郑州大学学报(理学版)  2018, Vol. 50 Issue (3): 87-93  DOI: 10.13705/j.issn.1671-6841.2017080

引用本文  

马建敏, 景嫄. 乐观多粒度区间集粗糙集[J]. 郑州大学学报(理学版), 2018, 50(3): 87-93.
MA Jianmin, JING Yuan. Optimistic Multi-granulation Interval-set Rough Sets[J]. Journal of Zhengzhou University(Natural Science Edition), 2018, 50(3): 87-93.

基金项目

国家自然科学基金项目(10901025,11501048,61772019)

通信作者

景嫄(1992—),女,山西晋中人,硕士研究生,主要从事粗糙集与粒计算研究

作者简介

马建敏(1978—),女,山东日照人,教授,主要从事粗糙集、粒计算与概念格研究,E-mail: cjm-zm@126.com

文章历史

收稿日期:2017-04-17
乐观多粒度区间集粗糙集
马建敏 , 景嫄     
长安大学 理学院 数学与信息科学系 陕西 西安 710064
摘要:Pawlak粗糙集基于单个粒空间(一个等价关系)建立了上、下近似来刻画目标概念,而乐观多粒度粗糙集则利用多个粒空间(一族等价关系)对目标概念进行近似描述,是Pawlak粗糙集的一种扩展.区间集通过上、下界给出了概念的外延范围.在区间集粗糙集的基础上,提出了乐观多粒度区间集粗糙集,研究了它们的性质,并进一步给出了单个和多个粒空间下几种区间集粗糙集和乐观多粒度区间集粗糙集之间的关系.
关键词区间集    区间集粗糙集    乐观多粒度粗糙集    乐观多粒度区间集粗糙集    
Optimistic Multi-granulation Interval-set Rough Sets
MA Jianmin , JING Yuan     
Department of Mathematics and Information Sciences, Faculty of Science, Chang′an University, Xi′an 710064, China
Abstract: Pawlak′s rough sets showed the lower and upper approximations of a target concept by using a single granular space (an equivalence relation). The optimistic multi-granulation rough sets, an extension of Pawlak′s rough sets, provided the approximated description of a target concept based on multiple granular spaces (a family of equivalence relations). An interval-set was given by using the lower and upper bounds to investigate the extension of a concept. Based on the interval-set rough set, optimistic multi-granulation interval-set rough sets were introduced. Related properties of them were discussed. Furthermore, the relationships among several interval-set rough sets constructed in different single-granular spaces and optimistic multi-granulation interval-set rough sets in a multi-granular space were established.
Key words: interval set    interval-set rough set    optimistic multi-granulation rough set    optimistic multi-granulation interval-set rough set    
0 引言

Pawlak提出的粗糙集理论[1-2]是一种分析和处理不精确和不确定性问题的数学工具.目前,粗糙集理论已在数据挖掘、知识发现、图像处理、模式识别[3-6]等领域得到广泛应用.

Pawlak粗糙集在等价关系对论域产生的划分(单粒空间)上给出了目标概念的近似描述.此后,许多学者将等价关系推广到容差、相似或优势关系等[7-11],或将目标概念推广到模糊集等[12]研究粗糙近似.Lin提出了粒计算的概念[13-14],讨论了二元关系下的模糊集和粗糙集方法,并将粒计算方法引入到数据挖掘和机器学习中.钱宇华等从粒计算角度建立了等价关系族下的多粒空间,提出了多粒度粗糙集模型[15-17],证明了经典的粗糙集是多粒度粗糙集的特殊情况.

在实际应用中,有些概念往往不能精确定义,概念的外延也不能由实体集精确表达.现实世界中表示不确定、不精确、含糊或者部分已知概念的方法有:不确定边界概念、部分已知概念、不可定义概念和近似以及系统转换与概念近似.Yao引入了区间集[18]来表示部分已知概念.胡宝清提出了区间集粗糙集,研究了区间集三支决策[19].本文基于区间集粗糙集和多粒度粗糙集的思想,提出了乐观多粒度区间集粗糙集的概念,研究了其性质.建立了一族属性子集不同运算下的单粒空间和多粒空间,讨论了单粒空间下区间集粗糙集和多粒空间下乐观多粒度区间集粗糙集之间的关系.

1 乐观多粒度粗糙集

本节给出有关粗糙集和乐观多粒度粗糙集的基本概念和性质,相关内容请参考文献[1, 15-17].

1.1 Pawlak粗糙集

S=(U, AT, V, f)称为信息系统[1](简记为S=(U, AT)), 其中:U是非空有限对象集, 称为论域;AT是非空有限属性集;$ V=\bigcup\limits_{a\in AT}{{{V}_{a}}} $, Va是属性a的值域;f:U×ATV是信息函数, 即∀xU, aAT, f(x, a)∈Va.对任意AAT,等价关系RA={(x, y)∈U×U:f(x, a)=f(y, a), ∀aA}.由RA诱导的划分U/RA={[x]A:xU}, 其中[x]A={yU:(x, y)∈RA}.对任意XUX的下、上近似定义为[1]

$ \underline A \left( X \right) = \left\{ {x \in U:{{\left[ x \right]}_A} \subseteq X} \right\};\bar A\left( X \right) = \left\{ {x \in U:{{\left[ x \right]}_A} \cap X \ne \emptyset } \right\}. $ (1)

从粒计算角度看,划分U/RA是由等价关系RA导出的单粒空间.Pawlak粗糙集是在单粒空间中对目标概念进行近似刻画.由于粒度世界存在不同形式、不同数量的粒空间,钱宇华等提出了多粒度粗糙集[15],在一族等价关系诱导的多粒空间下构建了乐观多粒度粗糙集对目标概念进行近似描述.

1.2 乐观多粒度粗糙集

设信息系统S=(U, AT), A1, …, AmATm个属性子集.对任意XUX关于属性集A1, …, Am的乐观多粒度粗糙下、上近似[15]分别定义为:

$ \begin{matrix} \underline{\sum\nolimits_{i=1}^{m}{A_{i}^{o}}}\left( X \right)=\left\{ x\in U:{{\left[ x \right]}_{{{A}_{1}}}}\subseteq X\vee \cdots \vee {{\left[ x \right]}_{{{A}_{m}}}}\subseteq X \right\}; \\ \overline{\sum\nolimits_{i=1}^{m}{A_{i}^{o}}}\left( X \right)=\tilde{\ }\underline{\sum\nolimits_{i=1}^{m}{A_{i}^{o}}}\left( \tilde{\ }X \right)=\left\{ x\in U:{{\left[ x \right]}_{{{A}_{1}}}}\cap X\ne \varnothing \wedge \cdots \wedge {{\left[ x \right]}_{{{A}_{m}}}}\cap X\ne \varnothing \right\}. \\ \end{matrix} $ (2)

性质1[15-17]  设S=(U, AT)为信息系统,A1, …, AmATm个属性子集.对任意X, YU

$ \begin{array}{l} ①\;\;\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \emptyset \right) = \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \emptyset \right) = \emptyset ,\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( U \right) = \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( U \right) = U;\\ ②\;\;\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( { \sim X} \right) = \sim \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( X \right),\overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( { \sim X} \right) = \sim \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( X \right);\\ ③\;\;\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( X \right) \subseteq X \subseteq \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( X \right);\\ ④\;\;\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( X \right) = \bigcup\limits_{i = 1}^m {\underline {{A_i}} \left( X \right)} ,\overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( X \right) = \bigcap\limits_{i = 1}^m {\overline {{A_i}} \left( X \right)} ;\\ ⑤\;\;X \subseteq Y \Rightarrow \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( X \right) \subseteq \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( Y \right),\overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( X \right) \subseteq \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( Y \right). \end{array} $
2 乐观多粒度区间集粗糙集

Yao利用一对集合作为下界和上界对概念进行描述,从而引入了区间集[18].胡宝清提出了区间集粗糙集[19].本节研究乐观多粒度区间集粗糙集.

2.1 区间集粗糙集

U是论域,2U为其幂集.区间集$ \mathscr{X} $定义[18]

$ \mathscr{X} = \left[ {{X_l},{X_u}} \right] = \left\{ {X \in {2^U}:{X_l} \subseteq X \subseteq {X_u}} \right\},{X_l} \subseteq {X_u} \subseteq U. $

所有区间集的集合用I(2U)来表示I(2U)={$ \mathscr{X} $=[Xl, Xu]:XlXuU}, 称为U的区间集幂集.区间集上的运算[18, 20-23]定义为:对任意区间集$ \mathscr{X} $=[Xl, Xu], $ \mathscr{Y} $=[Yl, Yu]∈I(2U),

$ \begin{array}{*{20}{c}} {\mathscr{X} \sqcap \mathscr{Y} = \left[ {{X_l} \cap {Y_l},{X_u} \cap {Y_u}} \right] = \left\{ {X \cap Y\left| {X \in \mathscr{X},Y \in \mathscr{Y}} \right.} \right\};}\\ {\mathscr{X} \sqcup \mathscr{Y} = \left[ {{X_l} \cup {Y_l},{X_u} \cup {Y_u}} \right] = \left\{ {X \cup Y\left| {X \in \mathscr{X},Y \in \mathscr{Y}} \right.} \right\};}\\ {\mathscr{X} - \mathscr{Y} = \left[ {{X_l} - {Y_u},{X_u} - {Y_l}} \right] = \left\{ {X - Y\left| {X \in \mathscr{X},Y \in \mathscr{Y}} \right.} \right\};}\\ {\neg \mathscr{X} = \left[ {U,U} \right] - \left[ {{X_l},{X_u}} \right] = \left[ { \sim {X_u}, \sim {X_l}} \right].} \end{array} $ (3)

$ \hat{X}=[X, X](X\subseteq U) $称为单点区间集.区间集幂集I(2U)上的序关系“⊑”定义为

$ \mathscr{X} \sqsubseteq \mathscr{Y} \Leftrightarrow {X_l} \subseteq {Y_l},{X_u} \subseteq {Y_u}. $ (4)

于是, $ \mathscr{X} $$ \mathscr{Y} $$ \mathscr{X} $$ \mathscr{Y} $$ \mathscr{X} $$ \mathscr{X} $$ \mathscr{Y} $$ \mathscr{Y} $.

S=(U, AT)为信息系统, AAT.区间集$ \mathscr{X} $=[Xl, Xu]的区间集粗糙下、上近似定义[21]为:

$ \underline A \left( \mathscr{X} \right) = \left[ {\underline A \left( {{X_l}} \right),\underline A \left( {{X_u}} \right)} \right];\bar A\left( \mathscr{X} \right) = \left[ {\bar A\left( {{X_l}} \right),\bar A\left( {{X_u}} \right)} \right], $ (5)

其中,A(Xl)、A(Xl)与A(Xu)、A(Xu)分别为区间集$ \mathscr{X} $的下界Xl和上界Xu的粗糙下、上近似.

2.2 乐观多粒度区间集粗糙集

定义1  设信息系统S=(U, AT), A1, …, AmAT.对任意区间集$ \mathscr{X} $=[Xl, Xu], $ \mathscr{X} $的乐观多粒度区间集下、上近似分别定义为:

$ \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) = \left[ {\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_l}} \right),\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_u}} \right)} \right];\\ \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) = \left[ {\overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_l}} \right),\overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_u}} \right)} \right], $ (6)

其中,$ \underline{\sum\nolimits_{i=1}^{m}{A_{i}^{o}}}({{X}_{l}}) $, $ \overline{\sum\nolimits_{i=1}^{m}{A_{i}^{o}}}({{X}_{l}}) $, $ \underline{\sum\nolimits_{i=1}^{m}{A_{i}^{o}}}({{X}_{u}}) $, $ \overline{\sum\nolimits_{i=1}^{m}{A_{i}^{o}}}({{X}_{u}}) $分别由公式(2)给出.

性质2  设信息系统S=(U, AT), A1, …, AmAT.对任意区间集$ \mathscr{X} $, $ \mathscr{Y} $I(2U),有下列性质:

$ \begin{array}{l} ①\;\;\neg \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) = \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\neg \mathscr{X}} \right),\neg \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) = \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\neg \mathscr{X}} \right);\\ ②\;\;\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\hat \emptyset } \right) = \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\hat \emptyset } \right)=\hat \emptyset ,\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\hat U} \right) = \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\hat U} \right) = \hat U;\\ ③\;\;\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) \sqsubseteq \mathscr{X} \sqsubseteq \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right);\\ ④\;\;\mathscr{X} \sqsubseteq \mathscr{Y} \Rightarrow \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) \sqsubseteq \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{Y} \right),\overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) \sqsubseteq \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{Y} \right);\\ ⑤\;\;\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\mathscr{X} \sqcup \mathscr{Y}} \right) \sqsupseteq \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) \sqcup \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{Y} \right),\\ \;\;\;\;\overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\mathscr{X} \sqcup \mathscr{Y}} \right) \sqsupseteq \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) \sqcup \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{Y} \right);\\ ⑥\;\;\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\mathscr{X} \sqcap \mathscr{Y}} \right) \sqsubseteq \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) \sqcap \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{Y} \right),\\ \;\;\;\;\overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\mathscr{X} \sqcap \mathscr{Y}} \right) \sqsubseteq \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) \sqcap \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{Y} \right);\\ ⑦\;\;\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) = \mathop \sqcup \limits_{i = 1}^m \underline {{A_i}} \left( \mathscr{X} \right),\overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) = \mathop \sqcup \limits_{i = 1}^m \overline {{A_i}} \left( \mathscr{X} \right). \end{array} $

证明  设区间集$ \mathscr{X} $=[Xl, Xu], $ \mathscr{Y} $=[Yl, Yu], 下证多粒度区间集下近似的性质,上近似类似可证.

① 由定义1、性质1②及区间集补运算的性质知

$ \begin{array}{l} \neg \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) = \left[ { \sim \left( {\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_u}} \right)} \right), \sim \left( {\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_l}} \right)} \right)} \right] = \\ \left[ {\overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( { \sim {X_u}} \right),\overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( { \sim {X_l}} \right)} \right] = \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\neg \mathscr{X}} \right). \end{array} $

② 由性质1①及定义1易证结论成立.

③ 由性质1③及定义1知,

$ \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) = \left[ {\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_l}} \right),\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_u}} \right)} \right] \sqsubseteq \left[ {{X_l},{X_u}} \right] = \mathscr{X}. $

④ 由公式(4)、定义1和性质1⑤可得

$ \begin{array}{l} \mathscr{X} \sqsubseteq \mathscr{Y} \Rightarrow {X_l} \subseteq {Y_l},{X_u} \subseteq {Y_u} \Rightarrow \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_l}} \right) \subseteq \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{Y_l}} \right),\\ \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_u}} \right) \subseteq \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{Y_u}} \right) \Rightarrow \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) \sqsubseteq \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{Y} \right). \end{array} $

⑤ 由公式(3)、定义1可得

$ \begin{array}{l} \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\mathscr{X} \sqcup \mathscr{Y}} \right) = \left[ {\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_l} \cup {Y_l}} \right),\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_u} \cup {Y_u}} \right)} \right] \sqsupseteq \\ \left[ {\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_l}} \right) \cup \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{Y_l}} \right),\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_u}} \right) \cup \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{Y_u}} \right)} \right] = \\ \left[ {\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_l}} \right),\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_u}} \right)} \right] \sqcup \left[ {\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{Y_l}} \right),\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{Y_u}} \right)} \right] = \\ \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\left[ {{X_l},{X_u}} \right]} \right) \sqcup \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\left[ {{Y_l},{Y_u}} \right]} \right) = \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) \sqcup \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{Y} \right). \end{array} $

⑥ 类似⑤的证明可证结论成立.

⑦ 由性质1④和公式(3)可得

$ \begin{array}{l} \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) = \left[ {\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_l}} \right),\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{X_u}} \right)} \right] = \left[ {\mathop \sqcup \limits_{i = 1}^m \underline {{A_i}} \left( {{X_l}} \right),\mathop \sqcup \limits_{i = 1}^m \underline {{A_i}} \left( {{X_u}} \right)} \right] = \\ \mathop \sqcup \limits_{i = 1}^m \left[ {\underline {{A_i}} \left( {{X_l}} \right),\underline {{A_i}} \left( {{X_u}} \right)} \right] = \mathop \sqcup \limits_{i = 1}^m \underline {{A_i}} \left( \mathscr{X} \right). \end{array} $

由性质2可知,对任意区间集$ \mathscr{X} $I(2U),

$ \underline {{A_i}} \left( \mathscr{X} \right) \sqsubseteq \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) \sqsubseteq \mathscr{X} \sqsubseteq \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) \sqsubseteq \overline {{A_i}} \left( \mathscr{X} \right). $ (7)

性质3  设信息系统S=(U, AT), A1, …, AmAT.对任意区间集$ \mathscr{X} $jI(2U), j=1, 2, …, n, 都有

$ \begin{array}{l} ①\;\;\underline {\sum\nolimits_{i = 1}^m {A_i^o}} \left( {\mathop \sqcap \limits_{j = 1}^n {\mathscr{X}_j}} \right) = \mathop \sqcup \limits_{i = 1}^m \left( {\mathop \sqcap \limits_{j = 1}^n \underline {{A_i}} \left( {{\mathscr{X}_j}} \right)} \right) \sqsubseteq \mathop \sqcap \limits_{j = 1}^n \left( {\mathop \sqcup \limits_{i = 1}^m \underline {{A_i}} \left( {{\mathscr{X}_j}} \right)} \right),\\ \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\mathop \sqcup \limits_{j = 1}^n {\mathscr{X}_j}} \right) = \mathop \sqcap \limits_{i = 1}^m \left( {\mathop \sqcup \limits_{j = 1}^n \overline {{A_i}} \left( {{\mathscr{X}_j}} \right)} \right) \sqsupseteq \mathop \sqcup \limits_{j = 1}^n \left( {\mathop \sqcap \limits_{i = 1}^m \overline {{A_i}} \left( {{\mathscr{X}_j}} \right)} \right);\\ ②\;\;\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\mathop \sqcup \limits_{j = 1}^n {\mathscr{X}_j}} \right) \sqsupseteq \mathop \sqcup \limits_{j = 1}^n \left( {\mathop \sqcup \limits_{i = 1}^m \underline {{A_i}} \left( {{\mathscr{X}_j}} \right)} \right),\overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\mathop \sqcap \limits_{j = 1}^n {\mathscr{X}_j}} \right) \sqsubseteq \mathop \sqcap \limits_{j = 1}^n \left( {\mathop \sqcap \limits_{i = 1}^m \overline {{A_i}} \left( {{\mathscr{X}_j}} \right)} \right);\\ ③\;\;{\mathscr{X}_1} \sqsubseteq {\mathscr{X}_2} \sqsubseteq \cdots \sqsubseteq {\mathscr{X}_n} \Rightarrow \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{\mathscr{X}_1}} \right) \sqsubseteq \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{\mathscr{X}_2}} \right) \sqsubseteq \cdots \sqsubseteq \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{\mathscr{X}_n}} \right),\\ \;\;\;\;\overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{\mathscr{X}_1}} \right) \sqsubseteq \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{\mathscr{X}_2}} \right) \sqsubseteq \cdots \sqsubseteq \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{\mathscr{X}_n}} \right). \end{array} $

证明  设$ \mathscr{X} $j=[Xlj, Xuj]∈I(2U), j=1, 2, …, n.由区间集的⊓运算及性质2⑦知

$ \begin{array}{l} \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\mathop \sqcap \limits_{j = 1}^n {\mathscr{X}_j}} \right) = \mathop \sqcup \limits_{i = 1}^m \underline {{A_i}} \left( {\left[ {\bigcap\limits_{j = 1}^n {X_l^j} ,\bigcap\limits_{j = 1}^n {X_u^j} } \right]} \right) = \mathop \sqcup \limits_{i = 1}^m \left[ {\underline {{A_i}} \left( {\bigcap\limits_{j = 1}^n {X_l^j} } \right),\underline {{A_i}} \left( {\bigcap\limits_{j = 1}^n {X_u^j} } \right)} \right] = \\ \mathop \sqcup \limits_{i = 1}^m \left[ {\bigcap\limits_{j = 1}^n {\underline {{A_i}} \left( {X_l^j} \right)} ,\bigcap\limits_{j = 1}^n {\underline {{A_i}} \left( {X_u^j} \right)} } \right] = \mathop \sqcup \limits_{i = 1}^m \left( {\mathop \sqcap \limits_{j = 1}^n \underline {{A_i}} \left( {{\mathscr{X}_j}} \right)} \right), \end{array} $

由性质2⑥和性质2⑦知

$ \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {\mathop \sqcap \limits_{j = 1}^n {\mathscr{X}_j}} \right) \sqsubseteq \mathop \sqcap \limits_{j = 1}^n \left( {\underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( {{\mathscr{X}_j}} \right)} \right) = \mathop \sqcap \limits_{j = 1}^n \left( {\mathop \sqcup \limits_{i = 1}^m \underline {{A_i}} \left( {{\mathscr{X}_j}} \right)} \right), $

$ \underline{\sum\nolimits_{i=1}^{m}{A_{i}^{o}}}(\underset{j=1}{\overset{n}{\mathop{\sqcap }}}\, {\mathscr{X}_{j}})=\underset{i=1}{\overset{m}{\mathop{\sqcup }}}\, (\underset{j=1}{\overset{n}{\mathop{\sqcap }}}\, \underline{{{A}_{i}}}({\mathscr{X}_{j}}))\sqsubseteq \underset{j=1}{\overset{n}{\mathop{\sqcap }}}\, (\underset{i=1}{\overset{m}{\mathop{\sqcup }}}\, \underline{{{A}_{i}}}({\mathscr{X}_{j}})) $.类似可证$ \overline{\sum\nolimits_{i=1}^{m}{A_{i}^{o}}}(\underset{j=1}{\overset{n}{\mathop{\sqcup }}}\, {\mathscr{X}_{j}})=\underset{i=1}{\overset{m}{\mathop{\sqcap }}}\, (\underset{j=1}{\overset{n}{\mathop{\sqcup }}}\, \overline{{{A}_{i}}}({\mathscr{X}_{j}}))\sqsupseteq \underset{j=1}{\overset{n}{\mathop{\sqcup }}}\, (\underset{i=1}{\overset{m}{\mathop{\sqcap }}}\, \overline{{{A}_{i}}}({\mathscr{X}_{j}})) $.

由性质2④, ⑤, ⑥和⑦类似,可证性质3②与3③成立.

由等价关系的定义知,A1, …, AmAT, X∈2U,

$ \left\{ \begin{array}{l} {R_{\bigcup\nolimits_{i = 1}^m {{A_i}} }} = \bigcap\nolimits_{i = 1}^m {{R_{{A_i}}}} \subseteq {R_{{A_i}}} \subseteq {R_{\bigcap\nolimits_{i = 1}^m {{A_i}} }},\\ \underline {\bigcap\nolimits_{i = 1}^m {{A_i}} } \left( X \right) \subseteq \underline {{A_i}} \left( X \right) \subseteq \underline {\bigcup\nolimits_{i = 1}^m {{A_i}} } \left( X \right) \subseteq X,\\ X \subseteq \overline {\bigcup\nolimits_{i = 1}^m {{A_i}} } \left( X \right) \subseteq \overline {{A_i}} \left( X \right) \subseteq \overline {\bigcap\nolimits_{i = 1}^m {{A_i}} } \left( X \right). \end{array} \right. $ (8)

性质4  设S=(U, AT)为信息系统, A1, …, AmAT.对任意区间集$ \mathscr{X} $I(2U),

$ \underline {\bigcap\nolimits_{i = 1}^m {{A_i}} } \left( \mathscr{X} \right) \sqsubseteq \underline {{A_i}} \left( \mathscr{X} \right) \sqsubseteq \underline {\bigcup\nolimits_{i = 1}^m {{A_i}} } \left( \mathscr{X} \right) \sqsubseteq \mathscr{X} \sqsubseteq \overline {\bigcup\nolimits_{i = 1}^m {{A_i}} } \left( \mathscr{X} \right) \sqsubseteq \overline {{A_i}} \left( \mathscr{X} \right) \sqsubseteq \overline {\bigcap\nolimits_{i = 1}^m {{A_i}} } \left( \mathscr{X} \right). $

证明  由公式(8)知,$ \mathscr{X} $的边界XlXu满足

$ \underline {\bigcap\nolimits_{i = 1}^m {{A_i}} } \left( {{X_l}} \right) \subseteq \underline {{A_i}} \left( {{X_l}} \right) \subseteq \underline {\bigcup\nolimits_{i = 1}^m {{A_i}} } \left( {{X_l}} \right) \subseteq {X_l},\underline {\bigcap\nolimits_{i = 1}^m {{A_i}} } \left( {{X_u}} \right) \subseteq \underline {{A_i}}\\ \left( {{X_u}} \right) \subseteq \underline {\bigcup\nolimits_{i = 1}^m {{A_i}} } \left( {{X_u}} \right) \subseteq {X_u}. $

于是由区间集粗糙下、上近似的定义知,

$ \begin{array}{l} \underline {\bigcap\nolimits_{i = 1}^m {{A_i}} } \left( \mathscr{X} \right) = \left[ {\underline {\bigcap\nolimits_{i = 1}^m {{A_i}} } \left( {{X_l}} \right),\underline {\bigcap\nolimits_{i = 1}^m {{A_i}} } \left( {{X_u}} \right)} \right] \sqsubseteq \left[ {\underline {{A_i}} \left( {{X_l}} \right),\underline {{A_i}} \left( {{X_u}} \right)} \right] = \underline {{A_i}} \left( \mathscr{X} \right) \sqsubseteq \\ \left[ {\underline {\bigcup\nolimits_{i = 1}^m {{A_i}} } \left( {{X_l}} \right),\underline {\bigcup\nolimits_{i = 1}^m {{A_i}} } \left( {{X_u}} \right)} \right] = \underline {\bigcup\nolimits_{i = 1}^m {{A_i}} } \left( \mathscr{X} \right) \sqsubseteq \mathscr{X}. \end{array} $

由区间集粗糙集的对偶性即证$ \mathscr{X}\sqsubseteq \overline{\bigcup\nolimits_{i=1}^{m}{{{A}_{i}}}}\left( \mathscr{X} \right)\sqsubseteq \overline{{{A}_{i}}}\left( \mathscr{X} \right)\sqsubseteq \overline{\bigcap\nolimits_{i=1}^{m}{{{A}_{i}}}}\left( \mathscr{X} \right) $成立.

推论1  设信息系统S=(U, AT), A1, …, AmAT的属性子集.对任意区间集$ \mathscr{X} $I(2U),

$ \begin{array}{l} ①\;\;\underline {\bigcap\nolimits_{i = 1}^m {{A_i}} } \left( \mathscr{X} \right) \sqsubseteq \underline {{A_i}} \left( \mathscr{X} \right) \sqsubseteq \mathop \sqcup \limits_{i = 1}^m \underline {{A_i}} \left( \mathscr{X} \right) = \underline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) \sqsubseteq \underline {\bigcup\nolimits_{i = 1}^m {{A_i}} } \left( \mathscr{X} \right) \sqsubseteq \mathscr{X},\\ ②\;\;\mathscr{X} \sqsubseteq \overline {\bigcup\nolimits_{i = 1}^m {{A_i}} } \left( \mathscr{X} \right) \sqsubseteq \mathop \sqcap \limits_{i = 1}^m \overline {{A_i}} \left( \mathscr{X} \right) = \overline {\sum\nolimits_{i = 1}^m {A_i^o} } \left( \mathscr{X} \right) \sqsubseteq \overline {{A_i}} \left( \mathscr{X} \right) \sqsubseteq \overline {\bigcap\nolimits_{i = 1}^m {{A_i}} } \left( \mathscr{X} \right). \end{array} $
2.3 风险投资分析中的应用

考虑风险投资公司的风险投资问题[24].公司给出了20个投资方案xi(i=1, 2, …, 20),投资方案的风险水平由5个专家给出,风险水平值1、2、3分别表示风险低、中和高.风险水平值越大,投资计划的风险越高,收益也就越高,反之亦然.表 1是5个专家给出的投资方案的风险水平评估表.

表 1 风险投资评估表 Table 1 Venture investment evaluation form

U={x1, …, x20}是投资方案集合, AT={a1, …, a5}是专家集合.根据经验,3个以上专家打分超过2的投资方案的获益较高,风险也高,而3个以上专家打分低于2的投资方案风险较低,但获益也低.故投资风险一定高的方案集合X={x1, x6, x8, x9, x19},而投资风险一定低,同时收益也较低的方案集合Y={x3, x4, x11, x13, x14, x15, x18, x20}, Yc是风险不低的投资方案.记Xl=X, Xu=Yc, 则$ \mathscr{X} $=[Xl, Xu]给出了风险一定高和风险可能高作为下界和上界的方案集合,即$ \mathscr{X} $中的集合是投资风险相对高而获益也相对高的方案集合.

在专家组A1={a1, a2}诱导的单粒空间U/RA1上, 区间集$ \mathscr{X} $=[Xl, Xu]的边界Xl, Xu的近似刻画为:

$ \begin{array}{*{20}{c}} {\underline {{A_1}} \left( {{X_l}} \right) = \left\{ {{x_9},{x_{19}}} \right\},\underline {{A_1}} \left( {{X_u}} \right) = \left\{ {{x_1},{x_5},{x_6},{x_7},{x_8},{x_9},{x_{10}},{x_{12}},{x_{17}},{x_{19}}} \right\},}\\ {\overline {{A_1}} \left( {{X_l}} \right) = \left\{ {{x_1},{x_6},{x_7},{x_8},{x_9},{x_{17}},{x_{19}}} \right\},\overline {{A_1}} \left( {{X_u}} \right) = \\ \left\{ {{x_1},{x_2},{x_5},{x_6},{x_7},{x_8},{x_9},{x_{10}},{x_{12}},{x_{13}},{x_{15}},{x_{16}},{x_{17}},{x_{19}}} \right\}.} \end{array} $

在专家组A2={a3}诱导的单粒空间U/RA2上,区间集$ \mathscr{X} $=[Xl, Xu]的边界Xl, Xu的近似刻画为:

$ \begin{array}{*{20}{c}} {\underline {{A_2}} \left( {{X_l}} \right) = \emptyset ,\underline {{A_2}} \left( {{X_u}} \right) = \left\{ {{x_1},{x_2},{x_8},{x_9},{x_{12}}} \right\},}\\ {\overline {{A_2}} \left( {{X_l}} \right) = U - \left\{ {{x_3},{x_4},{x_{11}},{x_{13}},{x_{16}},{x_{17}},{x_{18}}} \right\},\overline {{A_2}} \left( {{X_u}} \right) = U.} \end{array} $

在专家组A3={a4, a5}诱导的单粒空间U/RA3上,区间集$ \mathscr{X} $=[Xl, Xu]的边界Xl, Xu的近似刻画为:

$ \begin{array}{*{20}{c}} {\underline {{A_3}} \left( {{X_l}} \right) = \left\{ {{x_1},{x_6},{x_8},{x_9},{x_{19}}} \right\},\underline {{A_3}} \left( {{X_u}} \right) = \left\{ {{x_1},{x_2},{x_5},{x_6},{x_7},{x_8},{x_9},{x_{16}},{x_{17}},{x_{19}}} \right\},}\\ {\overline {{A_3}} \left( {{X_l}} \right) = \left\{ {{x_1},{x_6},{x_8},{x_9},{x_{19}}} \right\},\overline {{A_3}} \left( {{X_u}} \right) = U - \left\{ {{x_3},{x_{15}}} \right\}.} \end{array} $

3个专家组A1, A2, A3诱导的多粒空间{U/RAi:i=1, 2, 3}上边界Xl, Xu的近似刻画为:

$ \begin{array}{*{20}{c}} {\underline {\sum\nolimits_{i = 1}^3 {A_i^o} } \left( {{X_l}} \right) = \left\{ {{x_1},{x_6},{x_8},{x_9},{x_{19}}} \right\},\underline {\sum\nolimits_{i = 1}^3 {A_i^o} } \left( {{X_u}} \right) = \\ \left\{ {{x_1},{x_2},{x_5},{x_6},{x_7},{x_8},{x_9},{x_{10}},{x_{12}},{x_{16}},{x_{17}},{x_{19}}} \right\},}\\ {\overline {\sum\nolimits_{i = 1}^3 {A_i^o} } \left( {{X_l}} \right) = \left\{ {{x_1},{x_6},{x_8},{x_9},{x_{19}}} \right\},\overline {\sum\nolimits_{i = 1}^3 {A_i^o} } \left( {{X_u}} \right) =\\ U - \left\{ {{x_3},{x_4},{x_{11}},{x_{14}},{x_{15}},{x_{18}},{x_{20}}} \right\}.} \end{array} $

由上面的计算可知, 对任意i=1, 2, 3, $ \underline{{{A}_{i}}}\left( \mathscr{X} \right)\sqsubseteq \underline{\sum\nolimits_{i=1}^{3}{A_{i}^{o}}}\left( \mathscr{X} \right)\sqsubseteq \mathscr{X} \sqsubseteq \overline{\sum\nolimits_{i=1}^{3}{A_{i}^{o}}}\left( \mathscr{X} \right)\sqsubseteq \overline{{{A}_{i}}}\left( \mathscr{X} \right) $.故乐观多粒度区间集粗糙集($ \underline{\sum\nolimits_{i=1}^{3}{A_{i}^{o}}}\left( \mathscr{X} \right)$, $\overline{\sum\nolimits_{i=1}^{3}{A_{i}^{o}}}\left( \mathscr{X} \right) $)所确定的投资方案较区间集粗糙集($ \underline{{{A}_{i}}}\left( \mathscr{X} \right) $, $ \overline{{{A}_{i}}}\left( \mathscr{X} \right) $)(i=1, 2, 3)确定的投资方案获益要高.

3 结论

Pawlak粗糙集利用一个等价关系对论域的划分(单粒空间)给出了目标概念的近似刻画.由于对实际问题的研究存在不同的观点、不同的粒度,一族等价关系对论域的划分产生了多粒空间,从而产生了对目标概念的乐观多粒度粗糙近似描述.由于解决问题时存在的不精确、不确定性等原因产生了区间集,进而产生了区间集粗糙集.基于区间集粗糙集和乐观多粒度粗糙集的思想,本文提出了乐观多粒度区间集粗糙集,讨论了它们的性质,并给出了不同属性产生的单个和多个粒空间下几种区间集粗糙集和乐观多粒度区间集粗糙集之间的关系,最后将乐观多粒度区间集粗糙集应用于风险投资分析中,分析了乐观多粒度区间集粗糙集的逼近效果优于区间集粗糙集.

下一步将研究多粒度空间上的悲观多粒度区间集粗糙集,以及乐观、悲观多粒度区间集粗糙集与不同粒度空间上的区间集粗糙集之间的关系.

参考文献
[1]
PAWLAK Z. Rough sets[J]. International journal of computer and information science, 1982, 11: 341-356. DOI:10.1007/BF01001956 (0)
[2]
PAWLAK Z. Rough sets-theoretical aspects of reasoning about data[M]. London: Kluwer Academic Publishers, 1991. (0)
[3]
CHAN C C. A rough set approach to attribute generalization in data mining[J]. Information sciences, 1998, 107: 169-176. DOI:10.1016/S0020-0255(97)10047-0 (0)
[4]
HU X H. Knowledge discovery in database: an attribute-oriented rough set approach[D]. Regina: University of Regina, 1995. http://dl.acm.org/citation.cfm?id=238989 (0)
[5]
李艳颖, 杨有龙, 汪春峰. 基于粗糙集属性约简与进化算法的贝叶斯网络分类器[J]. 郑州大学学报(理学版), 2014, 46(2): 43-49. (0)
[6]
BAZAN J, PETERS J F, SKOWRON A, et al. Rough set approach to pattern extraction from classifers[J]. Electronic notes in theoretical computer science, 2003, 82(4): 1-10. DOI:10.1016/S1571-0661(04)80700-X (0)
[7]
KRYSZKIEWICZ M. Rough set approach to incomplete information systems[J]. Information sciences, 1998, 112: 39-49. DOI:10.1016/S0020-0255(98)10019-1 (0)
[8]
王国胤. Rough集理论在不完备信息系统中的扩充[J]. 计算机研究与发展, 2002, 39(10): 1238-1243. (0)
[9]
孟慧丽, 张倩倩, 徐久成. 基于贴近度的协调序决策系统属性约简算法[J]. 郑州大学学报(理学版), 2016, 48(3): 90-93. (0)
[10]
GRECO S, MATARAZZO B, SLOWINISKI R. Rough approximation by dominance relations[J]. International journal of intelligent systems, 2002, 17(2): 153-171. DOI:10.1002/(ISSN)1098-111X (0)
[11]
YANG X B, YANG J Y, WU C, et al. Dominance-based rough set approach and knowledge reductions in incomplete ordered information system[J]. Information sciences, 2008, 178(4): 1219-1234. DOI:10.1016/j.ins.2007.09.019 (0)
[12]
DUBOIS D, Prade H. Rough fuzzy sets and fuzzy rough sets[J]. International journal of general systems, 1990, 17(2): 191-209. (0)
[13]
LIN T Y. Granular computing on binary relations Ⅰ: data mining and neighborhood systems[C]//Proceedings of the Rough Sets and Knowledge Discovery. Heidelberg: Physica Verlag, 1998: 107-121. (0)
[14]
LIN T Y. Granular computing on binary relations Ⅱ: rough set representations and belief functions[C]//Proceedings of the Rough Sets and Knowledge Discovery. Heidelberg: Physica Verlag, 1998: 122-140. (0)
[15]
QIAN Y H, LIANG J Y, YAO Y Y, et al. MGRS: a multi-granulation rough set[J]. Information sciences, 2010, 180(6): 949-970. DOI:10.1016/j.ins.2009.11.023 (0)
[16]
QIAN Y H, LIANG J Y, DANG C Y. Incomplete multi-granulation rough set[J]. IEEE transactions on systems, man and cybernetics, 2010, 40(2): 420-431. DOI:10.1109/TSMCA.2009.2035436 (0)
[17]
QIAN Y H, LIANG J Y, WEI W. Pessimistic rough decision[C]//Proceedings of the 2nd International Workshop on Rough Sets Theory. Zhoushan, 2010: 440-449. (0)
[18]
YAO Y Y. Interval-set algebra for qualitative knowledge representation[C]//Proceedings of the 5th International Journal Conference on Computing and Information. Washington, D C, 1993: 370-374. (0)
[19]
胡宝清. 基于区间集的三支决策粗糙集[M]//刘盾, 李天瑞, 苗夺谦, 等. 三支决策与粒计算. 北京: 科学出版社, 2013. (0)
[20]
YAO Y Y. Two views of the theory of rough sets in finite universes[J]. International journal of approximate reasoning, 1996, 15(4): 291-317. DOI:10.1016/S0888-613X(96)00071-0 (0)
[21]
WONG S K M, WANG L S, YAO Y Y. On modeling uncertainty with interval structures[J]. Computational intelligence, 1995, 11: 406-424. DOI:10.1111/coin.1995.11.issue-2 (0)
[22]
YAO Y Y. Interval sets and interval-set algebras[C]//Proceedings of the 8th IEEE International Conference on Cognitive Informatics. Hong Kong, 2009: 307-314. (0)
[23]
WANG G Y, LI D Y, YAO Y Y, et al. Cloud model and granular computing[M]. Beijing: Science Press, 2012. (0)
[24]
钱宇华. 复杂数据的粒化机理与数据建模[D]. 太原: 山西大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10108-1012279665.htm (0)