文章信息
- 食管癌免疫耐受及治疗方法的探索
- Exploration of Immune Tolerance and Treatment for Esophageal Cancer
- 肿瘤防治研究, 2023, 50(12): 1174-1179
- Cancer Research on Prevention and Treatment, 2023, 50(12): 1174-1179
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2023.23.0790
- 收稿日期: 2023-07-20
- 修回日期: 2023-10-18
食管癌(esophageal cancer, EC)是世界上第六大癌症,是亚洲特别是中国常见的一种癌症类型。PD-1/PD-L1轴是一种关键的共抑制免疫途径,通过对抗T细胞功能、抑制T细胞的增殖存活和效应功能、促进T细胞衰竭从而导致肿瘤的免疫逃避。基于抗体的PD-1抑制剂在晚期食管癌患者中显示出显著的反应。然而,尽管患者预后显著改善,但仅在少数患者中观察到持久的疗效。大多数患者随着治疗的进展最终会变得无效。Dunn及其同事在2002年提出了癌症免疫编辑的概念,认识到了免疫在肿瘤生长中的重要作用[1]。传统上,肿瘤细胞抗原接触抗原呈递细胞(APCs),APCs通过主要组织相容性复合体(MHC)将肿瘤抗原呈递给T细胞。当T细胞受体(TCR)与提交的MHC结合时,以CD8+ T细胞为首的免疫杀伤细胞被激活并转化为肿瘤细胞杀手。肿瘤细胞产生的任何导致免疫细胞群体变化或功能障碍的不良信号都有可能导致免疫治疗的耐药性。最近的一项研究揭示了食管鳞状细胞癌(esophageal squamous cell carcinoma, ESCC)中的免疫微环境[2],在食管鳞状细胞癌局部中鉴定出了大量的调节性T(Treg)细胞、巨噬细胞(M2)和耐受性树突状细胞(tDCs),表明免疫抑制细胞群在食管癌中高度富集。几种免疫抑制机制可能同时存在并导致免疫逃逸和肿瘤进展。肿瘤局部的“生态系统”中不同群体之间存在广泛相互作用,这些相互作用影响疾病的进展和治疗。很容易联想到,针对免疫抑制途径的特异性靶向将有可能重新激活肿瘤局部的免疫反应。本文将讨论涉及肿瘤局部免疫的几个重要因素,以期为食管癌的研究提供新的解决思路。
1 肿瘤微环境中的重要成分 1.1 肿瘤相关成纤维细胞肿瘤基质的主要成分是肿瘤相关成纤维细胞(cancer-associated-fibroblasts, CAF),多年来的研究表明CAF在肿瘤进展和转移中具有显著的作用[3]。CAF以高表达成纤维细胞活化蛋白(FAP)和平滑肌肌动蛋白(α-SMA)为特征,具有较强的增殖、迁移、分泌和合成能力[4]。活化的CAF通过分泌细胞因子、趋化因子、血管内皮生长因子(VEGF)、白细胞介素、肿瘤坏死因子(TNF)、转化生长因子-β、双加氧酶(IDO)和一氧化氮(NO)等细胞标志物或细胞因子,从而对癌症免疫产生深远的影响[5-6]。CAF的很大一部分作用通过白细胞介素-6(IL-6)来实现。IL-6的各种功能与肿瘤密切相关,包括刺激肿瘤细胞的生存,促进肿瘤血管生成、侵袭和转移[7]。在异种移植肿瘤模型中,诱导IL-6可以增加ALDH1(肿瘤干细胞标志物)和TWIST(EMT诱导剂)的表达[8]。在食管鳞状细胞癌中,ALDH1的高表达与肿瘤的侵袭性、上皮间充质转化(EMT)增强有关[9]。其他研究也证实,CAF衍生的IL-6上调了癌症干细胞标志物的表达,而主动沉默IL-6可以减弱ESCC的血管生成,增加肿瘤细胞的死亡[10-11]。NK细胞是天然免疫细胞,对肿瘤细胞具有很强的杀伤作用。然而,它们的功能也受到TME的阻碍[12]。从机制上讲,IL-6和IL-8通过激活NK细胞上的STAT3信号通路,导致NK细胞表面活化受体NKP30和NKG2D下调,减弱NK细胞的杀伤能力[13]。Chen等[14]报道了ESCC患者循环系统中的IL-6水平升高与MDSCs的显著增加相关,IL-6通过刺激MDSCs中ROS和精氨酸酶的产生以及p-STAT3的表达来促进MDSC的免疫抑制功能,并与ESCC患者的不良预后有关。Qiu等[15]发现,CAF可以显著上调ESCC细胞中PD-L1的表达来直接促进免疫逃逸。Kato等[16]对149例ESCC患者的瘤内和瘤周组织进行免疫组织化学分析,发现CAF分别与瘤内组织CD8+肿瘤浸润淋巴细胞(TILs)和FoxP3+ TILs呈负相关和正相关。CAF分泌的WNT2也通过抑制树突状细胞(DC)的分化在调节肿瘤免疫逃避中起关键作用[17]。研究结果表明,CAF衍生的WNT2通过上调DC前体的SOCS3抑制JAK2/STAT3的激活,并进一步抑制肿瘤中CD11c+ DC和CD103+ DC的分化,从而降低了肿瘤抗原呈递和CD8+ T细胞的激活。抗WNT2治疗可提高肿瘤内抗原呈递树突状细胞的水平并改善肿瘤抗原特异性CD8+ T细胞的反应。CAF的耗竭也可减弱肿瘤基质的生成,破坏肿瘤屏障,从而增强抗肿瘤药物的浸润。因此,采用消耗分泌WNT2的CAF与PD-1抗体结合的策略不仅可以改善抗肿瘤免疫反应,还可以增强PD-1抗体对肿瘤的浸润[11]。上述证据表明,CAF通过多种机制在ESCC免疫抑制TME的形成中发挥重要作用,处于肿瘤免疫抑制中的核心地位。
1.2 调节性T细胞调节性T(Treg)细胞是一种以IL-10和FOXP3作为表面标志物的高度免疫抑制的CD4+ T细胞亚群,调节多种免疫反应[18]。Treg细胞抑制各种类型的效应淋巴细胞,包括CD4+ T辅助细胞(TH)和CD8+细胞毒性T淋巴细胞(CTL)[19]。Tregs表面表达的CTLA-4是CD80/CD86的配体,其亲和力高于CD28,可下调APCs上的CD80/CD86共刺激分子,剥夺共刺激信号,从而抑制APCs的成熟[20]。Treg细胞的富集与肿瘤中高度富集的CD8 T(CD8-C1-NKG7)细胞和NKG2A(KLRC1)细胞的增加显著相关。然而,细胞毒性CD8 T细胞(CD8-C1-NKG7)和NK-C3-KLRC1是两种在各自群体中杀伤功能很弱的细胞类型,它们的细胞毒性评分极低,表明在食管鳞状细胞癌中的免疫杀伤细胞群体受到明显损害[2]。此外,Tregs也可以通过识别肿瘤抗原如NY-ESO-1,来抑制肿瘤特异性效应T细胞[21]。CD39(膜外三磷酸腺苷二磷酸水解酶-1)和CD73(胞外-5′-核苷酸酶)都是由Treg细胞诱导的两种酶[22],CD39定位于细胞表面,催化细胞外核苷三磷酸(ATP)和核苷二磷酸(ADP)水解生成核苷单磷酸(AMP)。CD73水解AMP并将其转化为细胞外腺苷(ADO)[23]。A2A受体是腺苷的一种高亲和力受体。在效应T细胞中,A2A信号导致PKA活性增加,而后者具有多种抑制作用,包括抑制多种MAP激酶(如ERK1和JNK)、抑制蛋白激酶C的活性、介导NF-κB的激活[24-26]。此外,TME中高水平的腺苷还会破坏CD8+ T细胞的活化和细胞因子的分泌并抑制细胞毒性T细胞的活性,干扰NK细胞的细胞杀伤能力。A2AR拮抗剂与NK细胞治疗联合使用可促进NK细胞介导的抗肿瘤免疫[27-29]。最后,效应细胞和调节性T细胞上的A2AR信号转导触发其他免疫检查点通路的表达增加,包括PD-1、CTLA-4和LAG-3[26],有助于肿瘤的免疫逃避。因此,阻断A2AR为癌症免疫治疗提供了一种潜在的途径[30]。既往在EC患者中的临床研究表明,TGF-β信号通路存在异常亢进,TGF-β的表达水平与EC患者的预后显著相关[31]。Chen等的研究所示,来源于CAF的TGF-β可通过诱导T淋巴细胞中Foxp3基因的表达,促进幼稚T细胞分化为CD4+CD25+Treg细胞[32]。此外,有报道称,在ESCC中,CAF可以通过FOXO1/TGF-β信号通路诱导耐药,这表明TGF-β可能参与了食管癌中Treg细胞与CAF之间的相互作用[33]。
1.3 肿瘤相关巨噬细胞肿瘤相关巨噬细胞(tumor-associated macrophages, TAM)是肿瘤微环境中免疫细胞的重要组成部分[34]。巨噬细胞的分化和成熟过程根据微环境刺激的不同大致可分为两种不同类型:经典激活途径产生M1巨噬细胞和旁路激活途径产生M2巨噬细胞[35]。在肿瘤初期,TAM优先分化为M1表型,产生丰富的促炎细胞因子,包括IL-12和TNF-α,发挥抗肿瘤作用。但在肿瘤进展过程中,TAM逐渐极化,获得由细胞因子(包括IL-4、IL-13和IL-10)驱动的M2表型[36]。M2-TAM在ESCC中富集,通过分泌生长因子、基质金属蛋白酶(MMPs)和其他促肿瘤细胞因子、抑制T和NK细胞,导致免疫反应减弱,并与肿瘤的进展和较低的生存率有关[37-38]。一份关于肿瘤相关巨噬细胞对食管癌影响的报告显示,M2巨噬细胞的浸润显著降低了食管鳞状细胞癌患者的存活率[39]。Yagi等[40]的研究表明,EC组织中TAM密度的增加与生存结果的恶化有关,TAM还可以增加肿瘤细胞中PD-L1的表达,诱导其免疫逃逸。TAM促进ESCC进展的另一种机制是M2巨噬细胞可以在巨噬细胞趋化蛋白-1(MCP-1)的影响下通过释放胸苷磷酸化酶(TP)来诱导血管内皮生长因子(VEGF)的表达,以增强肿瘤局部血管生成[41-42]。C-C基序趋化因子配体2(CCL2)/C-C基序趋化因子受体2(CCR2)信号通路被广泛认为在募集TAM中发挥重要作用。最近在ESCC中的研究表明,CCL2的表达上调与TAM积累有关,并且它们都是不良生存的良好预测因子[43]。CD47是调控巨噬细胞的关键分子,当CD47被激活时,通过巨噬细胞表面的受体信号调节蛋白α(SIRPα)传递抑制信号,损害巨噬细胞的吞噬活性[44-45]。Weiskopf等证实ESCC中CD47的表达水平与CD8+T细胞密度呈负相关[46]。此外,他们进一步证实了抗CD47治疗使ESCC组织中CD8+ T细胞浸润密度增加。MDSCs被定义为一组异质性的未成熟骨髓细胞,与患者较差的预后和生存率有关。在MDSC存在的情况下,巨噬细胞被转化为M2表型,之后两者共同作用阻断IL-13驱动的免疫监视[47]。积累的髓源性抑制细胞(MDSCs)已被证实是大多数EC患者预后不良的指标[48]。最近,ESCC中的MDSC被证明能够分泌TGF-β,这可以增加PD-1在肿瘤过滤CD8+ T细胞上的表达,并增强对PD-1/PD-L1阻断的抵抗力。阻断TGF-β信号通路恢复了MDSC抑制的抗原特异性CD8+ T细胞的增殖[49]。大量研究表明,CAF通过多种分子促进单核细胞(巨噬细胞前体)募集和分化为致癌巨噬细胞亚群(M2型TAM)[50]。同时,MDSCs直接或间接分泌的TGF-β和趋化因子可促进CAF的产生[51]。这种细胞与细胞之间的相互作用和促进作用进一步加剧了肿瘤局部的免疫抑制环境。
2 解决免疫耐受问题的探索自从免疫治疗出现以后,由于其优越的疗效和较小的不良反应,人们一直致力于开发新的策略,将免疫治疗扩展到无应答人群,其中一种策略是将免疫检查点抑制剂与其他系统治疗模式相结合。最先被提出来的是化疗。一些细胞毒性化疗药物,如蒽环类和铂类,可以诱导免疫原性细胞死亡并释放肿瘤抗原,增加T细胞对肿瘤抗原的识别[52]。低剂量环磷酰胺可以耗尽循环系统和肿瘤局部浸润的调节性T细胞[53],紫杉醇促进肿瘤相关巨噬细胞从M2样表型复极为M1样表型[54]。基于化疗药物的免疫调节作用,KEYNOTE-590(NCT03189719),CheckMate649(NCT02872116)等研究取得了较大的成功,化疗联合PD-1/PD-L1治疗已成为食管癌患者的首选方案。免疫检查点抑制剂联合治疗也是当前研究的热点,CheckMate-648(NCT03143153)是迄今为止最大的全球性的随机Ⅲ期研究之一,其结果显示,纳武利尤单抗联合伊匹木单抗治疗组的OS和客观反应明显优于化疗[55]。一些临床试验(NCT03416244、NCT03377400、NCT02658214和NCT03212469)正在进一步阐明CTLA-4抑制剂在ESCC免疫治疗中的安全性和有效性。然而,许多专家和研究学者认为,尽管双重免疫治疗引起不良反应的概率低于化疗,但免疫治疗引起的骨髓抑制、胃肠道反应等严重不良反应更难处理。因此,研究者们将目光投向了靶向治疗。靶向药物具有毒性小、特异性高的优点,在肿瘤治疗中具有显著的疗效。阿帕替尼(apatinip)是一种靶向VEGF酪氨酸激酶的小分子抗血管生成药物。CAP 02(NCT03736863)试验探讨了卡瑞利珠单抗(camrelizumab)联合阿帕替尼作为食管癌患者二线免疫治疗的效果。这项Ⅱ期研究的客观缓解率接近CheckMate 648(47%)和KEYNOTE-590(45%)的观察结果,表明卡瑞利珠单抗联合阿帕替尼在ESCC中的良好疗效[56]。另外一种抗血管生成药物安罗替尼(Anlotinib)也可增强抗肿瘤免疫。在晚期食管鳞状细胞癌患者中也有零星报告称纳武利尤单抗联合安罗替尼取得了完全治愈的显著疗效[57]。抗血管治疗联合免疫治疗在食管癌中展现出了广阔的发展前景。靶向CD39/CD73/A2AR途径的小分子抑制剂和单克隆抗体也已被开发用于癌症治疗[58]。一些新出现的靶点,包括LAG-3、TIM-3和TIGIT,正在食管癌中进行临床试验,SKYSCRAPER-07(NCT04543617)和SKYSCRAPER-08(NCT04540211)旨在探讨抗TIGIT和抗PD-1/PD-L1联合治疗ESCC患者的疗效和安全性。NCT04140500和NCT04785820研究旨在探讨抗LAG-3和抗PD-1联合治疗的疗效和安全性,NCT03708328和NCT04785820研究旨在探讨抗TIM-3和抗PD-1联合治疗ESCC患者的疗效和安全性。部分研究结果已经公布,其中SKYSCRAPER-07研究入组不可切除或局晚期食管癌患者,采用单免疫组、双免疫组和对照组三个队列,双免疫组包括PD-L1抑制剂阿替利珠单抗和TIGIT抑制剂Tiragolumab。在该Ⅰb期研究中,Tiragolumab联合阿替利珠单抗在晚期食管癌的后线治疗中客观缓解率(ORR)达到28%,而之前食管癌免疫单药二线治疗Ⅲ期研究中ORR均为20%左右,后续以及其他研究正在进行,期待更多的数据公布。除了这些研究之外,在其他癌症的研究中也有不少成果问世,ES014是一种抗CD39/TGF-β双特异性单抗。据报道,它可以同时抑制CD39的酶活性和中和TGF-β的分泌,进而抑制TME内免疫抑制腺苷和TGF-β的积累来恢复抗肿瘤免疫[59]。选择性NOX抑制剂(GKT13783)可以通过靶向FAK有效逆转体内CAF的分化,并增强INF-γ和TNF-α的表达[60]。AMD3100是CXCR4的小分子抑制剂,促进肿瘤中T细胞的聚集,增强抗肿瘤免疫力[61]。抗IL-6抗体如siltuximab、tocilizumab、sarilumab等也已被美国食品和药物管理局(FDA)批准用于治疗其他几种恶性肿瘤,但尚未开展临床研究来评估在食管癌中靶向IL-6的能力。鉴于靶向治疗已经取得的疗效,展示出来的较小的不良反应以及治疗效果方面的改善,靶向治疗可能是未来食管癌临床研究的主要方向。
3 总结本文讨论了一些肿瘤微环境成分在肿瘤免疫耐受过程中的作用,以及治疗免疫耐受的探索。肿瘤免疫微环境作为肿瘤局部免疫中的重要一部分,对肿瘤的治疗效果有着很大影响。炎症相关成纤维细胞、调节性T细胞、肿瘤相关巨噬细胞是其中研究比较多的一部分,一些相关药物已经开展了临床探索。然而,很多通路和机制在食管癌中的作用尚未完全阐明,食管癌免疫治疗的相关领域有许多研究的内容和改进的空间,该领域的进一步研究有望改善ESCC患者的预后。
利益冲突声明:
所有作者均声明不存在利益冲突。
作者贡献:
邢思远、樊青霞:论文思路设计及撰写
单争争、孟祥瑞:论文内容补充
王峰:论文修改
[1] |
Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape[J]. Nat Immunol, 2002, 3(11): 991-998. DOI:10.1038/ni1102-991 |
[2] |
Zheng Y, Chen Z, Han Y, et al. Immune suppressive landscape in the human esophageal squamous cell carcinoma microenvironment[J]. Nat Commun, 2020, 11(1): 6268. DOI:10.1038/s41467-020-20019-0 |
[3] |
Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound[J]. J Exp Med, 2014, 211(8): 1503-1523. DOI:10.1084/jem.20140692 |
[4] |
Kalluri R. The biology and function of fibroblasts in cancer[J]. Nat Rev Cancer, 2016, 16(9): 582-598. DOI:10.1038/nrc.2016.73 |
[5] |
Patel R, Filer A, Barone F, et al. Stroma: fertile soil for inflammation[J]. Best Pract Res Clin Rheumatol, 2014, 28(4): 565-576. DOI:10.1016/j.berh.2014.10.022 |
[6] |
Poggi A, Musso A, Dapino I, et al. Mechanisms of tumor escape from immune system: role of mesenchymal stromal cells[J]. Immunol Lett, 2014, 159(1-2): 55-72. DOI:10.1016/j.imlet.2014.03.001 |
[7] |
Fisher DT, Appenheimer MM, Evans SS. The two faces of IL-6 in the tumor microenvironment[J]. Semin Immunol, 2014, 26(1): 38-47. DOI:10.1016/j.smim.2014.01.008 |
[8] |
Khan MA, Chen HC, Zhang D, et al. Twist: a molecular target in cancer therapeutics[J]. Tumour Biol, 2013, 34(5): 2497-2506. DOI:10.1007/s13277-013-1002-x |
[9] |
Chen MF, Chen PT, Lu MS, et al. Role of ALDH1 in the prognosis of esophageal cancer and its relationship with tumor microenvironment[J]. Mol Carcinog, 2018, 57(1): 78-88. DOI:10.1002/mc.22733 |
[10] |
Ebbing EA, van der Zalm AP, Steins A, et al. Stromal-derived interleukin 6 drives epithelial-to-mesenchymal transition and therapy resistance in esophageal adenocarcinoma[J]. Proc Natl Acad Sci U S A, 2019, 116(6): 2237-2242. DOI:10.1073/pnas.1820459116 |
[11] |
Karakasheva TA, Lin EW, Tang Q, et al. IL-6 Mediates Cross-Talk between Tumor Cells and Activated Fibroblasts in the Tumor Microenvironment[J]. Cancer Res, 2018, 78(17): 4957-4970. DOI:10.1158/0008-5472.CAN-17-2268 |
[12] |
Paul S, Lal G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy[J]. Front Immunol, 2017, 8: 1124. DOI:10.3389/fimmu.2017.01124 |
[13] |
Wu J, Gao FX, Wang C, et al. IL-6 and IL-8 secreted by tumour cells impair the function of NK cells via the STAT3 pathway in oesophageal squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2019, 38(1): 321. DOI:10.1186/s13046-019-1310-0 |
[14] |
Chen MF, Kuan FC, Yen TC, et al. IL-6-stimulated CD11b+ CD14+ HLA-DR- myeloid-derived suppressor cells, are associated with progression and poor prognosis in squamous cell carcinoma of the esophagus[J]. Oncotarget, 2014, 5(18): 8716-8728. DOI:10.18632/oncotarget.2368 |
[15] |
Qiu L, Yue J, Ding L, et al. Cancer-associated fibroblasts: An emerging target against esophageal squamous cell carcinoma[J]. Cancer Lett, 2022, 546: 215860. DOI:10.1016/j.canlet.2022.215860 |
[16] |
Kato T, Noma K, Ohara T, et al. Cancer-Associated Fibroblasts Affect Intratumoral CD8+ and FoxP3+ T Cells Via IL6 in the Tumor Microenvironment[J]. Clin Cancer Res, 2018, 24(19): 4820-4833. DOI:10.1158/1078-0432.CCR-18-0205 |
[17] |
Huang TX, Tan XY, Huang HS, et al. Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity[J]. Gut, 2022, 71(2): 333-344. DOI:10.1136/gutjnl-2020-322924 |
[18] |
Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells[J]. Nat Immunol, 2003, 4(4): 330-336. DOI:10.1038/ni904 |
[19] |
Linterman MA, Pierson W, Lee SK, et al. Foxp3+ follicular regulatory T cells control the germinal center response[J]. Nat Med, 2011, 17(8): 975-982. DOI:10.1038/nm.2425 |
[20] |
Tekguc M, Wing JB, Osaki M, et al. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells[J]. Proc Natl Acad Sci U S A, 2021, 118(30): e2023739118. DOI:10.1073/pnas.2023739118 |
[21] |
Fourcade J, Sun Z, Kudela P, et al. Human tumor antigen-specific helper and regulatory T cells share common epitope specificity but exhibit distinct T cell repertoire[J]. J Immunol, 2010, 184(12): 6709-6718. DOI:10.4049/jimmunol.0903612 |
[22] |
Xia C, Yin S, To KKW, et al. CD39/CD73/A2AR pathway and cancer immunotherapy[J]. Mol Cancer, 2023, 22(1): 44. DOI:10.1186/s12943-023-01733-x |
[23] |
Schneider E, Rissiek A, Winzer R, et al. Generation and Function of Non-cell-bound CD73 in Inflammation[J]. Front Immunol, 2019, 10: 1729. DOI:10.3389/fimmu.2019.01729 |
[24] |
Guo S, Han F, Zhu W. CD39 - A bright target for cancer immunotherapy[J]. Biomed Pharmacother, 2022, 151: 113066. DOI:10.1016/j.biopha.2022.113066 |
[25] |
Faas MM, Sáez T, de Vos P. Extracellular ATP and adenosine: The Yin and Yang in immune responses?[J]. Mol Aspects Med, 2017, 55: 9-19. DOI:10.1016/j.mam.2017.01.002 |
[26] |
Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint inhibitors and beyond[J]. J Hematol Oncol, 2021, 14(1): 45. DOI:10.1186/s13045-021-01056-8 |
[27] |
Canale FP, Ramello MC, Núñez N, et al. CD39 Expression Defines Cell Exhaustion in Tumor-Infiltrating CD8+ T Cells[J]. Cancer Res, 2018, 78(1): 115-128. DOI:10.1158/0008-5472.CAN-16-2684 |
[28] |
Brauneck F, Seubert E, Wellbrock J, et al. Combined Blockade of TIGIT and CD39 or A2AR Enhances NK-92 Cell-Mediated Cytotoxicity in AML[J]. Int J Mol Sci, 2021, 22(23): 12919. DOI:10.3390/ijms222312919 |
[29] |
Kamai T, Kijima T, Tsuzuki T, et al. Increased expression of adenosine 2A receptors in metastatic renal cell carcinoma is associated with poorer response to anti-vascular endothelial growth factor agents and anti-PD-1/Anti-CTLA4 antibodies and shorter survival[J]. Cancer Immunol Immunother, 2021, 70(7): 2009-2021. DOI:10.1007/s00262-020-02843-x |
[30] |
Willingham SB, Hotson AN, Miller RA. Targeting the A2AR in cancer; early lessons from the clinic[J]. Curr Opin Pharmacol, 2020, 53: 126-133. DOI:10.1016/j.coph.2020.08.003 |
[31] |
Sawant DV, Yano H, Chikina M, et al. Adaptive plasticity of il-10(+) and il-35(+) T(Reg) cells cooperatively promotes tumor T cell exhaustion[J]. Nat Immunol, 2019, 20(6): 724-735. DOI:10.1038/s41590-019-0346-9 |
[32] |
Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3[J]. J Exp Med, 2003, 198(12): 1875-1886. DOI:10.1084/jem.20030152 |
[33] |
Zhang H, Xie C, Yue J, et al. Cancer-associated fibroblasts mediated chemoresistance by a FOXO1/TGFβ1 signaling loop in esophageal squamous cell carcinoma[J]. Mol Carcinog, 2017, 56(3): 1150-1163. DOI:10.1002/mc.22581 |
[34] |
Hatogai K, Kitano S, Fujii S, et al. Comprehensive immunohistochemical analysis of tumor microenvironment immune status in esophageal squamous cell carcinoma[J]. Oncotarget, 2016, 7(30): 47252-47264. DOI:10.18632/oncotarget.10055 |
[35] |
Ostuni R, Kratochvill F, Murray PJ, et al. Macrophages and cancer: from mechanisms to therapeutic implications[J]. Trends Immunol, 2015, 36(4): 229-239. DOI:10.1016/j.it.2015.02.004 |
[36] |
Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes[J]. Trends Immunol, 2002, 23(11): 549-555. DOI:10.1016/S1471-4906(02)02302-5 |
[37] |
Lu Y, Guo L, Ding G. PD1+ tumor associated macrophages predict poor prognosis of locally advanced esophageal squamous cell carcinoma[J]. Future Oncol, 2019, 15(35): 4019-4030. DOI:10.2217/fon-2019-0519 |
[38] |
Gao J, Liang Y, Wang L. Shaping Polarization of Tumor-Associated Macrophages in Cancer Immunotherapy[J]. Front Immunol, 2022, 13: 888713. DOI:10.3389/fimmu.2022.888713 |
[39] |
Li J, Xie Y, Wang X, et al. Prognostic impact of tumor-associated macrophage infiltration in esophageal cancer: a meta-analysis[J]. Future Oncol, 2019, 15(19): 2303-2317. DOI:10.2217/fon-2018-0669 |
[40] |
Yagi T, Baba Y, Okadome K, et al. Tumour-associated macrophages are associated with poor prognosis and programmed death ligand 1 expression in oesophageal cancer[J]. Eur J Cancer, 2019, 111: 38-49. DOI:10.1016/j.ejca.2019.01.018 |
[41] |
Ohta M, Kitadai Y, Tanaka S, et al. Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human esophageal squamous cell carcinomas[J]. Int J Cancer, 2002, 102(3): 220-224. DOI:10.1002/ijc.10705 |
[42] |
Hu JM, Liu K, Liu JH, et al. The increased number of tumor-associated macrophage is associated with overexpression of VEGF-C, plays an important role in Kazakh ESCC invasion and metastasis[J]. Exp Mol Pathol, 2017, 102(1): 15-21. DOI:10.1016/j.yexmp.2016.12.001 |
[43] |
Yang H, Zhang Q, Xu M, et al. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis[J]. Mol Cancer, 2020, 19(1): 41. DOI:10.1186/s12943-020-01165-x |
[44] |
Willingham SB, Volkmer JP, Gentles AJ, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors[J]. Proc Natl Acad Sci U S A, 2012, 109(17): 6662-6667. DOI:10.1073/pnas.1121623109 |
[45] |
Jaiswal S, Jamieson CH, Pang WW, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis[J]. Cell, 2009, 138(2): 271-285. DOI:10.1016/j.cell.2009.05.046 |
[46] |
Weiskopf K, Jahchan NS, Schnorr PJ, et al. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer[J]. J Clin Invest, 2016, 126(7): 2610-2620. DOI:10.1172/JCI81603 |
[47] |
Sinha P, Clements VK, Ostrand-Rosenberg S. Interleukin-13-Regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis[J]. Cancer Res, 2005, 65(24): 11743-11751. DOI:10.1158/0008-5472.CAN-05-0045 |
[48] |
Huang H, Zhang G, Li G, et al. Circulating Cd14(+)Hla-Dr(-/Low) myeloid-derived suppressor cell is an indicator of poor prognosis in patients with escc[J]. Tumour Biol, 2015, 36(10): 7987-7996. DOI:10.1007/s13277-015-3426-y |
[49] |
Chen X, Wang L, Li P, et al. Dual TGF-β and PD-1 blockade synergistically enhances MAGE-A3-specific CD8+ T cell response in esophageal squamous cell carcinoma[J]. Int J Cancer, 2018, 143(10): 2561-2574. DOI:10.1002/ijc.31730 |
[50] |
Tan B, Shi X, Zhang J, et al. Inhibition of Rspo-Lgr4 Facilitates Checkpoint Blockade Therapy by Switching Macrophage Polarization[J]. Cancer Res, 2018, 78(17): 4929-4942. DOI:10.1158/0008-5472.CAN-18-0152 |
[51] |
Barcellos-de-Souza P, Comito G, Pons-Segura C, et al. Mesenchymal Stem Cells are Recruited and Activated into Carcinoma-Associated Fibroblasts by Prostate Cancer Microenvironment-Derived TGF-β1[J]. Stem Cells, 2016, 34(10): 2536-2547. DOI:10.1002/stem.2412 |
[52] |
Zhu H, Shan Y, Ge K, et al. Oxaliplatin induces immunogenic cell death in hepatocellular carcinoma cells and synergizes with immune checkpoint blockade therapy[J]. Cell Oncol (Dordr), 2020, 43(6): 1203-1214. |
[53] |
Noordam L, Kaijen MEH, Bezemer K, et al. Low-dose cyclophosphamide depletes circulating naïve and activated regulatory T cells in malignant pleural mesothelioma patients synergistically treated with dendritic cell-based immunotherapy[J]. Oncoimmunology, 2018, 7(12): e1474318. DOI:10.1080/2162402X.2018.1474318 |
[54] |
Wanderley CW, Colón DF, Luiz JPM, et al. Paclitaxel Reduces Tumor Growth by Reprogramming Tumor-Associated Macrophages to an M1 Profile in a TLR4-Dependent Manner[J]. Cancer Res, 2018, 78(20): 5891-5900. DOI:10.1158/0008-5472.CAN-17-3480 |
[55] |
Doki Y, Ajani JA, Kato K, et al. Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma[J]. N Engl J Med, 2022, 386(5): 449-462. DOI:10.1056/NEJMoa2111380 |
[56] |
Meng X, Wu T, Hong Y, et al. Camrelizumab plus apatinib as second-line treatment for advanced oesophageal squamous cell carcinoma (CAP 02): a single-arm, open-label, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2022, 7(3): 245-253. DOI:10.1016/S2468-1253(21)00378-2 |
[57] |
Tang Y, Ou Z, Yao Z, et al. A case report of immune checkpoint inhibitor nivolumab combined with anti-angiogenesis agent anlotinib for advanced esophageal squamous cell carcinoma[J]. Medicine (Baltimore), 2019, 98(40): e17164. DOI:10.1097/MD.0000000000017164 |
[58] |
Nocentini A, Capasso C, Supuran CT. Small-molecule CD73 inhibitors for the immunotherapy of cancer: a patent and literature review (2017-present)[J]. Expert Opin Ther Pat, 2021, 31(10): 867-876. DOI:10.1080/13543776.2021.1923694 |
[59] |
Häusler SF, Del Barrio IM, Diessner J, et al. Anti-CD39 and anti-CD73 antibodies A1 and 7G2 improve targeted therapy in ovarian cancer by blocking adenosine-dependent immune evasion[J]. Am J Transl Res, 2014, 6(2): 129-139. |
[60] |
Jiang H, Hegde S, Knolhoff BL, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy[J]. Nat Med, 2016, 22(8): 851-860. DOI:10.1038/nm.4123 |
[61] |
Chen IX, Chauhan VP, Posada J, et al. Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer[J]. Proc Natl Acad Sci U S A, 2019, 116(10): 4558-4566. DOI:10.1073/pnas.1815515116 |