张量是矩阵的高阶推广, 在医学成像、期权定价和多人非合作博弈等实际应用问题中有着广泛的应用[1-5]。作为H-矩阵的推广, H-张量具有特殊结构, 其在张量理论及应用研究上被广泛使用, 尤其是H-张量的数值性质、判别方法等受到越来越多学者的关注[6-10]。同时, 齐次多项式因其在众多领域的重要应用,使其成为一个重要的研究课题[11-13]。由于主对角元为正的H-张量与张量正定性具有一致性, 因此可基于此解决多项式正定性的判定。本文得出了判定H-张量的新条件, 所得结果拓展了文献[11-13]的结论。最后, 举例说明了新条件的有效性。
1 预备知识记C(R)为复(实)数域, [n]: ={1, 2, …, n}。一个复(实)m阶n维张量A=(ai1i2…im)由nm个复(实)数元素构成[1-5], 其中ai1i2…im∈ C(R), ij∈[n], j∈[m]。显然, 2阶张量即为矩阵。此外, 张量A=(ai1i2…im)被称为对称的[6-7], 若ai1i2…im=aπ(i1i2…im), ∀π∈Πm, 其中Πm为m个指标的置换群。
定义 1[5] 张量I=(δi1i2…im)称为单位张量, 其中
$ \delta_{i_{1} i_{2} \cdots i_{m}}=\left\{\begin{array}{ll} 1, & i_{1}=i_{2}=\cdots=i_{m}, \\ 0, & \text {其他 }。\end{array}\right. $ |
定义 2[4] 给定一个m阶n维张量A=(ai1i2…im), 若存在一个复数λ和一个非零复向量x=(x1, x2, …, xn)T∈Cn, 使得Axm-1=λx[m-1], 那么称λ为A的特征值, x为A的关于特征值λ的特征向量, 向量Axm-1和x[m-1]的第i个分量分别为
记m阶n次齐次多项式f(x)为
$ f(\boldsymbol{x})=\sum\limits_{i_{1}, \cdots, i_{m} \in[n]} a_{i_{1} i_{2} \cdots i_{m}} x_{i_{1}} \cdots x_{i_{m}}, $ | (1) |
其中x=(x1, x2, …, xn)T∈Rn。当m为偶数时, f(x)是正定的, 若f(x)>0, ∀x∈Rn, x≠0。式(1)中的齐次多项式f(x)可以表示为m阶n维对称张量A与xm的乘积,
定义 3[7] 设A=(ai1i2…im)为m阶n维张量, 若存在正向量x=(x1, x2, …, xn)T∈Rn, 使得对∀i∈[n],
定义 4[7] m阶n维张量A=(ai1i2…im)与矩阵X=diag(x1, x2, …, xn)的乘积表示为
$ \boldsymbol{B}=\left(b_{i_{1} \cdots i_{m}}\right)=\boldsymbol{A} \boldsymbol{X}^{m-1}, b_{i_{1} i_{2} \cdots i_{m}}=a_{i_{1} i_{2} \cdots i_{m}} x_{i_{2}} x_{i_{3}} \cdots x_{i_{m}}, i_{j} \in[n], j \in[m]。$ |
假设Q表示[n]的任意非空子集, 令Qm-1={i2i3…im: ij∈Q, j=2, 3, …, m}, [n]m-1\Qm-1={i2i3…im: i2i3…im∈[n]m-1且i2i3…im∉Qm-1}。给定一个m阶n维张量A=(ai1i2…im), 令
引理 1[8] 若A为严格对角占优张量,则A为H-张量。
引理 2[9] 设A=(ai1i2…im)为m阶n维张量。如果存在一个正对角矩阵X, 使得AXm-1是H-张量, 则A为H-张量。
引理 3[9] 设A=(ai1i2…im)为m阶n维张量。若A是不可约的, 且|aii…i|≥Ri(A), ∀i∈[n], 又至少存在一个i, 使得严格不等式成立, 则A为H-张量。
引理 4[10] 设A=(ai1i2…im)为m阶n维张量。若1)|aii…i ≥Ri(A), ∀i∈[n],2) N3={i∈[n]: |aii…i|>Ri(A)}≠Ø,3) ∀i∉N3, 从i到j存在一个非零元素链, 使得j∈N3,则A为H-张量。
文献[11]中给出了如下结果。
定理 1 设A=(ai1i2…im)为m阶n维张量。若对∀i∈N1∪N2, 满足
$ \left| {{a}_{ii\cdots i}} \right|>\sum\limits_{\begin{smallmatrix} {{i}_{2}}{{i}_{3}}\cdots {{i}_{m}}\in {{[n]}^{m-1}}\backslash N_{3}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+\sum\limits_{{{i}_{2}}{{i}_{3}}\cdots {{i}_{m}}\in N_{3}^{m-j}}{\mathop {\max }\limits_{j \in \{ {i_2},{i_3}, \cdots ,{i_m}\} } }\left\{ {{R}_{j}}(A)/\left| {{a}_{jj\cdots j}} \right| \right\}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|, $ |
则A为H-张量。
2 主要结果为了叙述方便,引入以下符号,记:
$ r=\max \limits_{i \in N_{3}}\,\left\{ \sum\limits_{{{i}_{2}}{{i}_{3}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+\sum\limits_{{{i}_{2}}{{i}_{3}}\cdots {{i}_{m}}\in N_{2}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}/\left| {{a}_{ii\cdots i}} \right|-\sum\limits_{\begin{smallmatrix} {{i}_{2}}{{i}_{3}}\cdots {{i}_{m}}\in N_{3}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|} \right\}; $ |
$ m_{i}=R_{i}(\boldsymbol{A})-\left|a_{i i \cdots i}\right| / R_{i}(\boldsymbol{A}), m=\max \limits_{i \in N_{2}}\left\{m_{i}\right\}, \delta=\max \{r, m\} ; $ |
$ {{P}_{i,r}}(\boldsymbol{A})=\sum\limits_{{{i}_{2}}{{i}_{3}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+\sum\limits_{{{i}_{2}}{{i}_{3}}\cdots {{i}_{m}}\in N_{2}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+r\sum\limits_{\begin{smallmatrix} {{i}_{2}}{{i}_{3}}\cdots {{i}_{m}}\in N_{3}^{m-1} \\ {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|},\forall i\in {{N}_{3}}; $ |
$ h = \mathop {\max }\limits_{i \in {N_3}} \left\{ {\delta \left( {\sum\limits_{{i_2}{i_3} \cdots {i_m} \in N_0^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} + \sum\limits_{{i_2}{i_3} \cdots {i_m} \in N_2^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} } \right)/{P_{i,r}}(\boldsymbol{A})} \right. - \begin{array}{*{20}{l}} {\sum\limits_{\begin{array}{*{20}{c}} {{i_2}{i_3} \cdots {i_m} \in N_3^{m - 1}}\\ {{\delta _{i{i_2} \cdots {i_m}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} \left. {\frac{{{P_{j,r}}(\boldsymbol{A})}}{{\left| {{a_{jj \cdots j}}} \right|}}\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} \right\}。} } \end{array} $ |
定理 2 设A=(ai1i2…im)为m阶n维张量。若对任意的i∈N2, A满足
$ \begin{array}{l} \left| {{a_{ii \cdots i}}} \right|{m_i} > \delta \sum\limits_{{i_2}{i_3} \cdots {i_m} \in N_0^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} + \sum\limits_{\begin{array}{*{20}{c}} {{i_2}{i_3} \cdots {i_m} \in N_2^{m - 1}}\\ {{\delta _{i{i_2} \cdots {i_m}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} }\left\{ {{m_j}} \right\}\left| {{a_{i{i_2} \cdots {i_m}}}} \right| + \\ h\sum\limits_{{i_2} \cdots {i_m} \in N_3^{m - j}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} \left\{ {{P_{j,r}}(\mathit{\boldsymbol{A}})/\left| {{a_{jj \cdot \cdots j}}} \right|} \right\}} \left| {{a_{i{i_2} \cdots {i_m}}}} \right|, \end{array} $ | (2) |
且
$ \left| {{a}_{ii\cdots i}} \right|\ne \sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|},\forall i\in {{N}_{1}}, $ | (3) |
则A是H-张量。
证明 由r、m、δ的表达式知0≤r<1, 0<m<1, 0<δ<1, 因此对∀i∈N3,
$ {{P}_{i,r}}(\boldsymbol{A})=\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+r\sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}\le r\left| {{a}_{ii\cdots i}} \right|, $ |
则0≤Pi(A)/|aii…i ≤r≤δ<1, ∀i∈N3。又由Pi, r(A)的定义, 对∀i∈N1, 可得
$ \begin{array}{l} \left( {\delta \left( {\sum\limits_{{i_2} \cdots {i_m} \in N_0^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} + \sum\limits_{{i_2} \cdots {i_m} \in N_2^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} } \right)} \right)/\left( {{P_{i,r}}(\boldsymbol{A}) - \begin{array}{*{20}{l}} {\sum\limits_{\begin{array}{*{20}{c}} {{i_2}{i_3} \cdots {i_m} \in N_3^{m - 1}}\\ {{\delta _{i{i_2} \cdots {i_m}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} {P_{j,r}}(\boldsymbol{A})/\left| {{a_{jj \cdots j}}} \right|\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} } \end{array}} \right)\\ \left( {{P_{i,r}}(\boldsymbol{A}) - \sum\limits_{\begin{array}{*{20}{c}} {{i_2} \cdots {i_m} \in N_3^{m - 1}}\\ {{\delta _{i{i_2} \cdots {i_m}}} = 0} \end{array}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} } \right)/\left( {{P_{i,r}}(\boldsymbol{A}) - \sum\limits_{\begin{array}{*{20}{c}} {{i_2} \cdots {i_m} \in N_3^{m - 1}}\\ {{\delta _{i{i_2} \cdots {i_m}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} \left\{ {{P_{i,r}}(\boldsymbol{A})/\left| {{a_{jj \cdots j}}} \right|} \right\}\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} } \right) \le 1。\end{array} $ |
因此, 对∀i∈N3, 0≤h<1, 且
$ h{P_{i,r}}({\boldsymbol{A}}) \ge \delta \sum\limits_{{i_2} \cdots {i_m} \in N_0^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} + \delta \sum\limits_{{i_2} \cdots {i_m} \in N_2^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} + \sum\limits_{\begin{array}{*{20}{c}} {{i_2} \cdots {i_m} \in N_3^{m - 1}}\\ {{\delta _{i{i_2} \cdots {i_m}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} \left\{ {{P_{i,r}}(\boldsymbol{A})/\left| {{a_{jj \cdots j}}} \right|} \right\}\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} 。$ | (4) |
令
$ \begin{array}{*{20}{l}} {{M_i} = \left( {\left| {{a_{ii \cdots i}}} \right|{m_i} - \delta \sum\limits_{{i_2} \cdots {i_m} \in N_0^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} - \sum\limits_{\begin{array}{*{20}{c}} {{i_2} \cdots {i_m} \in N_2^{m - 1}}\\ {{\delta _{i{i_2} \cdots {i_m}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} } \{ {m_j}\} \left| {{a_{i{i_2} \cdots {i_m}}}} \right| - } \right.}\\ {\left. {h\sum\limits_{{i_2} \cdots {i_m} \in N_3^{m - 1}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} \left\{ {{P_j}(\mathit{\boldsymbol{A}})/\left| {{a_{jj \cdots j}}} \right|} \right\}} \left| {{a_{i{i_2} \cdots {i_m}}}} \right|} \right)/\left( {\sum\limits_{{i_2} \cdots {i_m} \in N_3^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} } \right),} \end{array} $ | (5) |
若
$ 0 < \varepsilon < \mathop {\min }\limits_{i \in {N_2}} \left\{ {{M_i}} \right\} \le + \infty ,\mathop {\max }\limits_{i \in {N_3}} \left\{ {h{P_{i,r}}(\mathit{\boldsymbol{A}})/\left| {{a_{ii \cdots i}}} \right| + \varepsilon } \right\} < \delta < 1。$ | (6) |
构造正对角矩阵D=diag(d1, d2, …, dn), 记B=ADm-1=(bi1i2…im),其中:
$ d_{i}=(\delta)^{\frac{1}{m-1}}, i \in N_{1} ; d_{i}=\left(m_{i}\right)^{\frac{1}{m-1}}, i \in N_{2} ; d_{i}=\left(h P_{i, r}(\boldsymbol{A}) /\left|a_{i i \cdots i}\right|+\varepsilon\right)^{\frac{1}{m-1}}, i \in N_{3}。$ |
1) 对∀i∈N1, 由(4)式及(6)式知
$ \begin{align} & {{R}_{i}}(\boldsymbol{B})=\sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{x}_{{{i}_{2}}}}\cdots {{x}_{{{i}_{m}}}}+\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{\left( {{m}_{{{i}_{2}}}} \right)}^{\frac{1}{m-1}}}\cdots {{\left( {{m}_{{{i}_{m}}}} \right)}^{\frac{1}{m-1}}}+ \\ & \sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{\left( h{{P}_{{{i}_{2}},r}}(\boldsymbol{A})/\left| {{a}_{{{i}_{2}}{{i}_{2}}\cdots {{i}_{2}}}} \right|+\varepsilon \right)}^{\frac{1}{m-1}}}\cdots {{\left( h{{P}_{{{i}_{m}},r}}(\boldsymbol{A})/\left| {{a}_{{{i}_{m}}{{i}_{m}}\cdots {{i}_{m}}}} \right|+\varepsilon \right)}^{\frac{1}{m-1}}}\le \\ & \delta \sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1}}\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}}\left\{ {{m}_{i}} \right\}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|+ \\ & \sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1}}{\left( \underset{j\in \left\{ {{i}_{2}},{{i}_{3}},\cdots ,{{i}_{m}} \right\}}{\mathop{\max }}\,\left\{ h{{P}_{j,r}}(A)/\left| {{a}_{jj\cdots j}} \right| \right\}+\varepsilon \right)}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|<\left| {{a}_{ii\cdots i}} \right|\delta =\left| {{b}_{ii\cdots i}} \right| 。\\ \end{align} $ | (7) |
2) 对∀i∈N2, 由式(2)、式(5)及式(6)知
$ \begin{align} & {{R}_{i}}(\boldsymbol{B})=\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{x}_{{{i}_{2}}}}\cdots {{x}_{{{i}_{m}}}}+\sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{\left( {{m}_{{{i}_{2}}}} \right)}^{\frac{1}{m-1}}}\cdots {{\left( {{m}_{{{i}_{m}}}} \right)}^{\frac{1}{m-1}}}+ \\ & \sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{\left( h{{P}_{{{i}_{2}},r}}(\boldsymbol{A})/\left| {{a}_{{{i}_{2}}{{i}_{2}}\cdots {{i}_{2}}}} \right|+\varepsilon \right)}^{\frac{1}{m-1}}}\cdots {{\left( h{{P}_{{{i}_{m}},r}}(\boldsymbol{A})/\left| {{a}_{{{i}_{m}}{{i}_{m}}\cdots {{i}_{m}}}} \right|+\varepsilon \right)}^{\frac{1}{m-1}}}\le \delta \sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+ \\ & \sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}}\left\{ {{m}_{i}} \right\}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|+\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1}}{\left( \underset{j\in \left\{ {{i}_{2}},{{i}_{3}},\cdots ,{{i}_{m}} \right\}}{\mathop{\max }}\,\left\{ h{{P}_{j,r}}(\boldsymbol{A})/\left| {{a}_{jj\cdots j}} \right| \right\}+\varepsilon \right)}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|< \\ & \delta \sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+\sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}}\left\{ {{m}_{i}} \right\}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|+\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1}}\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}}\left\{ h{{P}_{j,r}}(\boldsymbol{A})/\left| {{a}_{jj\cdots j}} \right| \right\}\cdot \\ & \left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|+{{M}_{i}}\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}=\left| {{a}_{ii\cdots i}} \right|{{m}_{i}}=\left| {{b}_{ii\cdots i}} \right| 。\\ \end{align} $ | (8) |
3) 对∀i∈N3, 由式(4)及式(6)知
$ \begin{align} & {{R}_{i}}(\boldsymbol{B})=\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{x}_{{{i}_{2}}}}\cdots {{x}_{{{i}_{m}}}}+\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{\left( {{m}_{{{i}_{2}}}} \right)}^{\frac{1}{m-1}}}\cdots {{\left( {{m}_{{{i}_{m}}}} \right)}^{\frac{1}{m-1}}}+ \\ & \sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{\left( h{{P}_{{{i}_{2}},r}}(\boldsymbol{A})/\left| {{a}_{{{i}_{2}}{{i}_{2}}\cdots {{i}_{2}}}} \right|+\varepsilon \right)}^{\frac{1}{m-1}}}\cdots {{\left( h{{P}_{{{i}_{m}},r}}(\boldsymbol{A})/\left| {{a}_{{{i}_{m}}{{i}_{m}}\cdots {{i}_{m}}}} \right|+\varepsilon \right)}^{\frac{1}{m-1}}}\le \delta \sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+ \\ & \sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1}}\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}}\left\{ {{m}_{i}} \right\}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|+\sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left( \underset{j\in \left\{ {{i}_{2}},{{i}_{3}},\cdots ,{{i}_{m}} \right\}}{\mathop{\max }}\,\left\{ h{{P}_{j,r}}(\boldsymbol{A})/\left| {{a}_{jj\cdots j}} \right| \right\}+\varepsilon \right)}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|= \\ & h{{P}_{j,r}}(\boldsymbol{A})\varepsilon \sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}<h{{P}_{{{i}_{2}},r}}(\boldsymbol{A})+\varepsilon \left| {{a}_{ii\cdots i}} \right|=\left| {{b}_{ii\cdots i}} \right| 。\\ \end{align} $ | (9) |
综上所述,由式(7)、式(8)及式(9)知bii…i >Ri(B)(∀i∈[n]), 即B是严格对角占优的, 故由引理1知B是H-张量。进而, 由引理2知A是H-张量。
类似于定理2的证明, 借助引理3和引理4, 可得如下结论。
定理 3 设A=(ai1i2…im)为m阶n维张量, A不可约, 若对任意的i∈N2,
$ \begin{array}{*{35}{l}} \left| {{a}_{ii\cdots i}} \right|{{m}_{i}}\ge \delta \sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+\sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}}\,\left\{ {{m}_{i}} \right\}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|+} \\ h\sum\limits_{{i_2} \cdots {i_m} \in N_3^{m - 1}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} \left\{ {{P_{j,r}}({\boldsymbol{A}})/\left| {{a_{jj \cdot \cdots j}}} \right|} \right\}\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} , \end{array} $ | (10) |
且(10)式中至少有一个严格不等式成立, 则A是H-张量,记
$ \begin{array}{*{20}{l}} {K(\mathit{\boldsymbol{A}}) = \left\{ {i \in {N_2}:\left| {{a_{ii \cdots i}}} \right|{m_i} > \delta \sum\limits_{{i_2} \cdots {i_m} \in N_0^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} + \sum\limits_{\begin{array}{*{20}{c}} {{i_2} \cdots {i_m} \in N_2^{m - 1}}\\ {{\delta _{i{i_2} \cdots {i_m}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} } \left\{ {{m_i}} \right\}\left| {{a_{i{i_2} \cdots {i_m}}}} \right| + } \right.}\\ {\left. {h\sum\limits_{{i_2} \cdots {i_m} \in N_3^{m - 1}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} } \left\{ {h{P_{j,r}}(\mathit{\boldsymbol{A}})/\left| {{a_{jj \cdot \cdot j}}} \right|} \right\}\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} \right\}}。\end{array} $ |
定理 4 设A=(ai1i2…im)为m阶n维张量。若对任意的i∈N2, 有
$ \left| {{a_{ii \cdots i}}} \right|{m_i} \ge \delta \sum\limits_{{i_2} \cdots {i_m} \in N_0^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} + \sum\limits_{\begin{array}{*{20}{c}} {{i_2} \cdots {i_m} \in N_2^{m - 1}}\\ {{\delta _{i{i_2} \ldots {i_m}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \{ {i_2},{i_3}, \ldots ,{i_m}\} } } \left\{ {{m_j}} \right\}\left| {{a_{i{i_2} \cdots {i_m}}}} \right| + \\h\mathop \sum \limits_{{i_2} \cdots {i_m} \in N_3^{m - 1}} \mathop {\max }\limits_{j \in \{ {i_2},{i_3}, \cdots ,{i_m}\} } \left\{ {{P_{j,r}}(\mathit{\boldsymbol{A}})/\left| {{a_{jj \cdots j}}} \right|} \right\}\left| {{a_{i{i_2} \cdots {i_m}}}} \right|, $ |
且对∀i∈[n]\K(A), 存在从i到j的非零元素链,使得j∈K(A)≠Ø, 则A是H-张量。
例 1 给定A=[A(1, : , : ), A(2, : , : ), A(3, : , : )], 其中
$ \boldsymbol{A}(1,:,:)=\left(\begin{array}{ccc} 12 & 1 & 0 \\ 1 & 6 & 0 \\ 1 & 0 & 16 \end{array}\right), \boldsymbol{A}(2,:,:)=\left(\begin{array}{lll} 1 & 1 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 1 \end{array}\right), \boldsymbol{A}(3,:,:)=\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 16 \end{array}\right) \text { 。} $ |
由张量A的元素得到
$ \left| {{a_{111}}} \right| = 12,{R_1}(\mathit{\boldsymbol{A}}) = 25,\left| {{a_{222}}} \right| = 6,{R_2}(\mathit{\boldsymbol{A}}) = 3,\left| {{a_{333}}} \right| = 16,{R_3}(\mathit{\boldsymbol{A}}) = 2, $ |
所以N1=Ø, N2={1}, N3={2, 3}。当i=1时, 有
$ \begin{array}{l} \delta \sum\limits_{{i_2}{i_3} \in N_0^2} {\left| {{a_{1{i_2}{i_3}}}} \right|} + \sum\limits_{\begin{array}{*{20}{c}} {{i_2}{i_3} \in N_2^2}\\ {{\delta _{1{i_2}{i_3}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} } \left\{ {{m_j}} \right\}\left| {{a_{1{i_2}{i_3}}}} \right| + h\sum\limits_{{i_2}{i_3} \in N_3^2} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}} \right\}} } \left\{ {{P_{j,r}}(\mathit{\boldsymbol{A}})/\left| {{a_{ij \cdot \cdot j}}} \right|} \right\}\left| {{a_{1{i_2}{i_3}}}} \right| = \\ 767/125 < 156/25 = \left| {{a_{111}}} \right|{m_1}。\end{array} $ |
所以张量A满足定理2的条件, 可知张量A是H-张量。但
$ \sum\limits_{\begin{smallmatrix} {{i}_{2}}{{i}_{3}}\in {{[n]}^{2}}\backslash N_{3}^{2} \\ {{\delta }_{1{{i}_{2}}{{i}_{3}}}}=0 \end{smallmatrix}}{\left| {{a}_{1{{i}_{2}}{{i}_{3}}}} \right|}+\sum\limits_{{{i}_{2}}{{i}_{3}}\in N_{3}^{2}}{\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}}\,\left\{ {{R}_{j}}(\boldsymbol{A})/\left| {{a}_{jj\cdots j}} \right| \right\}}\left| {{a}_{1{{i}_{2}}{{i}_{3}}}} \right|=14>12=\left| {{a}_{111}} \right|, $ |
因此, A不满足定理1的条件。
3 应用基于H-张量的判定条件, 下面给出了偶数阶实对称张量正定性判定的新条件(多元形式的正定)。
引理 5[9] 设m阶n维张量A=(ai1i2…im)为偶数阶实对称张量, 且对∀i∈[n], 满足aii…i>0。如果A是H-张量,则A是正定的。
根据引理5、定理2、定理3及定理4, 可得到以下结论。
定理 5 设张量A=(ai1i2…im)是m阶n维的偶数阶实对称张量, 且对∀i∈[n], 满足aii…i>0。如果A满足下列条件之一:
1) 定理2的所有条件;2) 定理3的所有条件;3) 定理4的所有条件;则A是正定的。
例 2 设四次齐次多项式f(x)=Ax4=16x14+84x24+87x34+75x44-8x13x4-12x12x2x3-12x2x32x4+24x1x2x3x4, 其中A=(ai1i2…im)是一个4阶4维的实对称张量, 且
$ {{a_{1111}} = 16,{a_{2222}} = 84,{a_{3333}} = 87,{a_{4444}} = 75,{a_{1114}} = {a_{1141}} = {a_{1411}} = {a_{4111}} = - 2,} $ |
$ {{a_{1123}} = {a_{1132}} = {a_{1213}} = {a_{1312}} = {a_{1231}} = {a_{1321}} = - 1,{a_{2113}} = {a_{2131}} = {a_{2311}} = {a_{3112}} = {a_{3121}} = {a_{3211}} = - 1,} $ |
$ {{a_{2334}} = {a_{2343}} = {a_{2433}} = {a_{4233}} = {a_{4323}} = {a_{4332}} = - 1,{a_{3234}} = {a_{3243}} = {a_{3324}} = {a_{3342}} = {a_{3423}} = {a_{3432}} = - 1,} $ |
$ {{a_{1234}} = {a_{1243}} = {a_{1324}} = {a_{1342}} = {a_{1423}} = {a_{1432}} = 1,{a_{2134}} = {a_{2143}} = {a_{2314}} = {a_{2341}} = {a_{2413}} = {a_{2431}} = 1,} $ |
$ {{a_{3124}} = {a_{3142}} = {a_{3214}} = {a_{3241}} = {a_{3412}} = {a_{3421}} = 1,{a_{4123}} = {a_{4132}} = {a_{4213}} = {a_{4231}} = {a_{4312}} = {a_{4321}} = 1,} $ |
其余的ai1i2i3i4=0。计算得
$ {a_{1111}} = 16 < 18 = {R_1}(\mathit{\boldsymbol{A}}),{a_{4444}}\left( {{a_{1111}} - {R_1}(\mathit{\boldsymbol{A}}) + \left| {{a_{1444}}} \right|} \right) = - 150 < 0 = {R_4}(\mathit{\boldsymbol{A}})\left| {{a_{1444}}} \right| $ |
因此, A既不是严格对角占优张量, 也不是拟双严格对角占优张量, 所以不能用文献[12-13]中的定理来判定A的正定性。但可以证明A满足定理2的所有条件。因为
$ \left|a_{1111}\right|=16, R_{1}(\boldsymbol{A})=18,\left|a_{2222}\right|=84, R_{2}(\boldsymbol{A})=12,\left|a_{3333}\right|=87, R_{3}(\boldsymbol{A})=15,\left|a_{4444}\right|=75, R_{4}(\boldsymbol{A})=11, $ |
所以N1=Ø, N2={1}, N3={2, 3, 4}。当i=1时,有
$ \delta \sum\limits_{{i_2}{i_3} \in N_0^2} {\left| {{a_{1{i_2}{i_3}}}} \right|} + \sum\limits_{\begin{array}{*{20}{c}} {{i_2}{i_3} \in N_2^2}\\ {{\delta _{1{i_2}{i_3}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} } \left\{ {{m_j}} \right\}\left| {{a_{1{i_2}{i_3}}}} \right| + h\sum\limits_{{i_2}{i_3} \in N_3^2} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}} \right\}} } \left\{ {{P_{j,r}}(\mathit{\boldsymbol{A}})/\left| {{a_{jj \cdot \cdots j}}} \right|} \right\}\left| {{a_{1{i_2}{i_3}}}} \right| = 38/27 < 16/9 = \left| {{a_{111}}} \right|{m_1}。$ |
根据定理5, A是正定的, 即f(x)是正定的。
4 结论本文给出了判别张量是否是H-张量新的充分条件, 该条件可用于判别偶数次齐次多项式f(x)=Axm的正定性。数值算例表明了本文所得条件的有效性。
[1] |
CHANG K C, PEARSON K, ZHANG T. Perron-Frobenius theorem for nonnegative tensors[J]. Communications in mathematical sciences, 2008, 6(2): 507-520. DOI:10.4310/CMS.2008.v6.n2.a12 ( ![]() |
[2] |
LIU Y J, ZHOU G L, IBRAHIM N F. An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor[J]. Journal of computational and applied mathematics, 2010, 235(1): 286-292. DOI:10.1016/j.cam.2010.06.002 ( ![]() |
[3] |
NG M, QI L Q, ZHOU G L. Finding the largest eigenvalue of a nonnegative tensor[J]. SIAM journal on matrix analysis and applications, 2010, 31(3): 1090-1099. DOI:10.1137/09074838X ( ![]() |
[4] |
QI L Q. Eigenvalues of a real supersymmetric tensor[J]. Journal of symbolic computation, 2005, 40(6): 1302-1324. DOI:10.1016/j.jsc.2005.05.007 ( ![]() |
[5] |
YANG Y N, YANG Q Z. Further results for perron-frobenius theorem for nonnegative tensors[J]. SIAM journal on matrix analysis and applications, 2010, 31(5): 2517-2530. DOI:10.1137/090778766 ( ![]() |
[6] |
ZHANG L P, QI L Q, ZHOU G L. H-tensors and some applications[J]. SIAM journal on matrix analysis and applications, 2014, 35(2): 437-452. DOI:10.1137/130915339 ( ![]() |
[7] |
RAJESH KANNAN M, SHAKED-MONDERER N, BERMAN A. Some properties of strong H-tensors and general H-tensors[J]. Linear algebra and its applications, 2015, 476: 42-55. DOI:10.1016/j.laa.2015.02.034 ( ![]() |
[8] |
DING W Y, QI L Q, WEI Y M. H-tensors and nonsingular H-tensors[J]. Linear algebra and its applications, 2013, 439(10): 3264-3278. DOI:10.1016/j.laa.2013.08.038 ( ![]() |
[9] |
LI C Q, WANG F, ZHAO J X, et al. Criterions for the positive definiteness of real supersymmetric tensors[J]. Journal of computational and applied mathematics, 2014, 255: 1-14. DOI:10.1016/j.cam.2013.04.022 ( ![]() |
[10] |
WANG F, SUN D. New criteria for H-tensors and an application[J]. Mathematica applicata, 2016, 96: 1-12. DOI:10.1186/s13660-016-1041-0/fulltext.html ( ![]() |
[11] |
LI Y T, LIU Q L, QI L Q. Programmable criteria for strong H-tensors[J]. Numerical algorithms, 2017, 74(1): 199-221. DOI:10.1007/s11075-016-0145-4 ( ![]() |
[12] |
QI L Q, SONG Y S. An even order symmetric B tensor is positive definite[J]. Linear algebra and its applications, 2014, 457(1): 303-312. ( ![]() |
[13] |
LI C Q, LI Y T. Double B-tensors and quasi-double B-tensors[J]. Linear algebra and its applications, 2015, 466(1): 343-356. ( ![]() |