郑州大学学报(理学版)  2020, Vol. 52 Issue (3): 92-97  DOI: 10.13705/j.issn.1671-6841.2019522

引用本文  

史婷婷, 张顺利. 修正Broer-Kaup-Kupershmidt方程的留数对称和相互作用解[J]. 郑州大学学报(理学版), 2020, 52(3): 92-97.
SHI Tingting, ZHANG Shunli. Residual Symmetries and Interaction Solutions for Modified Broer-Kaup-Kupershmidt Equation[J]. Journal of Zhengzhou University(Natural Science Edition), 2020, 52(3): 92-97.

基金项目

国家自然科学基金项目(11775047)

通信作者

张顺利(1966—), 男, 陕西蓝田人, 教授, 主要从事偏微分方程研究, E-mail:zhang_shunli@126.com

作者简介

史婷婷(1993—), 女, 陕西咸阳人, 硕士研究生, 主要从事偏微分方程研究, E-mail: 940960782@qq.com

文章历史

收稿日期:2019-11-04
修正Broer-Kaup-Kupershmidt方程的留数对称和相互作用解
史婷婷, 张顺利    
西北大学 数学学院 陕西 西安 710127
摘要:运用Painlevé截断展开法得到修正Broer-Kaup-Kupershmidt(MBKK)方程的非局域留数对称。通过局域化非局域对称, 导出与方程Schwartzian变量相对应的有限对称变换。然后, 由一致的Riccati展开(CRE)可解的性质构造MBKK方程的相互作用解。
关键词修正Broer-Kaup-Kupershmidt方程    留数对称    一致的Riccati展开    相互作用解    
Residual Symmetries and Interaction Solutions for Modified Broer-Kaup-Kupershmidt Equation
SHI Tingting, ZHANG Shunli    
School of Mathematics, Northwest University, Xi′an 710127, China
Abstract: The nonlocal residual symmetries for modified Broer-Kaup-Kupershmidt (MBKK) equation were obtained with the method of the truncated Painlevé expansion. The finite symmetry group transformations corresponding to the Schwartzian variable were derived by localizing the nonlocal symmetries. Then, the consistent Riccati expansion(CRE) solvable property was used to construct the interaction solutions of the MBKK equation.
Key words: modified Broer-Kaup-Kupershmidt equation    residual symmetry    consistent Riccati expansion    interaction solution    
0 引言

非线性发展方程可以用来描述等离子体物理、非线性光学、流体力学等许多物理现象。为了更好地理解这些物理现象的本质,寻找非线性发展方程的相关解就显得尤为重要。文献[1]通过Painlevé截断展开法提出了留数对称定理。同时,为了得到更多非线性系统的本质特征,文献[2]提出了一致的Riccati展开(CRE)法,在此基础上,不仅可以明确非线性系统的可积性,还可以构造孤子与其他多种非线性波之间的相互作用解[3-5]。本文主要对修正Broer-Kaup-Kupershmidt(MBKK)方程[6]

$ \left\{ {\begin{array}{*{20}{l}} {{u_t} = - \frac{1}{2}{u_{xx}} - 2u{u_x} + \frac{1}{2}{v_{xx}}, }\\ {{v_t} = \frac{1}{2}{v_{xx}} - 2{{(uv)}_x}} \end{array}} \right. $ (1)

进行了研究。MBKK方程是由(2+1)维BKK方程[7]y=x时改写得到的。BKK方程是描述非线性和色散长重力波在浅海水平方向均匀深度的模型, MBKK方程则主要用于描述浅水波的运动。目前, 已有文献主要针对BKK方程进行研究, 而对MBKK方程的研究较少, 如文献[8]用Hirota方法把非线性方程化为双线性方程, 然后通过摄动法寻找其精确解。本文首先用Painlevé分析法[9]研究MBKK方程的留数对称和相应的有限变换,其次用CRE方法得到MBKK方程的新的相互作用解。

1 MBKK方程的非局域留数对称及其局域化

由MBKK方程(1)的非线性项与色散项的平衡,可得其Painlevé截断展开[10]

$ \left\{ {\begin{array}{*{20}{l}} {u = \frac{{{u_1}}}{\phi } + {u_0}, }\\ {v = \frac{{{v_1}}}{\phi } + {v_0}, } \end{array}} \right. $ (2)

式中:u0u1v0v1、均为xt的函数。将方程(2)代入方程(1),取1/Φ的各次幂系数为0,可得

$ {u_1} = - \frac{{{\phi _x}}}{4};{v_1} = - \frac{{3{\phi _x}}}{8};{u_0} = \frac{{{\phi _{xx}} - 4{\phi _t}}}{{8{\phi _x}}};{v_0} = \frac{{3{\phi _{xx}}}}{{16{\phi _x}}}。$ (3)

Φ满足方程(1)的Schwartzian形式,即

$ 2{C_{xx}} - {S_x} = 0, $ (4)

式中:$C = \frac{{{\phi _t}}}{{{\phi _x}}};S = \frac{{{\phi _{xxx}}}}{{{\phi _x}}} - \frac{{3\phi _{xx}^2}}{{2\phi _x^2}}$

方程(4)在Möbious变化

$ \phi \to \frac{{a + b\phi }}{{c + d\phi }}, (ad \ne bc) $ (5)

下保持不变,这表示方程(4)拥有σΦ=a、σΦ=b和σΦ=c2三种对称,将方程(2)代入方程(1),可得定理1。

定理1(Bäcklund变换定理)  若Φ是方程(4)的解,则

$ \left\{ {\begin{array}{*{20}{l}} {u = \frac{{{\phi _{xx}} - 4{\phi _t}}}{{8{\phi _x}}}, }\\ {v = \frac{{3{\phi _{xx}}}}{{16{\phi _x}}}} \end{array}} \right. $ (6)

是方程(1)关于Φ和解u, v间的一个Bäcklund变换。当Φ和解u, v满足Bäcklund变换(6)时,方程(1)有如下留数对称:${\sigma ^u} = - \frac{1}{4}{\phi _x}, {\sigma ^v} = - \frac{3}{8}\phi $

为了将留数对称局域化[11],引入辅助变量g=g(x, t),利用表达式

$ g = {\phi _x}, $ (7)

则方程(1)的非局域留数对称被局域化为延拓系统(1)、(6)、(7)的Lie点对称,即

$ {\sigma ^u} = - \frac{1}{4}g;{\sigma ^v} = - \frac{3}{8}g;{\sigma ^g} = - 2\phi g;{\sigma ^\phi } = - {\phi ^2}。$ (8)

相应的Lie点对称的向量场表达式为

$ V = - \frac{1}{4}g{\partial _u} - \frac{3}{8}g{\partial _v} - 2\phi g{\partial _g} - {\phi ^2}{\partial _\phi }。$ (9)

由Lie的第一基本定理,解如下的初值问题:

$ \left\{ {\begin{array}{*{20}{l}} {\frac{{{\rm{d}}\hat u(\varepsilon )}}{{{\rm{d}}\varepsilon }} = - \frac{1}{4}\hat g(\varepsilon ), \hat u(0) = u, }\\ {\frac{{{\rm{d}}\hat v(\varepsilon )}}{{{\rm{d}}\varepsilon }} = - \frac{3}{8}\hat g(\varepsilon ), \hat v(0) = v, }\\ {\frac{{{\rm{d}}g(\varepsilon )}}{{{\rm{d}}\varepsilon }} = - 2(\hat \phi (\varepsilon )\hat g(\varepsilon )), \hat g(0) = g, }\\ {\frac{{{\rm{d}}\hat \phi (\varepsilon )}}{{{\rm{d}}\varepsilon }} = - \hat \phi {{(\varepsilon )}^2}, \hat \phi (0) = \phi }。\end{array}} \right. $ (10)

可得Lie点对称(9)的有限对称变换为

$ \left\{ {\begin{array}{*{20}{l}} {\hat u(\varepsilon ) = u - \frac{{g\varepsilon }}{{4(\varepsilon \phi + 1)}}, }\\ {\hat v(\varepsilon ) = v - \frac{{3g\varepsilon }}{{8(\varepsilon \phi + 1)}}, }\\ {\hat g(\varepsilon ) = \frac{g}{{{{(\varepsilon \phi + 1)}^2}}}, }\\ {\hat \phi (\varepsilon ) = \frac{\phi }{{\varepsilon \phi + 1}}, } \end{array}} \right. $ (11)

式中:ε是任意群参数。

2 MBKK方程的CRE可解与新的精确解

根据CRE方法[12],方程(1)有如下的截断展开式:

$ {\left\{ {\begin{array}{*{20}{l}} {u = {u_0} + \frac{{{u_1}}}{{R(\omega )}}, }\\ {v = {v_0} + \frac{{{v_1}}}{{R(\omega )}}, } \end{array}} \right.} $ (12)

式中:ω=ω(x, t);R(ω)是Riccati方程

$ {{R_\omega } = {l_0} + {l_1}R + {l_2}{R^2}} $ (13)

的解, l0l1l2为任意常数, R=R(ω)。

将式(12)和(13)代入方程(1), 并令${\frac{1}{{R(\omega )}}}$的各次幂系数为0,可得

$ {u_1} = - \frac{{{\omega _x}{l_0}}}{4}, {u_0} = - \frac{{\omega _x^2{l_1} - {\omega _{xx}} + 4{\omega _t}}}{{8{\omega _x}}}, {v_1} = - \frac{{3{\omega _x}{l_0}}}{8}, {v_0} = - \frac{{3\omega _x^2{l_1} - 3{\omega _x}}}{{16{\omega _x}}}, $

ω满足方程

$ \frac{{3\delta }}{{32}}{\omega _x}{\omega _{xx}} - \frac{3}{{32}}{S_x} + \frac{3}{{16}}{C_{xx}} = 0, $ (14)

式中:$C = \frac{{{\omega _t}}}{{{\omega _x}}};S = \frac{{{\omega _{xxx}}}}{{{\omega _x}}} - \frac{{3\omega _{xx}^2}}{{2\omega _x^2}};\delta = l_1^2 - 4{l_0}{l_2}$

为求相互作用解,可设相容性方程(14)的解的具体形式为

$ \omega = {k_1}x + {p_1}t + W(X);X = {k_2}x + {p_2}t。$ (15)

将式(15)代入式(14),得到椭圆方程

$ W_{1X}^2 = {C_0} + {C_1}{W_1} + {C_2}W_1^2 + {C_3}W_1^3 + {C_4}W_1^4, $ (16)

式中:

$ \left\{ {\begin{array}{*{20}{l}} {{C_0} = \frac{{k_1^2(4k_1^2{l_0}{l_2} - k_1^2l_1^2 + {C_2}k_2^2)}}{{3k_2^4}}, }\\ {{C_1} = \frac{{{k_1}(4k_1^2{l_0}{l_2} - k_1^2l_1^2 + {C_2}k_2^2)}}{{k_2^3}}, }\\ {{C_3} = \frac{{ - 20k_1^2{l_0}{l_2} + 5k_1^2l_1^2 + {C_2}k_2^2}}{{3{k_1}{k_2}}}, }\\ {{C_4} = \delta , {p_1} = \frac{{{p_2}{k_1}}}{{{k_2}}}, {W_1}(X) = {W_X}, } \end{array}} \right. $ (17)

其中C2, k1, k2, p2为任意常数。则MBKK方程(1)的解有如下形式:

$ \left\{ {\begin{array}{*{20}{l}} {u = - \frac{{{l_1}{{({k_1} + {k_2}{W_X})}^2} - k_2^2{W_{XX}} + 4({p_1} + {p_2}{W_X})}}{{8({k_1} + {k_2}{W_X})}} - \frac{{{l_0}({k_1} + {k_2}{W_X})}}{{4R(\omega )}}, }\\ {v = - \frac{{3({l_1}{{({k_1} + {k_2}{W_X})}^2} - k_2^2{W_{XX}})}}{{16({k_1} + {k_2}{W_X})}} - \frac{{3{l_0}({k_1} + {k_2}{W_X})}}{{8R(\omega )}}}。\end{array}} \right. $ (18)

下面通过2个例子来具体给出MBKK方程的孤立波与椭圆周期波之间的相互作用解。

例1  取椭圆函数方程(16)的解为

$ W = c{E_\pi }( sn ({k_2}x + {p_2}t, m), n, m), $ (19)

式中:sn(q, m)为椭圆函数;Eπ为第三类不完全椭圆积分。取l0=-1, l1=0, l2=-1, 此时Riccati方程的解为R(ω)=cot(ω)。

R(ω)=cot(ω)和式(19)代入式(18),可得MBKK方程的相互作用解为

$ u = \frac{{4{p_1} + \frac{{4c{p_2}}}{{ - {S^2}n + 1}} - \frac{{2ck_2^2nSCD}}{{{{( - {S^2}n + 1)}^2}}}}}{{8({k_1} + \frac{{c{k_2}}}{{ - {S^2}n + 1}})}} + \frac{{{k_1} + \frac{{c{k_2}}}{{ - {S^2}n + 1}}}}{{4{\rm{cot}}({k_1}x + {p_1}t + c{E_\pi }(S, n, m))}}, $
$ v = \frac{{3ck_2^2nSCD}}{{8({k_1} + \frac{{c{k_2}}}{{ - {S^2}n + 1}}){{( - {S^2}n + 1)}^2}}} + \frac{{3({k_1} + \frac{{c{k_2}}}{{ - {S^2}n + 1}})}}{{8{\rm{cot}}({k_1}x + {p_1}t + c{E_\pi }(S, n, m))}}, $

式中:S=sn(k2x+p2t, m);C=cn(k2x+p2t, m);D=dn(k2x+p2t, m)。

将式(15)和式(19)代入方程(14),利用Maple软件解超定方程可得:cmk1k2p1p2为任意常数,n=0。

图 1为例1中u, v相互作用解的波形图, 图 2x=0时u, v的平面周期波解结构。参数选择如下:{c=-0.553 931 451 6, m=0.9, n=0, k1=1, k2=1, p1=2, p2=2}。可以看出, 解u, v分别具有多个不在同一平面上的波峰和波谷,且这些波峰和波谷的凹陷程度不同。

图 1 例1中u, v相互作用解的波形图 Fig. 1 Waveform of the solutions of u and v in sample 1

图 2 例1中x=0时u, v的平面周期波解结构 Fig. 2 The structure of plane periodic wave solutions of u and v at x=0 in sample 1

例2  $W = \frac{1}{2}{\rm{arctan}}{\kern 1pt} {\kern 1pt} {\kern 1pt} h( sn ({k_2}x + {p_2}t, n)), {l_0} = {l_1} = 0, {l_2} = 1$, 此时Riccati方程的解为$R(\omega ) = - \frac{1}{{\omega + 3}}$, 按照与例1类似的步骤,可得方程(1)的相互作用解为

$ \begin{array}{l} u = \frac{1}{{4({k_2}( - {S^2} + 1)( - {n^2}{S^2} + 1) - 2{S^2}{k_1} + 2{k_1})}}\left( {\left( {\frac{{k_2^2{{( - {n^2}{S^2} + 1)}^2}S}}{{2( - {S^2} + 1)}} + \frac{{k_2^2( - {S^2} + 1){n^2}S}}{2} - k_2^2{{( - {n^2}{S^2} + 1)}^2}S - } \right.} \right.\\ \left. {\left. {\frac{{2({p_2}( - {S^2} + 1)( - {n^2}{S^2} + 1) - 2{S^2}{p_1} + 2{p_1})}}{{{S^2} - 1}}} \right)({S^2} - 1)} \right), \end{array} $
$ v = - \frac{{3( - \frac{{k_2^2{{( - {n^2}{S^2} + 1)}^2}S}}{{2( - {S^2} + 1)}} - \frac{{k_2^2( - {S^2} + 1){n^2}S}}{2} + k_2^2{{( - {n^2}{S^2} + 1)}^2}S)({S^2} - 1)}}{{8({k_2}( - {S^2} + 1)( - {n^2}{S^2} + 1) - 2{S^2}{k_1} + 2{k_1})}}, $

式中:$S = sn ({k_2}x + {p_2}t, n);{p_1} = \frac{{{k_1}{p_2}}}{{{k_2}}}$

图 3为例2中u, v相互作用解的波形图, 图 4x=0时u, v的平面周期波解结构。参数选择如下:{n=0.568, k1=0.4, k2=0.2, p1=0.8, p2=0.4}。可以看出,解u, v分别具有多个波峰和波谷,且波峰和波谷的凹陷程度不同。

图 3 例2中u, v相互作用解的波形图 Fig. 3 Waveform of the solutions of u and v in sample 2

图 4 例2中x=0时u, v的平面周期波解结构 Fig. 4 The structure of plane periodic wave solutions of u and v at x=0 in sample 2
3 结束语

由Painlevé截断展开法得到MBKK方程的留数对称, 并通过引入合适的新变元将其局域化为Lie点对称, 在此基础上, 利用Lie的第一基本定理研究了延拓系统的有限变换。最后, 用CRE方法获得了MBKK方程的相互作用解。为了更好地研究解的性质, 通过选取适当的参数, 给出了解的相应图形。

参考文献
[1]
LOU S Y. Residual symmetries and Bäcklund transformations[EB/OL].[2019-10-01]. https://arxiv.org/abs/1308.1140. (0)
[2]
LOU S Y. Consistent Riccati expansion for integrable systems[J]. Studies in applied mathematics, 2015, 134(3): 372-402. DOI:10.1111/sapm.12072 (0)
[3]
FENG L L, TIAN S F, ZHANG T T. Nonlocal symmetries and consistent Riccati expansions of the (2+1) -dimensional dispersive long wave equation[J]. Zeitschrift für naturforschung, 2017, 72(5): 425-431. DOI:10.1515/zna-2017-0012 (0)
[4]
LI Y Y, HU H C. Nonlocal symmetries and interaction solutions of the Benjamin-Ono equation[J]. Applied mathematics letters, 2018, 75: 18-23. DOI:10.1016/j.aml.2017.06.012 (0)
[5]
CHEN J C, MA Z Y. Consistent Riccati expansion solvability and soliton-cnoidal wave interaction solution of a (2+ 1) -dimensional Korteweg-de Vries equation[J]. Applied mathematics letters, 2017, 64: 87-93. DOI:10.1016/j.aml.2016.08.016 (0)
[6]
BAI C L, ZHAO H. A new general algebraic method and its applications to the (2 + 1) -dimensional Broer-Kaup-Kupershmidt equations[J]. Applied mathematics and computation, 2010, 217(4): 1719-1732. DOI:10.1016/j.amc.2009.10.034 (0)
[7]
TANG X Y, LOU S Y, ZHANG Y. Localized excitations in (2+1) -dimensional systems[J]. Physics review E, 2002, 66(4): 1-17. (0)
[8]
孟祥德, 高建军, 杨瑞朋. (1 + 1)维修正Broer-Kaup-Kupershmidt方程的双线性化和精确解[J]. 洛阳师范学院学报, 2013, 32(8): 1-3.
MENG X D, GAO J J, YANG R P. Double linearization and accurate solution of (1 + 1) dimension positive Broer-KaupKupershmidt equation[J]. Journal of Luoyang normal university, 2013, 32(8): 1-3. DOI:10.3969/j.issn.1009-4970.2013.08.001 (0)
[9]
CONTO R. Invariant Painlevé analysis of partial differential equations[J]. Physics letters A, 1989, 140(7/8): 383-390. (0)
[10]
PENG Y Z. A new (2+1) -dimensional KdV equation and its localized structures[J]. Communications in theoretical physics, 2010, 54(5): 863-865. DOI:10.1088/0253-6102/54/5/17 (0)
[11]
XIA Y R, XIN X P, ZHANG S L. Residual symmetry, interaction solutions, interactions and conservation laws of the (2+1) -dimensional dispersive long-wave system[J]. Chinese physics B, 2017, 26(3): 030202. DOI:10.1088/1674-1056/26/3/030202 (0)
[12]
SONG J F, HU Y H, MA Z Y. Bäcklund transformation and CRE solvability for the negative-order modified KdV equation[J]. Nonlinear dynamics, 2017, 90(1): 575-580. (0)