[1] |
Li Y, Sui Y, Chi M, et al. Study on the effect of MRI in the diagnosis of benign and malignant thoracic tumors[J]. Dis Markers, 2021, 2021: 3265561. |
|
[2] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI:10.3322/caac.21660 |
|
[3] |
Hong M, Clubb JD, Chen YY. Engineering CAR-T cells for next-generation cancer therapy[J]. Cancer Cell, 2020, 38(4): 473-488. DOI:10.1016/j.ccell.2020.07.005 |
|
[4] |
Anagnostou T, Riaz IB, Hashmi SK, et al. Anti-CD19 chimeric antigen receptor T-cell therapy in acute lymphocytic leukaemia: a systematic review and meta-analysis[J]. Lancet Haematol, 2020, 7(11): e816-e826. DOI:10.1016/S2352-3026(20)30277-5 |
|
[5] |
Ghosn M, Cheema W, Zhu A, et al. Image-guided interventional radiological delivery of chimeric antigen receptor (CAR) T cells for pleural malignancies in a phaseⅠ/Ⅱ clinical trial[J]. Lung Cancer, 2022, 165: 1-9. DOI:10.1016/j.lungcan.2022.01.003 |
|
[6] |
Yang S, Wei W, Zhao Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy[J]. Int J Biol Sci, 2020, 16(11): 1767-1773. DOI:10.7150/ijbs.41105 |
|
[7] |
Kontos F, Michelakos T, Kurokawa T, et al. B7-H3: An attractive target for antibody-based immunotherapy[J]. Clin Cancer Res, 2021, 27(5): 1227-1235. DOI:10.1158/1078-0432.CCR-20-2584 |
|
[8] |
Zhang Z, Jiang C, Liu Z, et al. B7-H3-targeted CAR-T cells exhibit potent antitumor effects on hematologic and solid tumors[J]. Mol Ther Oncolytics, 2020, 17: 180-189. DOI:10.1016/j.omto.2020.03.019 |
|
[9] | |
|
[10] |
Holdenrieder S, Wehnl B, Hettwer K, et al. Carcinoembryonic antigen and cytokeratin-19 fragments for assessment of therapy response in non-small cell lung cancer: a systematic review and meta-analysis[J]. Br J Cancer, 2017, 116(8): 1037-1045. DOI:10.1038/bjc.2017.45 |
|
[11] |
Wang L, Ma N, Okamoto S, et al. Efficient tumor regression by adoptively transferred CEA-specific CAR-T cells associated with symptoms of mild cytokine release syndrome[J]. Oncoimmunology, 2016, 5(9): e1211218. DOI:10.1080/2162402X.2016.1211218 |
|
[12] |
Santos EDS, Nogueira KAB, Fernandes LCC, et al. EGFR targeting for cancer therapy: Pharmacology and immunoconjugates with drugs and nanoparticles[J]. Int J Pharm, 2021, 592: 120082. DOI:10.1016/j.ijpharm.2020.120082 |
|
[13] |
Xia L, Zheng ZZ, Liu JY, et al. EGFR-targeted CAR-T cells are potent and specific in suppressing triple-negative breast cancer both in vitro and in vivo[J]. Clin Transl Immunology, 2020, 9(5): e01135. |
|
[14] |
Busek P, Mateu R, Zubal M, et al. Targeting fibroblast activation protein in cancer-Prospects and caveats[J]. Front Biosci (Landmark Ed), 2018, 23(10): 1933-1968. DOI:10.2741/4682 |
|
[15] |
Schuberth PC, Hagedorn C, Jensen SM, et al. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells[J]. J Transl Med, 2013, 11: 187. DOI:10.1186/1479-5876-11-187 |
|
[16] |
Salcedo EC, Winter MB, Khuri N, et al. Global protease activity profiling identifies HER2-driven proteolysis in breast cancer[J]. ACS Chem Biol, 2021, 16(4): 712-723. DOI:10.1021/acschembio.0c01000 |
|
[17] |
Li H, Yuan W, Bin S, et al. Overcome trastuzumab resistance of breast cancer using anti-HER2 chimeric antigen receptor T cells and PD1 blockade[J]. Am J Cancer Res, 2020, 10(2): 688-703. |
|
[18] |
Yu F, Wang X, Shi H, et al. Development of chimeric antigen receptor-modified T cells for the treatment of esophageal cancer[J]. Tumori, 2021, 107(4): 341-352. DOI:10.1177/0300891620960223 |
|
[19] |
Levý M, Boublíková L, Büchler T, et al. Treatment of malignant peritoneal mesothelioma[J]. Klin Onkol, 2019, 32(5): 333-337. |
|
[20] | |
|
[21] |
Zhang Q, Liu G, Liu J, et al. The antitumor capacity of mesothelin-CAR-T cells in targeting solid tumors in mice[J]. Mol Ther Oncolytics, 2021, 20: 556-568. DOI:10.1016/j.omto.2021.02.013 |
|
[22] |
Jing X, Liang H, Hao C, et al. Overexpression of MUC1 predicts poor prognosis in patients with breast cancer[J]. Oncol Rep, 2019, 41(2): 801-810. |
|
[23] |
Sun ZG, Yu L, Gao W, et al. Clinical and prognostic significance of MUC1 expression in patients with esophageal squamous cell carcinoma after radical resection[J]. Saudi J Gastroenterol, 2018, 24(3): 165-170. DOI:10.4103/sjg.SJG_420_17 |
|
[24] |
Pourjafar M, Samadi P, Saidijam M. MUC1 antibody-based therapeutics: the promise of cancer immunotherapy[J]. Immunotherapy, 2020, 12(17): 1269-1286. DOI:10.2217/imt-2020-0019 |
|
[25] |
Kitagawa S, Hakozaki T, Kitadai R, et al. Switching administration of anti-PD-1 and anti-PD-L1 antibodies as immune checkpoint inhibitor rechallenge in individuals with advanced non-small cell lung cancer: Case series and literature review[J]. Thorac Cancer, 2020, 11(7): 1927-1933. DOI:10.1111/1759-7714.13483 |
|
[26] |
Qin L, Zhao R, Chen D, et al. Chimeric antigen receptor T cells targeting PD-L1 suppress tumor growth[J]. Biomark Res, 2020, 8: 19. DOI:10.1186/s40364-020-00198-0 |
|
[27] |
Balakrishnan A, Goodpaster T, Randolph-Habecker J, et al. Analysis of ROR1 protein expression in human cancer and normal tissues[J]. Clin Cancer Res, 2017, 23(12): 3061-3071. DOI:10.1158/1078-0432.CCR-16-2083 |
|
[28] |
Hudecek M, Lupo-Stanghellini MT, Kosasih PL, et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells[J]. Clin Cancer Res, 2013, 19(12): 3153-3164. DOI:10.1158/1078-0432.CCR-13-0330 |
|
[29] |
Bonifant CL, Jackson HJ, Brentjens RJ, et al. Toxicity and management in CAR T-cell therapy[J]. Mol Ther Oncolytics, 2016, 3: 16011. DOI:10.1038/mto.2016.11 |
|
[30] |
Watanabe K, Kuramitsu S, Posey AD Jr, et al. Expanding the therapeutic window for CAR T cell therapy in solid tumors: the knowns and unknowns of CAR T cell biology[J]. Front Immunol, 2018, 9: 2486. DOI:10.3389/fimmu.2018.02486 |
|
[31] |
Ma L, Dichwalkar T, Chang JYH, et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor[J]. Science, 2019, 365(6449): 162-168. DOI:10.1126/science.aav8692 |
|
[32] |
Deng C, Zhao J, Zhou S, et al. The vascular disrupting agent CA4P improves the antitumor efficacy of CAR-T cells in preclinical models of solid human tumors[J]. Mol Ther, 2020, 28(1): 75-88. DOI:10.1016/j.ymthe.2019.10.010 |
|
[33] |
Gargett T, Yu W, Dotti G, et al. GD2-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade[J]. Mol Ther, 2016, 24(6): 1135-1149. DOI:10.1038/mt.2016.63 |
|
[34] |
Rubin DB, Danish HH, Ali AB, et al. Neurological toxicities associated with chimeric antigen receptor T-cell therapy[J]. Brain, 2019, 142(5): 1334-1348. DOI:10.1093/brain/awz053 |
|
[35] |
Freyer CW, Porter DL. Cytokine release syndrome and neurotoxicity following CAR T-cell therapy for hematologic malignancies[J]. J Allergy Clin Immunol, 2020, 146(5): 940-948. DOI:10.1016/j.jaci.2020.07.025 |
|
[36] |
Gust J, Hay KA, Hanafi LA, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells[J]. Cancer Discov, 2017, 7(12): 1404-1419. DOI:10.1158/2159-8290.CD-17-0698 |
|
[37] |
Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities[J]. Nat Rev Clin Oncol, 2018, 15(1): 47-62. DOI:10.1038/nrclinonc.2017.148 |
|
[38] |
Teachey DT, Lacey SF, Shaw PA, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor t-cell therapy for acute lymphoblastic leukemia[J]. Cancer Discov, 2016, 6(6): 664-679. DOI:10.1158/2159-8290.CD-16-0040 |
|
[39] |
Martinez M, Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment[J]. Front Immunol, 2019, 10: 128. DOI:10.3389/fimmu.2019.00128 |
|
[40] |
Qi FL, Wang MF, Li BZ, et al. Reversal of the immunosuppressive tumor microenvironment by nanoparticle-based activation of immune-associated cells[J]. Acta Pharmacol Sin, 2020, 41(7): 895-901. DOI:10.1038/s41401-020-0423-5 |
|