郑州大学学报(理学版)  2021, Vol. 53 Issue (2): 96-101  DOI: 10.13705/j.issn.1671-6841.2020281

引用本文  

孙德淑, 吴念, 柏冬健, 等. 齐次多项式正定性的判定准则[J]. 郑州大学学报(理学版), 2021, 53(2): 96-101.
SUN Deshu, WU Nian, BAI Dongjian, et al. New Criteria for Identifying the Positive Definiteness of Multivariate Homogeneous Forms[J]. Journal of Zhengzhou University(Natural Science Edition), 2021, 53(2): 96-101.

基金项目

国家自然科学基金项目(11861077);贵州省科学技术基金项目(20181079, 20191161);贵州民族大学自然科学基金项目(GZMU[2019]YB08)

作者简介

孙德淑(1980—), 女, 讲师,主要从事矩阵(张量)理论及其应用研究, E-mail: sundeshu0818@163.com

文章历史

收稿日期:2020-08-29
齐次多项式正定性的判定准则
孙德淑, 吴念, 柏冬健, 王峰    
贵州民族大学 数据科学与信息工程学院 贵州 贵阳 550025
摘要:通过构造新的正对角因子, 给出了H-张量新的判定不等式。给出了偶数阶实对称张量, 即偶次齐次多项式正定性的新判别条件, 并用数值例子表明了新结果的有效性。
关键词齐次多项式    H-张量    正定性    不可约    非零元素链    
New Criteria for Identifying the Positive Definiteness of Multivariate Homogeneous Forms
SUN Deshu, WU Nian, BAI Dongjian, WANG Feng    
College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China
Abstract: Some practical conditions for H-tensors were studied by constructing different positive diagonal matrices and applying some techniques of inequalities. As an application, some sufficient conditions of the positive definiteness for an even-order real symmetric tensor were obtained. Advantages of results obtained were illustrated by numerical examples.
Key words: homogeneous multivariate form    H-tensors    positive definiteness    irreducible    nonzero elements chain    
0 引言

张量是矩阵的高阶推广, 在医学成像、期权定价和多人非合作博弈等实际应用问题中有着广泛的应用[1-5]。作为H-矩阵的推广, H-张量具有特殊结构, 其在张量理论及应用研究上被广泛使用, 尤其是H-张量的数值性质、判别方法等受到越来越多学者的关注[6-10]。同时, 齐次多项式因其在众多领域的重要应用,使其成为一个重要的研究课题[11-13]。由于主对角元为正的H-张量与张量正定性具有一致性, 因此可基于此解决多项式正定性的判定。本文得出了判定H-张量的新条件, 所得结果拓展了文献[11-13]的结论。最后, 举例说明了新条件的有效性。

1 预备知识

C(R)为复(实)数域, [n]: ={1, 2, …, n}。一个复(实)mn维张量A=(ai1i2im)由nm个复(实)数元素构成[1-5], 其中ai1i2imC(R), ij∈[n], j∈[m]。显然, 2阶张量即为矩阵。此外, 张量A=(ai1i2im)被称为对称的[6-7], 若ai1i2im=aπ(i1i2im), ∀πΠm, 其中Πmm个指标的置换群。

定义 1[5]  张量I=(δi1i2im)称为单位张量, 其中

$ \delta_{i_{1} i_{2} \cdots i_{m}}=\left\{\begin{array}{ll} 1, & i_{1}=i_{2}=\cdots=i_{m}, \\ 0, & \text {其他 }。\end{array}\right. $

定义 2[4]  给定一个mn维张量A=(ai1i2im), 若存在一个复数λ和一个非零复向量x=(x1, x2, …, xn)TCn, 使得Axm-1=λx[m-1], 那么称λA的特征值, xA的关于特征值λ的特征向量, 向量Axm-1x[m-1]的第i个分量分别为${(\mathit{\boldsymbol{A}}{\mathit{\boldsymbol{x}}^{m - 1}})_i} = \mathop \sum \limits_{{i_2}, \ldots , {i_m} \in [n]} {a_{i{i_2}}}_ \ldots {i_m}{x_{{i_2}}} \ldots {x_{{i_m}}}, {({\mathit{\boldsymbol{x}}^{[m - 1]}})_i} = x_i^{m - 1}$

mn次齐次多项式f(x)为

$ f(\boldsymbol{x})=\sum\limits_{i_{1}, \cdots, i_{m} \in[n]} a_{i_{1} i_{2} \cdots i_{m}} x_{i_{1}} \cdots x_{i_{m}}, $ (1)

其中x=(x1, x2, …, xn)TRn。当m为偶数时, f(x)是正定的, 若f(x)>0, ∀xRn, x≠0。式(1)中的齐次多项式f(x)可以表示为mn维对称张量Axm的乘积, $f(\mathit{\boldsymbol{x}}) = \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{x}}^m} = \mathop \sum \limits_{{i_1}, \ldots ,{i_m} \in [n]} {a_{{i_1}{i_2}_ \ldots {i_m}}}{x_{{i_1}}} \ldots {x_{{i_m}}}$, 当f(x)是正定时, 对称张量A也是正定的[9]

定义 3[7]  设A=(ai1i2im)为mn维张量, 若存在正向量x=(x1, x2, …, xn)TRn, 使得对∀i∈[n], $\left| {{a_{ii \ldots i}}} \right|x_i^{m - 1} > \mathop \sum \limits_{\begin{array}{*{20}{c}} {{i_2},{i_3}, \ldots ,{i_m} \in [n]}\\ {{\delta _{i{i_2} \ldots {i_m}}} = 0} \end{array}} \left| {{a_{i{i_2} \ldots {i_m}}}} \right|{x_{{i_2}}} \ldots {x_{{i_m}}}$, 则称AH-张量。

定义 4[7]  mn维张量A=(ai1i2im)与矩阵X=diag(x1, x2, …, xn)的乘积表示为

$ \boldsymbol{B}=\left(b_{i_{1} \cdots i_{m}}\right)=\boldsymbol{A} \boldsymbol{X}^{m-1}, b_{i_{1} i_{2} \cdots i_{m}}=a_{i_{1} i_{2} \cdots i_{m}} x_{i_{2}} x_{i_{3}} \cdots x_{i_{m}}, i_{j} \in[n], j \in[m]。$

假设Q表示[n]的任意非空子集, 令Qm-1={i2i3im: ijQ, j=2, 3, …, m}, [n]m-1\Qm-1={i2i3im: i2i3im∈[n]m-1i2i3imQm-1}。给定一个mn维张量A=(ai1i2im), 令${R_i}(\mathit{\boldsymbol{A}}) = \mathop \sum \limits_{\begin{array}{*{20}{c}} {{i_2}, \cdots ,{i_m} \in [n]}\\ {{\delta _{i{i_2} \cdots {i_m}}} = 0} \end{array}} = \left| {{a_{i{i_2} \ldots {i_m}}}} \right| = \mathop \sum \limits_{{i_2},{i_3}, \cdots ,{i_m} \in [n]} \left| {{a_{i{i_2} \cdots {i_m}}}} \right| - \left| {{a_{ii \cdots i}}} \right|$, N1={i∈[n]: 0<|aiii|=Ri(A)}, N2={i∈[n]: 0<|aiii|<Ri(A)}, N3={i∈[n]: |aiii|>Ri(A)}, N0m-1=[n]m-1\(N2m-1N3m-1)。

引理 1[8]  若A为严格对角占优张量,则AH-张量。

引理 2[9]  设A=(ai1i2im)为mn维张量。如果存在一个正对角矩阵X, 使得AXm-1H-张量, 则AH-张量。

引理 3[9]  设A=(ai1i2im)为mn维张量。若A是不可约的, 且|aiii|≥Ri(A), ∀i∈[n], 又至少存在一个i, 使得严格不等式成立, 则AH-张量。

引理 4[10]  设A=(ai1i2im)为mn维张量。若1)|aiiiRi(A), ∀i∈[n],2) N3={i∈[n]: |aiii|>Ri(A)}≠Ø,3) ∀iN3, 从ij存在一个非零元素链, 使得jN3,则AH-张量。

文献[11]中给出了如下结果。

定理 1  设A=(ai1i2im)为mn维张量。若对∀iN1N2, 满足

$ \left| {{a}_{ii\cdots i}} \right|>\sum\limits_{\begin{smallmatrix} {{i}_{2}}{{i}_{3}}\cdots {{i}_{m}}\in {{[n]}^{m-1}}\backslash N_{3}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+\sum\limits_{{{i}_{2}}{{i}_{3}}\cdots {{i}_{m}}\in N_{3}^{m-j}}{\mathop {\max }\limits_{j \in \{ {i_2},{i_3}, \cdots ,{i_m}\} } }\left\{ {{R}_{j}}(A)/\left| {{a}_{jj\cdots j}} \right| \right\}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|, $

AH-张量。

2 主要结果

为了叙述方便,引入以下符号,记:

$ r=\max \limits_{i \in N_{3}}\,\left\{ \sum\limits_{{{i}_{2}}{{i}_{3}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+\sum\limits_{{{i}_{2}}{{i}_{3}}\cdots {{i}_{m}}\in N_{2}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}/\left| {{a}_{ii\cdots i}} \right|-\sum\limits_{\begin{smallmatrix} {{i}_{2}}{{i}_{3}}\cdots {{i}_{m}}\in N_{3}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|} \right\}; $
$ m_{i}=R_{i}(\boldsymbol{A})-\left|a_{i i \cdots i}\right| / R_{i}(\boldsymbol{A}), m=\max \limits_{i \in N_{2}}\left\{m_{i}\right\}, \delta=\max \{r, m\} ; $
$ {{P}_{i,r}}(\boldsymbol{A})=\sum\limits_{{{i}_{2}}{{i}_{3}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+\sum\limits_{{{i}_{2}}{{i}_{3}}\cdots {{i}_{m}}\in N_{2}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+r\sum\limits_{\begin{smallmatrix} {{i}_{2}}{{i}_{3}}\cdots {{i}_{m}}\in N_{3}^{m-1} \\ {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|},\forall i\in {{N}_{3}}; $
$ h = \mathop {\max }\limits_{i \in {N_3}} \left\{ {\delta \left( {\sum\limits_{{i_2}{i_3} \cdots {i_m} \in N_0^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} + \sum\limits_{{i_2}{i_3} \cdots {i_m} \in N_2^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} } \right)/{P_{i,r}}(\boldsymbol{A})} \right. - \begin{array}{*{20}{l}} {\sum\limits_{\begin{array}{*{20}{c}} {{i_2}{i_3} \cdots {i_m} \in N_3^{m - 1}}\\ {{\delta _{i{i_2} \cdots {i_m}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} \left. {\frac{{{P_{j,r}}(\boldsymbol{A})}}{{\left| {{a_{jj \cdots j}}} \right|}}\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} \right\}。} } \end{array} $

定理 2  设A=(ai1i2im)为mn维张量。若对任意的iN2, A满足

$ \begin{array}{l} \left| {{a_{ii \cdots i}}} \right|{m_i} > \delta \sum\limits_{{i_2}{i_3} \cdots {i_m} \in N_0^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} + \sum\limits_{\begin{array}{*{20}{c}} {{i_2}{i_3} \cdots {i_m} \in N_2^{m - 1}}\\ {{\delta _{i{i_2} \cdots {i_m}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} }\left\{ {{m_j}} \right\}\left| {{a_{i{i_2} \cdots {i_m}}}} \right| + \\ h\sum\limits_{{i_2} \cdots {i_m} \in N_3^{m - j}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} \left\{ {{P_{j,r}}(\mathit{\boldsymbol{A}})/\left| {{a_{jj \cdot \cdots j}}} \right|} \right\}} \left| {{a_{i{i_2} \cdots {i_m}}}} \right|, \end{array} $ (2)

$ \left| {{a}_{ii\cdots i}} \right|\ne \sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|},\forall i\in {{N}_{1}}, $ (3)

AH-张量。

证明  由rmδ的表达式知0≤r<1, 0<m<1, 0<δ<1, 因此对∀iN3,

$ {{P}_{i,r}}(\boldsymbol{A})=\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+r\sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}\le r\left| {{a}_{ii\cdots i}} \right|, $

则0≤Pi(A)/|aiiirδ<1, ∀iN3。又由Pi, r(A)的定义, 对∀iN1, 可得

$ \begin{array}{l} \left( {\delta \left( {\sum\limits_{{i_2} \cdots {i_m} \in N_0^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} + \sum\limits_{{i_2} \cdots {i_m} \in N_2^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} } \right)} \right)/\left( {{P_{i,r}}(\boldsymbol{A}) - \begin{array}{*{20}{l}} {\sum\limits_{\begin{array}{*{20}{c}} {{i_2}{i_3} \cdots {i_m} \in N_3^{m - 1}}\\ {{\delta _{i{i_2} \cdots {i_m}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} {P_{j,r}}(\boldsymbol{A})/\left| {{a_{jj \cdots j}}} \right|\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} } \end{array}} \right)\\ \left( {{P_{i,r}}(\boldsymbol{A}) - \sum\limits_{\begin{array}{*{20}{c}} {{i_2} \cdots {i_m} \in N_3^{m - 1}}\\ {{\delta _{i{i_2} \cdots {i_m}}} = 0} \end{array}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} } \right)/\left( {{P_{i,r}}(\boldsymbol{A}) - \sum\limits_{\begin{array}{*{20}{c}} {{i_2} \cdots {i_m} \in N_3^{m - 1}}\\ {{\delta _{i{i_2} \cdots {i_m}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} \left\{ {{P_{i,r}}(\boldsymbol{A})/\left| {{a_{jj \cdots j}}} \right|} \right\}\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} } \right) \le 1。\end{array} $

因此, 对∀iN3, 0≤h<1, 且

$ h{P_{i,r}}({\boldsymbol{A}}) \ge \delta \sum\limits_{{i_2} \cdots {i_m} \in N_0^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} + \delta \sum\limits_{{i_2} \cdots {i_m} \in N_2^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} + \sum\limits_{\begin{array}{*{20}{c}} {{i_2} \cdots {i_m} \in N_3^{m - 1}}\\ {{\delta _{i{i_2} \cdots {i_m}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} \left\{ {{P_{i,r}}(\boldsymbol{A})/\left| {{a_{jj \cdots j}}} \right|} \right\}\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} 。$ (4)

$ \begin{array}{*{20}{l}} {{M_i} = \left( {\left| {{a_{ii \cdots i}}} \right|{m_i} - \delta \sum\limits_{{i_2} \cdots {i_m} \in N_0^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} - \sum\limits_{\begin{array}{*{20}{c}} {{i_2} \cdots {i_m} \in N_2^{m - 1}}\\ {{\delta _{i{i_2} \cdots {i_m}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} } \{ {m_j}\} \left| {{a_{i{i_2} \cdots {i_m}}}} \right| - } \right.}\\ {\left. {h\sum\limits_{{i_2} \cdots {i_m} \in N_3^{m - 1}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} \left\{ {{P_j}(\mathit{\boldsymbol{A}})/\left| {{a_{jj \cdots j}}} \right|} \right\}} \left| {{a_{i{i_2} \cdots {i_m}}}} \right|} \right)/\left( {\sum\limits_{{i_2} \cdots {i_m} \in N_3^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} } \right),} \end{array} $ (5)

$\sum\limits_{{i_2} \cdots {i_{\rm{m}}} \in N_3^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} = 0$, 记Mi=+∞。由式(2)、式(3)及式(5)知, Mi>0(∀iN2), 且0≤hPi, r(A)/|aiii|<δ<1, ∀iN3, 从而一定存在充分小的正数ε, 使得

$ 0 < \varepsilon < \mathop {\min }\limits_{i \in {N_2}} \left\{ {{M_i}} \right\} \le + \infty ,\mathop {\max }\limits_{i \in {N_3}} \left\{ {h{P_{i,r}}(\mathit{\boldsymbol{A}})/\left| {{a_{ii \cdots i}}} \right| + \varepsilon } \right\} < \delta < 1。$ (6)

构造正对角矩阵D=diag(d1, d2, …, dn), 记B=ADm-1=(bi1i2im),其中:

$ d_{i}=(\delta)^{\frac{1}{m-1}}, i \in N_{1} ; d_{i}=\left(m_{i}\right)^{\frac{1}{m-1}}, i \in N_{2} ; d_{i}=\left(h P_{i, r}(\boldsymbol{A}) /\left|a_{i i \cdots i}\right|+\varepsilon\right)^{\frac{1}{m-1}}, i \in N_{3}。$

1) 对∀iN1, 由(4)式及(6)式知

$ \begin{align} & {{R}_{i}}(\boldsymbol{B})=\sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{x}_{{{i}_{2}}}}\cdots {{x}_{{{i}_{m}}}}+\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{\left( {{m}_{{{i}_{2}}}} \right)}^{\frac{1}{m-1}}}\cdots {{\left( {{m}_{{{i}_{m}}}} \right)}^{\frac{1}{m-1}}}+ \\ & \sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{\left( h{{P}_{{{i}_{2}},r}}(\boldsymbol{A})/\left| {{a}_{{{i}_{2}}{{i}_{2}}\cdots {{i}_{2}}}} \right|+\varepsilon \right)}^{\frac{1}{m-1}}}\cdots {{\left( h{{P}_{{{i}_{m}},r}}(\boldsymbol{A})/\left| {{a}_{{{i}_{m}}{{i}_{m}}\cdots {{i}_{m}}}} \right|+\varepsilon \right)}^{\frac{1}{m-1}}}\le \\ & \delta \sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1}}\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}}\left\{ {{m}_{i}} \right\}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|+ \\ & \sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1}}{\left( \underset{j\in \left\{ {{i}_{2}},{{i}_{3}},\cdots ,{{i}_{m}} \right\}}{\mathop{\max }}\,\left\{ h{{P}_{j,r}}(A)/\left| {{a}_{jj\cdots j}} \right| \right\}+\varepsilon \right)}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|<\left| {{a}_{ii\cdots i}} \right|\delta =\left| {{b}_{ii\cdots i}} \right| 。\\ \end{align} $ (7)

2) 对∀iN2, 由式(2)、式(5)及式(6)知

$ \begin{align} & {{R}_{i}}(\boldsymbol{B})=\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{x}_{{{i}_{2}}}}\cdots {{x}_{{{i}_{m}}}}+\sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{\left( {{m}_{{{i}_{2}}}} \right)}^{\frac{1}{m-1}}}\cdots {{\left( {{m}_{{{i}_{m}}}} \right)}^{\frac{1}{m-1}}}+ \\ & \sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{\left( h{{P}_{{{i}_{2}},r}}(\boldsymbol{A})/\left| {{a}_{{{i}_{2}}{{i}_{2}}\cdots {{i}_{2}}}} \right|+\varepsilon \right)}^{\frac{1}{m-1}}}\cdots {{\left( h{{P}_{{{i}_{m}},r}}(\boldsymbol{A})/\left| {{a}_{{{i}_{m}}{{i}_{m}}\cdots {{i}_{m}}}} \right|+\varepsilon \right)}^{\frac{1}{m-1}}}\le \delta \sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+ \\ & \sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}}\left\{ {{m}_{i}} \right\}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|+\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1}}{\left( \underset{j\in \left\{ {{i}_{2}},{{i}_{3}},\cdots ,{{i}_{m}} \right\}}{\mathop{\max }}\,\left\{ h{{P}_{j,r}}(\boldsymbol{A})/\left| {{a}_{jj\cdots j}} \right| \right\}+\varepsilon \right)}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|< \\ & \delta \sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+\sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}}\left\{ {{m}_{i}} \right\}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|+\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1}}\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}}\left\{ h{{P}_{j,r}}(\boldsymbol{A})/\left| {{a}_{jj\cdots j}} \right| \right\}\cdot \\ & \left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|+{{M}_{i}}\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}=\left| {{a}_{ii\cdots i}} \right|{{m}_{i}}=\left| {{b}_{ii\cdots i}} \right| 。\\ \end{align} $ (8)

3) 对∀iN3, 由式(4)及式(6)知

$ \begin{align} & {{R}_{i}}(\boldsymbol{B})=\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{x}_{{{i}_{2}}}}\cdots {{x}_{{{i}_{m}}}}+\sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{\left( {{m}_{{{i}_{2}}}} \right)}^{\frac{1}{m-1}}}\cdots {{\left( {{m}_{{{i}_{m}}}} \right)}^{\frac{1}{m-1}}}+ \\ & \sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}{{\left( h{{P}_{{{i}_{2}},r}}(\boldsymbol{A})/\left| {{a}_{{{i}_{2}}{{i}_{2}}\cdots {{i}_{2}}}} \right|+\varepsilon \right)}^{\frac{1}{m-1}}}\cdots {{\left( h{{P}_{{{i}_{m}},r}}(\boldsymbol{A})/\left| {{a}_{{{i}_{m}}{{i}_{m}}\cdots {{i}_{m}}}} \right|+\varepsilon \right)}^{\frac{1}{m-1}}}\le \delta \sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+ \\ & \sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1}}\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}}\left\{ {{m}_{i}} \right\}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|+\sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left( \underset{j\in \left\{ {{i}_{2}},{{i}_{3}},\cdots ,{{i}_{m}} \right\}}{\mathop{\max }}\,\left\{ h{{P}_{j,r}}(\boldsymbol{A})/\left| {{a}_{jj\cdots j}} \right| \right\}+\varepsilon \right)}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|= \\ & h{{P}_{j,r}}(\boldsymbol{A})\varepsilon \sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{3}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}<h{{P}_{{{i}_{2}},r}}(\boldsymbol{A})+\varepsilon \left| {{a}_{ii\cdots i}} \right|=\left| {{b}_{ii\cdots i}} \right| 。\\ \end{align} $ (9)

综上所述,由式(7)、式(8)及式(9)知biii >Ri(B)(∀i∈[n]), 即B是严格对角占优的, 故由引理1知BH-张量。进而, 由引理2知AH-张量。

类似于定理2的证明, 借助引理3和引理4, 可得如下结论。

定理 3  设A=(ai1i2im)为mn维张量, A不可约, 若对任意的iN2

$ \begin{array}{*{35}{l}} \left| {{a}_{ii\cdots i}} \right|{{m}_{i}}\ge \delta \sum\limits_{{{i}_{2}}\cdots {{i}_{m}}\in N_{0}^{m-1}}{\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|}+\sum\limits_{\begin{smallmatrix} {{i}_{2}}\cdots {{i}_{m}}\in N_{2}^{m-1} \\ {{\delta }_{i{{i}_{2}}\cdots {{i}_{m}}}}=0 \end{smallmatrix}}{\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}}\,\left\{ {{m}_{i}} \right\}\left| {{a}_{i{{i}_{2}}\cdots {{i}_{m}}}} \right|+} \\ h\sum\limits_{{i_2} \cdots {i_m} \in N_3^{m - 1}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} \left\{ {{P_{j,r}}({\boldsymbol{A}})/\left| {{a_{jj \cdot \cdots j}}} \right|} \right\}\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} , \end{array} $ (10)

且(10)式中至少有一个严格不等式成立, 则AH-张量,记

$ \begin{array}{*{20}{l}} {K(\mathit{\boldsymbol{A}}) = \left\{ {i \in {N_2}:\left| {{a_{ii \cdots i}}} \right|{m_i} > \delta \sum\limits_{{i_2} \cdots {i_m} \in N_0^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} + \sum\limits_{\begin{array}{*{20}{c}} {{i_2} \cdots {i_m} \in N_2^{m - 1}}\\ {{\delta _{i{i_2} \cdots {i_m}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} } \left\{ {{m_i}} \right\}\left| {{a_{i{i_2} \cdots {i_m}}}} \right| + } \right.}\\ {\left. {h\sum\limits_{{i_2} \cdots {i_m} \in N_3^{m - 1}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} } \left\{ {h{P_{j,r}}(\mathit{\boldsymbol{A}})/\left| {{a_{jj \cdot \cdot j}}} \right|} \right\}\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} \right\}}。\end{array} $

定理 4  设A=(ai1i2im)为mn维张量。若对任意的iN2, 有

$ \left| {{a_{ii \cdots i}}} \right|{m_i} \ge \delta \sum\limits_{{i_2} \cdots {i_m} \in N_0^{m - 1}} {\left| {{a_{i{i_2} \cdots {i_m}}}} \right|} + \sum\limits_{\begin{array}{*{20}{c}} {{i_2} \cdots {i_m} \in N_2^{m - 1}}\\ {{\delta _{i{i_2} \ldots {i_m}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \{ {i_2},{i_3}, \ldots ,{i_m}\} } } \left\{ {{m_j}} \right\}\left| {{a_{i{i_2} \cdots {i_m}}}} \right| + \\h\mathop \sum \limits_{{i_2} \cdots {i_m} \in N_3^{m - 1}} \mathop {\max }\limits_{j \in \{ {i_2},{i_3}, \cdots ,{i_m}\} } \left\{ {{P_{j,r}}(\mathit{\boldsymbol{A}})/\left| {{a_{jj \cdots j}}} \right|} \right\}\left| {{a_{i{i_2} \cdots {i_m}}}} \right|, $

且对∀i∈[n]\K(A), 存在从ij的非零元素链,使得jK(A)≠Ø, 则AH-张量。

例 1  给定A=[A(1, : , : ), A(2, : , : ), A(3, : , : )], 其中

$ \boldsymbol{A}(1,:,:)=\left(\begin{array}{ccc} 12 & 1 & 0 \\ 1 & 6 & 0 \\ 1 & 0 & 16 \end{array}\right), \boldsymbol{A}(2,:,:)=\left(\begin{array}{lll} 1 & 1 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 1 \end{array}\right), \boldsymbol{A}(3,:,:)=\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 16 \end{array}\right) \text { 。} $

由张量A的元素得到

$ \left| {{a_{111}}} \right| = 12,{R_1}(\mathit{\boldsymbol{A}}) = 25,\left| {{a_{222}}} \right| = 6,{R_2}(\mathit{\boldsymbol{A}}) = 3,\left| {{a_{333}}} \right| = 16,{R_3}(\mathit{\boldsymbol{A}}) = 2, $

所以N1=Ø, N2={1}, N3={2, 3}。当i=1时, 有

$ \begin{array}{l} \delta \sum\limits_{{i_2}{i_3} \in N_0^2} {\left| {{a_{1{i_2}{i_3}}}} \right|} + \sum\limits_{\begin{array}{*{20}{c}} {{i_2}{i_3} \in N_2^2}\\ {{\delta _{1{i_2}{i_3}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} } \left\{ {{m_j}} \right\}\left| {{a_{1{i_2}{i_3}}}} \right| + h\sum\limits_{{i_2}{i_3} \in N_3^2} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}} \right\}} } \left\{ {{P_{j,r}}(\mathit{\boldsymbol{A}})/\left| {{a_{ij \cdot \cdot j}}} \right|} \right\}\left| {{a_{1{i_2}{i_3}}}} \right| = \\ 767/125 < 156/25 = \left| {{a_{111}}} \right|{m_1}。\end{array} $

所以张量A满足定理2的条件, 可知张量AH-张量。但

$ \sum\limits_{\begin{smallmatrix} {{i}_{2}}{{i}_{3}}\in {{[n]}^{2}}\backslash N_{3}^{2} \\ {{\delta }_{1{{i}_{2}}{{i}_{3}}}}=0 \end{smallmatrix}}{\left| {{a}_{1{{i}_{2}}{{i}_{3}}}} \right|}+\sum\limits_{{{i}_{2}}{{i}_{3}}\in N_{3}^{2}}{\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}}\,\left\{ {{R}_{j}}(\boldsymbol{A})/\left| {{a}_{jj\cdots j}} \right| \right\}}\left| {{a}_{1{{i}_{2}}{{i}_{3}}}} \right|=14>12=\left| {{a}_{111}} \right|, $

因此, A不满足定理1的条件。

3 应用

基于H-张量的判定条件, 下面给出了偶数阶实对称张量正定性判定的新条件(多元形式的正定)。

引理 5[9]  设mn维张量A=(ai1i2im)为偶数阶实对称张量, 且对∀i∈[n], 满足aiii>0。如果AH-张量,则A是正定的。

根据引理5、定理2、定理3及定理4, 可得到以下结论。

定理 5  设张量A=(ai1i2im)是mn维的偶数阶实对称张量, 且对∀i∈[n], 满足aiii>0。如果A满足下列条件之一:

1) 定理2的所有条件;2) 定理3的所有条件;3) 定理4的所有条件;则A是正定的。

例 2  设四次齐次多项式f(x)=Ax4=16x14+84x24+87x34+75x44-8x13x4-12x12x2x3-12x2x32x4+24x1x2x3x4, 其中A=(ai1i2im)是一个4阶4维的实对称张量, 且

$ {{a_{1111}} = 16,{a_{2222}} = 84,{a_{3333}} = 87,{a_{4444}} = 75,{a_{1114}} = {a_{1141}} = {a_{1411}} = {a_{4111}} = - 2,} $
$ {{a_{1123}} = {a_{1132}} = {a_{1213}} = {a_{1312}} = {a_{1231}} = {a_{1321}} = - 1,{a_{2113}} = {a_{2131}} = {a_{2311}} = {a_{3112}} = {a_{3121}} = {a_{3211}} = - 1,} $
$ {{a_{2334}} = {a_{2343}} = {a_{2433}} = {a_{4233}} = {a_{4323}} = {a_{4332}} = - 1,{a_{3234}} = {a_{3243}} = {a_{3324}} = {a_{3342}} = {a_{3423}} = {a_{3432}} = - 1,} $
$ {{a_{1234}} = {a_{1243}} = {a_{1324}} = {a_{1342}} = {a_{1423}} = {a_{1432}} = 1,{a_{2134}} = {a_{2143}} = {a_{2314}} = {a_{2341}} = {a_{2413}} = {a_{2431}} = 1,} $
$ {{a_{3124}} = {a_{3142}} = {a_{3214}} = {a_{3241}} = {a_{3412}} = {a_{3421}} = 1,{a_{4123}} = {a_{4132}} = {a_{4213}} = {a_{4231}} = {a_{4312}} = {a_{4321}} = 1,} $

其余的ai1i2i3i4=0。计算得

$ {a_{1111}} = 16 < 18 = {R_1}(\mathit{\boldsymbol{A}}),{a_{4444}}\left( {{a_{1111}} - {R_1}(\mathit{\boldsymbol{A}}) + \left| {{a_{1444}}} \right|} \right) = - 150 < 0 = {R_4}(\mathit{\boldsymbol{A}})\left| {{a_{1444}}} \right| $

因此, A既不是严格对角占优张量, 也不是拟双严格对角占优张量, 所以不能用文献[12-13]中的定理来判定A的正定性。但可以证明A满足定理2的所有条件。因为

$ \left|a_{1111}\right|=16, R_{1}(\boldsymbol{A})=18,\left|a_{2222}\right|=84, R_{2}(\boldsymbol{A})=12,\left|a_{3333}\right|=87, R_{3}(\boldsymbol{A})=15,\left|a_{4444}\right|=75, R_{4}(\boldsymbol{A})=11, $

所以N1=Ø, N2={1}, N3={2, 3, 4}。当i=1时,有

$ \delta \sum\limits_{{i_2}{i_3} \in N_0^2} {\left| {{a_{1{i_2}{i_3}}}} \right|} + \sum\limits_{\begin{array}{*{20}{c}} {{i_2}{i_3} \in N_2^2}\\ {{\delta _{1{i_2}{i_3}}} = 0} \end{array}} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}, \cdots ,{i_m}} \right\}} } \left\{ {{m_j}} \right\}\left| {{a_{1{i_2}{i_3}}}} \right| + h\sum\limits_{{i_2}{i_3} \in N_3^2} {\mathop {\max }\limits_{j \in \left\{ {{i_2},{i_3}} \right\}} } \left\{ {{P_{j,r}}(\mathit{\boldsymbol{A}})/\left| {{a_{jj \cdot \cdots j}}} \right|} \right\}\left| {{a_{1{i_2}{i_3}}}} \right| = 38/27 < 16/9 = \left| {{a_{111}}} \right|{m_1}。$

根据定理5, A是正定的, 即f(x)是正定的。

4 结论

本文给出了判别张量是否是H-张量新的充分条件, 该条件可用于判别偶数次齐次多项式f(x)=Axm的正定性。数值算例表明了本文所得条件的有效性。

参考文献
[1]
CHANG K C, PEARSON K, ZHANG T. Perron-Frobenius theorem for nonnegative tensors[J]. Communications in mathematical sciences, 2008, 6(2): 507-520. DOI:10.4310/CMS.2008.v6.n2.a12 (0)
[2]
LIU Y J, ZHOU G L, IBRAHIM N F. An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor[J]. Journal of computational and applied mathematics, 2010, 235(1): 286-292. DOI:10.1016/j.cam.2010.06.002 (0)
[3]
NG M, QI L Q, ZHOU G L. Finding the largest eigenvalue of a nonnegative tensor[J]. SIAM journal on matrix analysis and applications, 2010, 31(3): 1090-1099. DOI:10.1137/09074838X (0)
[4]
QI L Q. Eigenvalues of a real supersymmetric tensor[J]. Journal of symbolic computation, 2005, 40(6): 1302-1324. DOI:10.1016/j.jsc.2005.05.007 (0)
[5]
YANG Y N, YANG Q Z. Further results for perron-frobenius theorem for nonnegative tensors[J]. SIAM journal on matrix analysis and applications, 2010, 31(5): 2517-2530. DOI:10.1137/090778766 (0)
[6]
ZHANG L P, QI L Q, ZHOU G L. H-tensors and some applications[J]. SIAM journal on matrix analysis and applications, 2014, 35(2): 437-452. DOI:10.1137/130915339 (0)
[7]
RAJESH KANNAN M, SHAKED-MONDERER N, BERMAN A. Some properties of strong H-tensors and general H-tensors[J]. Linear algebra and its applications, 2015, 476: 42-55. DOI:10.1016/j.laa.2015.02.034 (0)
[8]
DING W Y, QI L Q, WEI Y M. H-tensors and nonsingular H-tensors[J]. Linear algebra and its applications, 2013, 439(10): 3264-3278. DOI:10.1016/j.laa.2013.08.038 (0)
[9]
LI C Q, WANG F, ZHAO J X, et al. Criterions for the positive definiteness of real supersymmetric tensors[J]. Journal of computational and applied mathematics, 2014, 255: 1-14. DOI:10.1016/j.cam.2013.04.022 (0)
[10]
WANG F, SUN D. New criteria for H-tensors and an application[J]. Mathematica applicata, 2016, 96: 1-12. DOI:10.1186/s13660-016-1041-0/fulltext.html (0)
[11]
LI Y T, LIU Q L, QI L Q. Programmable criteria for strong H-tensors[J]. Numerical algorithms, 2017, 74(1): 199-221. DOI:10.1007/s11075-016-0145-4 (0)
[12]
QI L Q, SONG Y S. An even order symmetric B tensor is positive definite[J]. Linear algebra and its applications, 2014, 457(1): 303-312. (0)
[13]
LI C Q, LI Y T. Double B-tensors and quasi-double B-tensors[J]. Linear algebra and its applications, 2015, 466(1): 343-356. (0)