在产量与环境保护双重压力下,通过肥料技术创新,提升肥料利用效率,实现以增值对冲减量的化肥发展策略受到广泛关注[1-2]。聚天冬氨酸和聚谷氨酸等聚合氨基酸类等有机生物材料不仅具有一定的养分活化能力,还可延长肥效期等性能,是目前开发新型增效型肥料的理想材料[3-4]。γ-聚谷氨酸(γ-polyglutamic acid,γ-PGA)是由D-和L-谷氨酸构成的一种独特的阴离子型同元聚酰胺[5],具有生物可降解性、无毒性、无致免疫性等优越性能,广泛应用于食品、医药、污水处理等领域[5-7]。有研究发现,将γ-PGA与包裹尿素形成缓释氮肥,其养分释放速率符合欧盟标准,可有效提高氮肥利用效率[8-10]。γ-PGA对磷矿粉进行改性后,可显著提高磷矿粉的生物利用效率[4]。研究也证明施用γ-PGA可有效改善小青菜、甘蓝、油菜、小麦、小白菜、番茄幼苗等作物的生长,增产效果显著[3, 11-15]。以γ-PGA为载体开发新型增效肥料产品,可为化肥增效减量有效突破提供技术可能[3, 16]。目前γ-PGA在农业上应用尚停留在效果验证阶段,γ-PGA增效增产机理研究较少。本研究以广东省两种酸度水平菜园土壤作为试验材料开展菜心盆栽试验,考察施用γ-PGA后蔬菜产量、养分吸收累积量及自由基清理酶活性的响应,揭示γ-PGA增效增产机理。
1 材料与方法 1.1 供试材料试验于2014年7月至12月在广东省农业科学院农业资源与环境研究所网室开展盆栽试验。选用两种酸度水平土壤,土壤基础理化性状见表 1。供试土壤自然风干、打碎后,过2 mm筛,混合均匀后分别装于直径25 cm、高30 cm的塑料桶中,每桶7.5 kg。供试肥料为15-5-15复混肥料(新农科,含硝基氮)、γ-PGA包裹,γ-PGA由味丹国际(控股)有限公司提供。供试菜心品种为翠绿80天菜心,由广东省农业科学院蔬菜研究所提供。采用直播育种,出苗后间苗,每盆保留4株。
表1 土壤基本化学性状 Table 1 Basic chemical properties of the studied soils |
![]() |
本试验设置5个处理:设常规施肥(T1)、施用γ-PGA包裹型肥料(含γ-PGA 400 mg/kg,T2)、施用γ-PGA包裹型肥料(含γ-PGA 800 mg/kg,T3)、常规施肥+淋施γ-PGA (γ-PGA用量与T2相同,0.53 mg γ-PGA/kg土,T4)、常规施肥+淋施γ-PGA (γ-PGA用量与T3相同,γ-PGA 1.06 mg/kg土,T5)。每个处理重复8次。
常规施肥(T1)氮肥用量为200 mg/kg土,相当于每公斤土使用N 1.333 g,分基肥、出苗后7~10 d、15~20 d、25~30 d、35~40 d共5次施肥,每次比例为20%、10%、20%、30%、20%。基施氮肥与土壤全部混匀,追肥时将肥料溶解后淋施。
γ-PGA由“味丹”粉状包裹聚谷氨酸肥提供,每公斤肥料含γ-PGA 8%,约5 g。T2和T3处理中γ-PGA施用方式为随肥料分次施用;T4和T5中γ-PGA于菜心定苗后一周,约菜心3叶期一次性淋施“味丹”聚谷氨酸50和100 mg/pot,也就是γ-PGA施用量为0.53土和1.06 mg/kg土。
1.3 测定项目与方法 1.3.1 产量及品质指标收获期将每盆菜地上部分齐头割下,称重计商品重量。选取其中有代表性植株,分为地上部和根系,洗净烘干后称生物量,测量其植株高度(量至菜心花苔顶部)及经济部粗度。菜心氨基酸含量采用茚三酮法测定,维生素C采用2,6-二氯靛酚滴定法测定,可溶糖采用蒽酮比色法测定,硝酸盐采用紫外法测定。
1.3.2 根系活力指标每盆选取1株代表性植株,于下午18: 00~19: 00将植株从距根部1.5 cm处剪断,用脱脂棉开始吸收伤流液,并用塑料膜包扎,至次日8: 00收取脱脂棉,测定伤流量,并计算单茎伤流强度。吸取1 mL伤流液,用茚三酮法测定伤流液中氨基酸氮含量,并根据伤流强度计算伤流液中氨基酸氮的输出强度;吸取1 mL伤流液,用凯氏法测定伤流液中全氮含量,并根据伤流强度计算伤流液中氨基酸氮的输出强度。
1.3.3 植株养分测定方法全氮含量采用H2SO4-混合加速剂-蒸馏法,全磷含量采用H2SO4-H2O消煮-钼锑抗比色法,全钾含量采用H2SO4-H2O消煮-火焰光度计法,钙、镁含量采用HNO3-HClO4消煮-原子吸收分光光度法,全硫含量采用HNO3-HClO4消煮-BaSO4比浊法,全铁、锰、锌、铜含量采用HNO3-HClO4消煮-原子吸收分光光度法,全硼含量采用姜黄比色法,全钼含量采用硫氰酸钾比色法。
1.3.4 菜心抗氧化系统酶、蛋白质和丙二醛测定方法菜薹形成初期,选取10片叶,用液氮即时冰冻,用泡沫保温箱带回实验室并保存在-80℃冰箱中用于测定叶片中可溶性蛋白、超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和丙二醛(MDA)含量。
菜心叶片中SOD采用氮蓝四唑(NBT)法测定,POD采用愈创木酚法测定,CAT采用紫外吸收法测定,MDA采用硫代巴比妥酸(TBA)法,可溶性蛋白采用考马斯亮蓝G-250染色法测定,上述测定均参照李玲[17]的方法。
1.4 数据统计分析采用Excel 2007进行数据统计分析,R软件开展LSD法对进行差异显著性检验及作图。
2 结果与分析 2.1 施用γ-PGA对菜心产量及品质的影响 2.1.1 对菜心产量的影响从图 1可见,施用γ-PGA可有效提高菜心产量。以T1处理为对照,酸性土壤上T2、T3、T4、T5处理分别增产4.4%、7.3%、2.2%、12.3%,强酸性土壤上分别增产9.7%、14.2%、12.%、12.3%,两种类型土壤上,T2、T3、T4、T5处理的菜心产量均显著高于常规施肥处理。总体上,γ-PGA的增产效果显著,γ-PGA以基肥淋施处理(T4、T5)的增幅大于γ-PGA包裹肥料分次施用处理(T2、T3);γ-PGA包裹肥料分次施用和γ-PGA基施情况下,两种γ-PGA施用水平间的菜心产量没有显著差异。
![]() |
图1 不同γ-PGA不同处理对菜心产量的影响 Fig. 1 Effect of the application of γ-PGA on the yield of Chinese flowering cabbage [注(Note):柱上不同字母表示相同土壤不同处理间差异达5%显著水平Different lowercase letters above the bars indicate significant differences among treatments in the same soil (P < 0.05, n=8).] |
从表 2可见,T2、T3、T4、T5处理的菜心地上部和根系生物量均显著高于T1,地上部分生物量平均增幅分别为10.6%、21.7%、24.4%、22.4%,根系生物量平均增幅分别为-1.2%、13.6%、13.0%、16.8%。由此可见,施用γ-PGA可有效提高菜心生物量,并且γ-PGA以基肥淋施处理(T4、T5)的效果更优,两种γ-PGA用量水平的菜心生物量没有显著差异。
表2 不同γ-PGA不同处理对菜心生物量的影响 Table 2 Effect of the application of γ-PGA on the biomass of Chinese flowering Cabbage |
![]() |
从表 3可见,酸性土壤T2、T3、T4、T5处理的株高和茎粗均高于T1,其增幅分别为0.4%、0.4%、3.6%、15.0%和1.6%、7.0%、11.7%、13.6%。强酸性土壤不同处理的株高和茎粗没有显著差异。施用γ-PGA对菜心的株高和茎粗均有一定促进作用,但在不同土壤上的表现不一致。γ-PGA以基肥淋施处理(T4、T5)对菜心的株高和茎粗均优于γ-PGA包裹肥料分次施用处理(T2、T3)。两种γ-PGA用量水平的菜心株高和茎粗没有显著差异。
表3 γ-PGA不同处理对菜心株高和茎粗的影响 Table 3 Effect of γ-PGA application on the plant height and stem diameter of Chinese flowering cabbage |
![]() |
从表 4可见,不同施肥处理对菜心可溶糖含量没有显著影响。T4、T5处理的Vc含量和游离氨基酸含量显著高于T1,其平均增幅分别为6.6%、6.2%和14.1%、31.0%,T2、T3处理的Vc含量和游离氨基酸含量与T1处理没有显著差异。同时,T2、T3、T4、T5处理的硝酸盐含量显著低于T1处理,其平均降幅分别为8.5%、10.8%、19.2%、28.6%。总体上,施用γ-PGA在一定程度上提高菜心Vc和游离氨基酸含量水平,且有效降低蔬菜硝酸盐含量,其中γ-PGA以基肥淋施处理(T4、T5)对菜心各种品质指标的影响更明显。
表4 γ-PGA不同处理菜心品质 Table 4 Quality of Chinese flowering cabbage affected by application of γ-PGA treatments |
![]() |
根系是作物吸收养分、水分的主要器官,伤流液强度可有效表征根系活力。T2、T3、T4、T5处理的伤流强度均高于T1,其平均增幅分别为20.4%、26.4%、14.1%、30.9%,强酸性土壤上T5处理的增幅达到显著水平(表 5)。两种γ-PGA施用方式和两个γ-PGA施用水平对菜心伤流液输出强度没有影响。T3、T4、T5处理的伤流液氨基酸输出强度显著高于T1,其平均增幅分别为38.1%、33.2%、44.2%。γ-PGA以基肥淋施处理(T4、T5)的菜心伤流液中氨基酸输出强度显著高于γ-PGA包裹肥料分次施用处理(T2、T3) (P<0.05),且γ-PGA添加比例为800 mg/kg处理的伤流液中氨基酸输出强度显著高于γ-PGA添加比例为400 mg/kg处理(P<0.01),而不同施肥处理对菜心伤流液中全氮输出强度没有显著影响。
表5 γ-PGA不同处理菜心根系伤流强度及伤流液中氨基酸氮和总氮输出强度 Table 5 Bleeding intensity and the inside amino acid-N and total N output intensity in Chinese flowering cabbage affected by γ-PGA treatments |
![]() |
从表 6可见,不同施肥处理的菜心氮、磷、钾、铜、铁含量没有显著差异。在酸性土壤上,施用γ-PGA处理的菜心钙、镁、锌、锰含量均高于T1,其中T2、T3、T4、T5的钙含量增幅分别为29.6%、21.8%、26.4%、22.7%,镁含量增幅分别为11.7%、8.3%、22.2%、16.7%,锌含量增幅分别为4.5%、18.4%、6.9%、15.6%,锰含量增幅分别为26.5%、37.6%、15.5%、9.7%;不同γ-PGA施用方式不影响菜心钙、镁、锌、锰含量,锌含量水平随着γ-PGA施用量的增加而增加。而强酸性土壤上不同施肥处理对菜心钙、镁、锌、锰含量没有显著影响。
表6 γ-PGA不同处理菜心养分含量 Table 6 Nutrient contents of Chinese flowering cabbage affected by different γ-PGA treatments |
![]() |
从表 7可见,施用γ-PGA处理的菜心氮、磷、钾、钙、镁、铜、锌、铁、锰累积量均高于常规施肥处理。从平均增幅来看,施用γ-PGA处理的菜心钙、镁、锰累积量提高幅度最大,较常规施肥处理提高了30%以上;其次是铁、锌、铜、钾元素累积量,较常规施肥处理提高了20%以上;氮、磷元素累积量的增幅最低。γ-PGA以基肥淋施处理(T4、T5)的菜心钙、镁、铜、铁累积量显著高于γ-PGA包裹肥料分次施用处理(T2、T3) (P<0.05)。γ-PGA添加比例为800 mg/kg处理(T3、T5)的锌元素累积量显著高于γ-PGA添加比例为400 mg/kg处理(T2、T4) (P<0.05)。施用γ-PGA对菜心氮、磷养分累积量的增幅在强酸性土壤上更明显,而对钙、镁、锌、锰养分累积量的增幅在酸性土壤上更显著。
表7 γ-PGA不同处理菜心养分累积量(mg/pot) Table 7 Nutrient accumulation of Chinese flowering Cabbage affected by γ-PGA treatments |
![]() |
从图 2可见,强酸性土壤上T2、T3、T4、T5处理的菜心叶片可溶性蛋白含量均高于T1,T4、T5的增幅又大于T2、T3。酸性土壤上不同处理的菜心叶片可溶性蛋白含量没有差异。说明施用γ-PGA有助于提高菜心叶片可溶性蛋白含量,且以γ-PGA基肥淋施效果更佳。酸性、强酸性土壤上,T3、T4处理的菜心叶片SOD活性显著高于T1,强酸土壤上T2、T5处理的菜心叶片SOD活性也呈现出高于T1的趋势。不同处理的菜心叶片POD活性没有差异,强酸性土壤上施用γ-PGA处理(T2、T3、T4、T5)的菜心叶片POD活性有一定提高的趋势。强酸性土壤上,T2、T3、T4、T5处理的菜心叶片CAT活性显著高于T1;酸性土壤上,T3处理的菜心叶片CAT活性也显著高于T1。从图 2可见,强酸性土壤上T3处理的菜心叶片MAD含量显著低于T1。说明施用γ-PGA有助于提高菜心叶片SOD、CAT活性,降低叶片MAD含量,提高菜心抗氧化能力。
![]() |
图2 γ-PGA对菜心叶片可溶性蛋白和MDA含量、SOD、POD、CAT活性的影响 Fig. 2 Effect of the application of γ-PGA on the soluble protein and MDA contents, SOD, POD and CAT activities in leaves of Chinese flowering cabbage [注(Note):柱上不同字母表示相同土壤不同处理间差异达5%显著水平Different lowercase letters above the bars indicate significant differences among treatments in the same soil (P < 0.05, n=8).] |
γ-PGA是一种生物阴离子型高分子聚合物,相对分子质量高达105~106 Da,其分子链上含有大量的负电a-羧基[5]。因此,γ-PGA对Ca、Mg、Cu等多种带正电荷金属离子具极强螯合、活化作用[5, 18-19]。Chang等[20]发现γ-PGA能有效吸附去离子水中Cr3+、Cu2+、Pb2+金属阳离子。Tianmoto等[19]研究发现,添加γ-PGA可有效提高小鼠肠道对钙的吸收利用效率。施用γ-PGA可有效提高土壤中钙、镁、锰、铜、锌等多种养分离子的有效性,具有一定的肥料增效性能[16]。有研究发现,施用γ-PGA活化磷矿粉0~40天后,土壤中的有效钙和CEC显著提高[21]。褚群等[11]发现,施用γ-PGA可以显著提高番茄穴盘育苗基质中交换性钾、交换性镁含量和EC值。本研究中,施用γ-PGA可有效提高菜心钙、镁、锌、锰养分含量(表 6),且钙、锌的增幅最大,也证明了γ-PGA对土壤中二价阳离子有显著活化作用。褚群等[11]还发现,γ-PGA可显著提高番茄穴盘育苗基质中铵态氮、硝态氮、速效磷和速效钾含量。Inbaraj等[18]表明γ-PGA对二价金属离子(如钙)的结合力显著高于一价金属离子(如钠和钾),且对不同二价金属离子的吸附力也不同。本试验结果也表明,施用γ-PGA显著提高了菜心中钙、镁、锌等二价金属离子的含量,而对钾含量没有影响。由此可见,γ-PGA可有效提高土壤钙、镁、锌等养分元素有效性。γ-PGA的养分活化效能显著受土壤酸性影响,强酸性土壤上施用γ-PGA对作物养分离子含量没有显著影响。可能是因为强酸化导致土壤H+浓度增加,它与Ca2+、Mg2+、K+等盐基性养分阳离子竞争交换位,导致这些盐基离子大量淋失[22],从而影响了γ-PGA的养分活化效应。然而,目前γ-PGA对各种金属离子的吸附动力学尚不清晰,对土壤中各种营养元素离子的螯合活化性能还有待进一步探讨。
作物对土壤养分离子的吸收不仅取决于土壤养分元素有效性,同时也与作物根系生长、活力和构型显著相关。研究表明,施用γ-PGA显著提高油菜苗的根系长度、重量,可促进作物根系生长[23-24]。Xu等[12]发现,添加γ-PGA和钙显著提高了大白菜根系中氮代谢相关酶活性。Zhu等[25]研究表明,γ-PGA可有效缓解Pb对作物根系的毒害作用,提高根系生物量。综上,γ-PGA可能通过参与作物碳氮代谢过程,和阻控有害物质的毒害作用,促进作物根系生长。同时,研究发现,施用γ-PGA显著提高植物根系活力,提高水分和养分吸收能力[11, 23-24]。本研究结果也表明,施用γ-PGA显著提高菜心根系伤流强度。因此,γ-PGA一方面促进了作物根系生长,提高养分吸收面积;另一方面,提高了作物根系活力,提高了养分吸收能力。
3.2 γ-PGA对作物生长代谢的影响Xu等[12]通过水培试验,发现γ-PGA (分子量为2 k Da)显著提高大白菜的硝酸还原酶、谷氨酰胺合成酶、谷氨酸合成酶和谷氨酸脱氢酶等氮代谢相关酶的活性。他们还发现γ-PGA显著提高油菜苗的SOD、POD、CAT活性,增强其抗旱性[26]。本研究结果也表明,施用γ-PGA有助于提高菜心叶片SOD、CAT活性,降低叶片MAD含量,提高菜心产量,并改善其品质。Xu等[12, 26]认为,γ-PGA通过促进胞外Ca2+内流,产生Ca2+信号,经下游级联反应将信号转导放大,参与调节植物的多种生长发育和胁迫适应过程。但目前尚无直接证据表明,作物能直接吸收利用γ-PGA,并参与到作物各种生理生化反应中。已有相关研究表明,植株根系能直接吸收利用单体氨基酸,是部分作物重要的氮源[27-28]。土壤中蛋白质和多肽类等氨基酸聚合物,在土壤微生物和菌根真菌作用下形成单体氨基酸,成为植物有机氮的主要来源[27]。γ-PGA极易被各种蛋白酶分解形成谷氨酸。一些生态系统中,有机氮显著影响作物生长[27]。然而,目前尚无直接证据表明,有机氮在植物氮素营养中具有重要贡献作用[27]。因此,目前围绕γ-PGA对作物生理生化的影响研究均停留在效果验证阶段,需借助同位素、荧光定位等研究手段,进一步揭示γ-PGA的作用机理。
4 结论γ-PGA一方面可显著提高土壤Ca、Mg、Cu、Mg等带正电荷养分离子有效性,同时促进作物根系生长,提高作物根系活力,从而显著提高作物对养分离子的吸收累积量,具有一定的养分增效作用;另一方面,γ-PGA提高作物抗逆性,改善作物体内生理生化代谢过程,促进作物生长。
[1] |
白由路. 植物营养与肥料研究的回顾与展望[J].
中国农业科学, 2015, 48(17): 3477–3492.
Bai Y L. Review on research in plant nutrition and fertilizers[J]. Scientia Agricultura Sinica, 2015, 48(17): 3477–3492. |
[2] |
侯翠红, 许秀成, 王好斌, 等. 绿色肥料产业体系构建及其科学问题[J].
科学通报, 2015, 60(36): 3535–3542.
Hou C H, Xu X C, Wang H B, et al. Establishment of green fertilizer industrial system and its scientific problems[J]. Chinese Science Bulletin, 2015, 60(36): 3535–3542. |
[3] |
曾路生, 石元亮, 卢宗云, 等. 新型聚氨酸增效剂对蔬菜生长和产量的影响[J].
中国农学通报, 2013, 29(31): 168–173.
Zeng L S, Shi Y L, Lu Z Y, et al. Effect of new type synergist of poly amino acid on vegetables growth and yield[J]. Chinese Agricultural Science Bulletin, 2013, 29(31): 168–173. |
[4] |
李俊艳, 胡红青, 李荣纪, 等. 改性磷矿粉对油菜幼苗生长和土壤性质的影响[J].
植物营养与肥料学报, 2009, 5(2): 441–446.
Li J Y, Hu H Q, Li R J, et al. Modified phosphate rock by γ-poly glutamic acid and its effects on the growth of rapeseed seedlings and soil properties[J]. Plant Nutrition and Fertilizer Science, 2009, 5(2): 441–446. |
[5] | Shih I L, Van Y T. The production of poly-(c-glutamic acid) from microorganisms and its various applications[J]. Bioresource Technology, 2001(79): 207–225. |
[6] | Ogunleye A, Bhat A, Irorere V U, et al. Poly-glutamic acid:production, properties and applications[J]. Microbiology, 2015, 161(Pt_1): 1–17. |
[7] | Bajaj I, Singhal R. Poly (glutamic acid)-An emerging biopolymer of commercial interest[J]. Bioresource Technology, 2011, 102(10): 5551–5561. DOI:10.1016/j.biortech.2011.02.047 |
[8] | Xu Z, Lei P, Feng X, et al. Effect of poly (γ-glutamic acid) on microbial community and nitrogen pools of soil[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2013, 63(8): 657–668. |
[9] | Xu Z, Wan C, Xu X, et al. Effect of poly (γ-glutamic acid) on wheat productivity, nitrogen use efficiency and soil microbes[J]. Journal of Soil Science and Plant Nutrition, 2013, 13(3): 744–755. |
[10] | Yue J, Liming L, Guangfu L, et al. Effect of γ-PGA coated urea on N-release rate and tomato growth[J]. Wuhan University Journal of Natural Sciences, 2014(4): 335–340. |
[11] |
褚群, 董春娟, 尚庆茂. γ-聚谷氨酸对番茄穴盘育苗基质矿质养分供应及幼苗生长发育的影响[J].
植物营养与肥料学报, 2016, 22(3): 855–862.
Chu Q, Dong C J, Shang Q M. Effects of γ-poly glutamic acid on substrate mineral nutrient supply and growth of tomato plug of seedlings[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 855–862. |
[12] | Xu Z, Lei P, Feng X, et al. Calcium involved in the poly (γ-glutamic acid)-mediated promotion of Chinese cabbage nitrogen metabolism[J]. Plant Physiology and Biochemistry, 2014, 80: 144–152. DOI:10.1016/j.plaphy.2014.03.036 |
[13] | Fang J, Zhang Y, Yan S, et al. Poly (L-glutamic acid)/chitosan polyelectrolyte complex porous microspheres as cell microcarriers for cartilage regeneration[J]. Acta Biomaterialia, 2014, 10(1): 276–288. DOI:10.1016/j.actbio.2013.09.002 |
[14] |
许宗奇, 万传宝, 许仙菊, 等. 肥料增效剂γ-聚谷氨酸对小青菜产量和品质的影响[J].
生物加工过程, 2012, 10(1): 58–62.
Xu Z Q, Wan C B, Xu X J, et al. Effects of poly (γ-glutamic acid) application on yield and quality of potted Brassica chinensi[J]. Chinese Journal of Bioprocess Engineering, 2012, 10(1): 58–62. |
[15] |
李汉涛, 杨国正, 柯云, 等. 聚γ-谷氨酸增效复合肥对油菜产量及其构成因素的影响[J].
湖北农业科学, 2010, 49(10): 2395–2397.
Li H T, Yang G Z, Ke Y, et al. Effect of a strengthened compound fertilizer by poly-γ-glutamic acid on the yield and its components of rapeseed (Brassica napus L.)[J]. Hubei Agricultural Sciences, 2010, 49(10): 2395–2397. |
[16] |
汪少华. 聚γ-谷氨酸增效复合肥产业化开发及应用前景[J].
磷肥与复肥, 2009, 24(6): 52–54.
Wang S H. Industrial development and application prospects of high efficiency compound fertilizer with poly γ-glutamic acid[J]. Phosphate & Compound Fertilizer, 2009, 24(6): 52–54. |
[17] |
李玲.
植物生理学模块实验指导
[M]. 北京: 科学出版社, 2009.
Li L. Plant physiology experiment module [M]. Beijing: Science Press, 2009. |
[18] | Inbaraj B S, Wang J S, Lu J F, et al. Adsorption of toxic mercury (Ⅱ) by an extracellular biopolymer poly (γ-glutamic acid)[J]. Bioresource Technology, 2009, 100(1): 200–207. DOI:10.1016/j.biortech.2008.05.014 |
[19] | Tianimoto H, Mori M, Motoki M, et al. Natto mucilage containing poly-γ-glutamic acid increases soluble calcium in the rat small intestine[J]. Bioscience, Biotechnology & Biochemistry, 2001, 65(3): 516–521. |
[20] | Chang J, Zhong Z, Xu H, et al. Fabrication of poly (γ-glutamic acid)-coated Fe3O4 magnetic nanoparticles and their application in heavy metal removal[J]. Chinese Journal of Chemical Engineering, 2013, 21(11): 1244–1250. DOI:10.1016/S1004-9541(13)60629-1 |
[21] |
蔡志坚. γ-聚谷氨酸活化磷矿粉对Pb污染土壤铅形态及小白菜生长的影响[D].武汉:华中农业大学硕士学位论文, 2010.
Cai Z J. Effect of γ-poly glutamie acid-activated phosphate rock on different forms of Pb in Pb-coniaminated soil and pakchoi growth[D]. Wuhan: MS Thesis of Huazhong Agricultural University, 2010. |
[22] |
徐仁扣. 土壤酸化及其调控研究进展[J].
土壤, 2015, 47(2): 238–244.
Xu R K. Research progresses in soil acidification and its control[J]. Soils, 2015, 47(2): 238–244. |
[23] | Wang J, Liu Z, Wang Y, et al. Production of a water-soluble fertilizer containing amino acids by solid-state fermentation of soybean meal and evaluation of its efficacy on the rapeseed growth[J]. Journal of Biotechnology, 2014, 187: 34–42. DOI:10.1016/j.jbiotec.2014.07.015 |
[24] |
尹成红, 雍晓雨, 冉炜, 等. 产γ-聚谷氨酸菌株的筛选及其对玉米幼苗生长的影响[J].
南京农业大学学报, 2011(2): 91–96.
Yi C H, Yong X Y, Ran W, et al. Screening for γ-PGA-producing strain and effect of γ-PGA on growth of maize seedlings[J]. Journal of Nanjing Agricultural University, 2011(2): 91–96. |
[25] | Zhu J, Cai Z, Su X, et al. Immobilization and phytotoxicity of Pb in contaminated soil amended with γ-poly-glutamic acid, phosphate rock, and γ-polyglutamic acid-activated phosphate rock[J]. Environmental Science and Pollution Research, 2015, 22(4): 2661–2667. DOI:10.1007/s11356-014-3503-6 |
[26] | Lei P, Xu Z, Ding Y, et al. Effect of poly (γ-glutamic acid) on the physiological responses and calcium signaling of rape seedlings (Brassica napus L.) under cold stress[J]. Agricultural and Food Science, 2015, 63: 10399–10406. DOI:10.1021/acs.jafc.5b04523 |
[27] | Näsholm T, Kielland K, Ganeteg U. Uptake of organic nitrogen by plants[J]. New Phytologist, 2009, 182: 31–48. DOI:10.1111/j.1469-8137.2008.02751.x |
[28] | Lipson D, Näsholm T. The unexpected versatility of plants:organic nitrogen use and availability in terrestrial ecosystems[J]. Oecologia, 2001, 128(3): 305–316. DOI:10.1007/s004420100693 |