathit{\boldsymbol{U}}_i^\prime )^2}\Delta {x^2} + (\frac{{12}}{{13}}{(\mathit{\boldsymbol{U}}_i^{\prime \prime })^2} - \frac{2}{3}\mathit{\boldsymbol{U}}_i^\prime \mathit{\boldsymbol{U}}_i^{\prime \prime \prime })\Delta {x^4} - (\frac{{13}}{6}\mathit{\boldsymbol{U}}_i^{\prime \prime }\mathit{\boldsymbol{U}}_i^{\prime \prime \prime } - \frac{1}{2}\mathit{\boldsymbol{U}}_i^\prime \mathit{\boldsymbol{U}}_i^{\prime \prime \prime })\Delta {x^5} + O(\Delta {x^6}), \\ {\beta _1} = {(\mathit{\boldsymbol{U}}_i^\prime )^2}\Delta {x^2} + (\frac{{12}}{{13}}{(\mathit{\boldsymbol{U}}_i^{\prime \prime })^2} + \frac{2}{3}\mathit{\boldsymbol{U}}_i^\prime \mathit{\boldsymbol{U}}_i^{\prime \prime \prime })\Delta {x^4} + O(\Delta {x^6}), \\ {\beta _2} = {(\mathit{\boldsymbol{U}}_i^\prime )^2}\Delta {x^2} + (\frac{{12}}{{13}}{(\mathit{\boldsymbol{U}}_i^{\prime \prime })^2} - \frac{2}{3}\mathit{\boldsymbol{U}}_i^\prime \mathit{\boldsymbol{U}}_i^{\prime \prime \prime })\Delta {x^4} + (\frac{{13}}{6}\mathit{\boldsymbol{U}}_i^{\prime \prime }\mathit{\boldsymbol{U}}_i^{\prime \prime \prime } + \frac{1}{2}\mathit{\boldsymbol{U}}_i^\prime \mathit{\boldsymbol{U}}_i^{\prime \prime \prime \prime })\Delta {x^5} + O(\Delta {x^6})。\end{array} \right. $ | (3) |
由式(3)可得
| $ \frac{{{\beta _k}}}{{{\beta _l}}} = \left\{ {\begin{array}{*{20}{l}} {1 + O(\Delta {x^3}), }&{k = 0, l = 2{\rm{ 或 }}k = 2, l = 0, }\\ {1 + O(\Delta {x^2}), }&{其他}。\end{array}} \right. $ |
因此,非线性权重的比值为
五阶WENO格式模板在xi处可分为三个三点模板S0={xi-2, xi-1, xi}, S1={xi-1, xi, xi+1}, S2={xi, xi+1, xi+2}, S0、S1、S2即为外部模板。当S0发生间断且S1、S2光滑时,间断一定发生在(xi-2, xi-1)处,这样可以通过S1、S2来构造四点模板,即内部模板S1, 2:=S1∪S2={xi-1, xi, xi+1, xi+2}; 同理,当S2发生间断且S0、S1光滑时,内部模板S0, 1:=S0∪S1={xi-2, xi-1, xi, xi+1}。假设内部格式是由嵌入模板权重α0(2)、α1(2)、α1(0)、α2(0)所定义,其中αm(n)上标为间断模板索引,下标为光滑模板索引,数值通量
由非线性权重的比值可得,非线性权重ωk是线性权重dk的重新分配,而且ωk的选取和光滑因子的局部光滑性有关,因此引入相关比例系数c0、c2, 其下标表示不光滑模板索引,可定义为α0(2):α1(2)=c2d0:d1, α1(0):α2(0)=d1:c0d2, 相应的c0、c2值为c0=2, c2=2或c0=2/3, c2=6/7。文献[8]提出了嵌入WENO格式非线性权重的一般形式为αk(E)=αk(O)gk, 式中:αk(E)为Embedded-WENO格式未归一化非线性权重;αk(O)为外部格式权重;gk为修正因子且
| $ \left\{ {\begin{array}{*{20}{l}} {\alpha _0^{{\rm{(E)}}} = \frac{1}{3}{d_0}(3 - {c_2} + {c_2}\frac{{{\beta _2}}}{{{\beta _0} + \varepsilon }}), }\\ {\alpha _1^{{\rm{(E)}}} = \frac{1}{3}{d_1}(1 + \frac{{{\beta _2}}}{{{\beta _1} + \varepsilon }} + \frac{{{\beta _0}}}{{{\beta _1} + \varepsilon }}), }\\ {\alpha _2^{{\rm{(E)}}} = \frac{1}{3}{d_2}{{(3 - {c_0} + {c_0}\frac{{{\beta _0}}}{{{\beta _2} + \varepsilon }})}_0}}。\end{array}} \right. $ | (4) |
假设模板均光滑,将Taylor展开式应用到(4)中,可得ωk(E)-dk=1/3(ωk(O)-dk)+O(Δx3), 其中ωk(E)为Embedded-WENO5格式归一化非线性权重。假设只有一个模板βk光滑,则βk=O(Δx2), 有ωk(E)=1+O(Δx2)。综上两种分析,模板均为光滑或者只有一个模板光滑时,Embedded-WENO5等价于WENO5格式;当两个相邻模板光滑且第三个模板存在间断时,可以获得内部模板权重,并且Embedded-WENO5格式的实验效果优于WENO5格式。
1.4 龙格-库塔方法Embedded-WENO格式在空间离散的同时又可以保证时间的连续性,这种方法可以将偏微分方程(PDE)转化成大量耦合的常微分方程(ODE),即
| $ \left\{ \begin{array}{l} \begin{array}{*{20}{l}} {{u^{(0)}} = {u^n}, }\\ {{u^{(1)}} = {u^{(0)}} + \Delta tL({u^{(0)}}), } \end{array}\\ {u^{(2)}} = \frac{1}{2}{u^{(0)}} + \frac{1}{2}{u^{(1)}} + \frac{1}{4}\Delta tL({u^{(0)}}) + \frac{1}{2}\Delta tL({u^{(1)}}), \\ {u^{(3)}} = \frac{1}{9}{u^{(0)}} + \frac{2}{9}{u^{(1)}} + \frac{2}{3}{u^{(2)}} - \frac{1}{9}\Delta tL({u^{(0)}}) - \frac{1}{3}\Delta tL({u^{(1)}}) + \Delta tL({u^{(2)}}), \\ {u^{(n + 1)}} = \frac{1}{3}{u^{(1)}} + \frac{1}{3}{u^{(2)}} + \frac{1}{3}{u^{(3)}} + \frac{1}{6}\Delta tL({u^{(1)}}) + \frac{1}{6}\Delta tL({u^{(3)}})。\end{array} \right. $ | (5) |
在区域[0, 1]上求解初值问题
| $ (\rho , u, p) = \left\{ {\begin{array}{*{20}{l}} {(0.445, 0.698, 3.528), }&{x \le 0.5, }\\ {(0.5, 0, 0.571), }&{x > 0.5}。\end{array}} \right. $ |
采用Neumann边界条件,取200个网格点数,计算中条件数为0.4,本算例分别利用E-CUSP格式、E-CUSP耦合五阶WENO格式(E-CUSP-WENO5)和E-CUSP-Embedded-WENO5格式,在t=0.16时刻下求解欧拉方程激波管问题的密度和速度,结果如图 1和图 2所示。可以看出,E-CUSP-Embedded-WENO5格式在间断处明显优于E-CUSP格式和E-CUSP-WENO5格式。在光滑处三者等价,但是在间断处E-CUSP-Embedded-WENO5格式捕捉效果更好,过渡带更窄,更加接近理论解,分辨率更高。
|
图 1 t=0.16时刻下密度及其局部放大图 Fig. 1 Density and partial enlarged detail at t=0.16 |
|
图 2 t=0.16时刻下速度及其局部放大图 Fig. 2 Velocity and partial enlarged detail at t=0.16 |
在区域[0, 1]上求解初值问题
| $ (\rho , u, p) = \left\{ {\begin{array}{*{20}{l}} {(5.999{\kern 1pt} {\kern 1pt} {\kern 1pt} 24, 19.597{\kern 1pt} {\kern 1pt} {\kern 1pt} 5, 460.894), }&{x \le 0.4, }\\ {(5.992{\kern 1pt} {\kern 1pt} {\kern 1pt} 42, - 6.196{\kern 1pt} {\kern 1pt} {\kern 1pt} 33, 46.095), }&{x > 0.4}。\end{array}} \right. $ |
采用Neumann边界条件,取200个网格点数,计算中条件数为0.4, 本算例分别利用E-CUSP格式、E-CUSP-WENO5格式和E-CUSP-Embedded-WENO5格式,在t=0.035时刻下求解欧拉方程激波管问题的密度和速度,结果如图 3和图 4所示。可以看出,E-CUSP-Embedded-WENO5格式的鲁棒性更好,比E-CUSP-WENO5格式更接近理论解,分辨率更高,尤其在激波处捕捉到的过渡单元明显减少,仅需要两到三个单元。
|
图 3 t=0.035时刻下密度及其局部放大图 Fig. 3 Density and partial enlarged detail at t=0.035 |
|
图 4 t=0.035时刻下速度及其局部放大图 Fig. 4 Velocity and partial enlarged detail at t=0.035 |
本文通过求解一维欧拉方程的典型算例,分析了低耗散E-CUSP格式耦合Embedded-WENO后所得新格式E-CUSP-Embedded-WENO5的性能,将新格式与E-CUSP -WENO5格式以及E-CUSP格式的实验结果进行了分析比较,发现E-CUSP-Embedded-WENO5格式和E-CUSP-WENO5格式在光滑区域精度相同,但是由于E-CUSP-Embedded-WENO格式改变了非线性权重,使得在间断处精度有所提高,更接近理论解,分辨率更高。新格式对激波的捕捉能力更强,并且没有增加过多的计算量,这为欧拉方程的数值模拟提供了新的备选方法,也为二维欧拉方程的进一步研究奠定了基础。
| [1] |
聂玉峰, 胡嘉卉, 王俊刚. 求解三维空间分数阶对流扩散方程的Douglas-Gunn格式[J]. 郑州大学学报(理学版), 2019, 51(1): 44-50. NIE Y F, HU J H, WANG J G. Douglas-Gunn finite difference scheme for three-dimensional space fractional advection diffusion equation[J]. Journal of Zhengzhou university (natural science edition), 2019, 51(1): 44-50. ( 0) |
| [2] |
郑秋亚, 陈芳, 吕梦迪, 等. 两种湍流模型在跨声速绕流中的比较分析[J]. 郑州大学学报(理学版), 2019, 51(1): 84-88. ZHENG Q Y, CHEN F, LÜ M D, et al. Comparison and analysis of two turbulence models in transonic flow[J]. Journal of Zhengzhou university (natural science edition), 2019, 51(1): 84-88. ( 0) |
| [3] |
ZHA G C, SHEN Y Q, WANG B Y. An improved low diffusion E-CUSP upwind scheme[J]. Computers and fluids, 2011, 48(1): 214-220. ( 0) |
| [4] |
HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, Ⅲ[J]. Journal of computational physics, 1987, 71(2): 231-303. ( 0) |
| [5] |
FRIEDRICH O. Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids[J]. Journal of computational physics, 1998, 144(1): 194-212. ( 0) |
| [6] |
LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of computational physics, 1994, 115(1): 200-212. ( 0) |
| [7] |
ZHAO F X, PAN L, LI Z, et al. A new class of high-order weighted essentially non-oscillatory schemes for hyperbolic conservation laws[J]. Computers and fluids, 2017, 159(2): 81-94. ( 0) |
| [8] |
LITH B S, TEN T B, IJZERMAN W L. Embedded WENO: a design strategy to improve existing WENO schemes[J]. Journal of computational physics, 2017, 330(1): 529-549. ( 0) |
| [9] |
盛秀兰, 艾尧, 吴宏伟. 一个类似Burgers方程的数值解[J]. 郑州大学学报(理学版), 2010, 42(3): 23-26. SHENG X L, AI Y, WU H W. Numerical solution of a Burgers-like equation[J]. Journal of Zhengzhou university (natural science edition), 2010, 42(3): 23-26. ( 0) |
| [10] |
SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of computational physics, 1988, 77(2): 439-471. ( 0) |
2020, Vol. 52



0)