文章信息
- ERK1/2信号通路与卵巢癌的关系
- Correlation Between ERK1/2 Signal Transduction and Ovarian Cancer
- 肿瘤防治研究, 2023, 50(10): 1015-1021
- Cancer Research on Prevention and Treatment, 2023, 50(10): 1015-1021
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2023.23.0106
- 收稿日期: 2023-03-21
- 修回日期: 2023-06-06
2. 430070 武汉,华中科技大学同济医学院附属湖北妇幼保健院妇科
2. Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
卵巢癌是全球最致命的女性生殖系统恶性肿瘤[1]。由于起病初期缺乏特异性的临床症状,75%以上的卵巢癌患者在诊断时已于病程晚期[2]。目前针对卵巢癌的标准治疗方案是肿瘤细胞减灭术联合以铂类为基础的化疗,然而卵巢癌患者在接受长期化疗后往往会产生耐药性,使得卵巢癌在妇科恶性肿瘤中复发率较高,预后较差。随着与癌症耐药相关的信号通路逐渐被发现,卵巢癌的综合治疗策略也取得了相应进展。
丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信号转导通路参与了细胞增殖、生长、凋亡等生理过程,是细胞生物学中调节基因表达的一种基本途径[3]。哺乳动物MAPK级联可以根据它们末端的丝/苏氨酸激酶分为:细胞外调节蛋白激酶1/2(extracellular signal-regulated kinase1/2, ERK1/2)途径、c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)途径、p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase, p38MAPK)途径和细胞外调节蛋白激酶5(extracellular signal-regulated kinase5, ERK5)途径。ERK1/2途径(即RAS-RAF-MEK-ERK级联)的信号转导在真核生物中高度保守,是MAPK通路中最具特征的一条经典通路[4]。近年来,关于ERK1/2信号通路与卵巢癌的相关作用机制研究已经取得很大进展。本文通过综述ERK1/2信号通路在卵巢癌发生发展中的作用、ERK1/2与卵巢癌耐药发生机制及ERK1/2抑制剂与卵巢癌相关的综合治疗等研究进展,以期为发现卵巢癌治疗新方案提供理论支持。
1 ERK1/2的概述 1.1 ERK1/2的结构组成及功能表达ERK是MAPK家族中的一种丝/苏氨酸蛋白激酶,现已确定有五种亚型:ERK1~ERK5。ERK在结构域内有一个与催化功能相关的双叶折叠,其中氨基(N)末端叶含有5条β链(β1~β5)、一个保守的αc-螺旋和一个富含氨基酸的环。羧基(C)末端叶由6个保守片段(αD~αI)的α螺旋和4个含有大部分催化残基的保守β短链(β6~β9)组成。ERK1和ERK2是由同一基因的两个剪接体所编码的蛋白质,两者之间的序列同源性高达84%,并在体内呈平行激活状态[5]。
ERK1/2位于MAPK通路的下游末端。静息状态下,锚定蛋白将ERK1/2定位于细胞质中,ERK1/2被上游的MEK1/2激活后,通过调控酪氨酸和苏氨酸的磷酸化而引起构象变化,磷酸化的ERK1/2和RAN结合蛋白7(Importin7)相结合,与锚定蛋白分离后通过核孔易位至细胞核及其他的细胞器,以磷酸化激活核底物的方式调节其下游数百种底物,从而产生特定的生物效应[6]。
1.2 ERK1/2信号通路的激活与失活ERK1/2在真核生物中表达广泛,是MAPK途径中至关重要的一环。不同于MAPK途径中的上游分子可以被多重底物激酶激活,ERK1/2只能被MEK激活。此外,ERK1/2是唯一能够刺激下游多种底物的激活剂[7]。多种刺激因素(如病毒、生长因子、压力环境、细胞炎性因子和致癌物等)都可激活ERK1/2产生级联反应[3]。RAS的活化是ERK1/2通路的起始节点,细胞外信号通过三级酶联反应传递至核内,调节细胞增殖、分化、凋亡等生理过程。ERK1/2不仅是RAF的下游,也是RAF的负性抑制因子。ERK1/2底物被激活后可以产生两种不同的效应:快速短期效应和延迟长期效应[8]。快速短期效应是指激活的ERK1/2可反馈性刺激其上游因子和激酶(如MEK、RAF、SOS、RTKs等)抑制性磷酸化,从而阻止该途径的信号传递,维持细胞功能的稳定。而延迟长期效应可以简单描述为快速发育生长因子同源蛋白2(SPRY蛋白)和双特异性磷酸酶(dual specificity phosphatase, DUSP)通过去磷酸化ERK1/2使MAPK途径恢复基态。由于ERK1/2极少发生突变,针对性抑制ERK1/2的激活可能会成为克服肿瘤获得性耐药的一种潜在治疗手段。
1.3 ERK1/2的生理功能细胞质中的ERK参与调节细胞骨架形成、细胞分化、细胞迁移和代谢等过程,细胞核中的ERK则通过激活转录因子(c-FOS、c-MYC、FOXO3a等)调控基因表达[9]。大量研究发现,ERK1/2调控细胞功能的机制主要有:(1)活化抗细胞凋亡关键因子(CyclinD1、CKK2、CCK4等),推动细胞从G1期向S期转变,促进细胞增殖;(2)抑制促细胞凋亡相关蛋白(Caspase-9、P53、Bax等)活性,促进细胞存活;(3)激活转录因子(AP-1、RRN3、UBF1、BRF1等),刺激RNA聚合酶Ⅰ和RNA聚合酶Ⅲ活化,诱导tRNA、蛋白质和核糖体合成,促进细胞生长[10]。越来越多的研究报道提示ERK1/2信号通路在异常细胞增殖、肿瘤发展和基因表达中起着至关重要的作用。
2 ERK1/2与卵巢癌的关系 2.1 ERK1/2信号通路与卵巢癌的发生发展ERK1/2信号通路可通过多种调控方式参与卵巢癌细胞的生理活动,影响其增殖。据TCGA卵巢癌数据整合网络分析显示,约30%的卵巢癌患者携带ERK1/2通路异常激活信号[11]。混合谱系激酶3(mixed lineage kinase 3, MLK3)是一种直接作用于ERK1/2的MAPK通路激活剂。Harmych等[12]观察到,在卵巢癌细胞系SKOV3和HEY1B中,外源性表达卵巢癌细胞中的MLK3可通过激活ERK1/2来增强其下游靶点基质金属蛋白酶-2(matrix metalloproteinase-2, MMP-2)和基质金属蛋白酶-9(matrix metalloproteinase-9, MMP-9)的活性,而抑制MLK3表达后,卵巢癌细胞中活化的ERK1/2和p38MAPK数量明显减少,MMP-2和MMP-9活性降低,癌细胞的增殖、侵袭性和成瘤性受到显著抑制。细胞周期蛋白D1(cyclin D1)是一种细胞周期调节因子,其过度表达被发现是包括卵巢癌在内的多种人类原发性肿瘤的特征。一项研究结果显示,MEK抑制剂(CI-1040)可通过阻断ERK活化,引起卵巢癌细胞G1期阻滞以及cyclin D1表达显著下调,从而抑制癌细胞生长并诱导其凋亡[13]。
ERK1/2信号通路还可影响卵巢癌的侵袭和迁移能力。研究发现卵巢癌中ERK1/2的活化可使癌细胞从静止的多细胞上皮形态向高度运动的具有侵袭性的单细胞形态转变[14]。另有研究报道,在卵巢癌细胞系OVCAR-3中,双酚A(bisphenol A, BPA)可通过磷酸化激活ERKl/2,使参与癌细胞转移的相关分子MMP-2、MMP-9及N-黏蛋白的表达水平升高,并使MMP-2和MMP-9的酶活性增强,从而促进癌细胞转移,而OVCAR-3细胞经ERKl/2抑制剂(PD098059)预处理之后,BPA的促癌细胞转移作用也随之消除[15]。Li等[16]研究发现FBXO22(F-box protein 22)是调节细胞泛素化和细胞降解的关键调控因子。体内实验中,FBXO22在上皮性卵巢癌组织中表达显著上调并通过ERK1/2途径促进癌细胞生长和转移。飞燕草素是一种天然色素,其作用于人卵巢癌细胞后,癌细胞的增殖呈剂量依赖性下降。Hazafa等[17]实验证实,飞燕草素可通过改变ERK1/2和P38磷酸化状态,阻断ERK1/2通路,从而抑制卵巢癌细胞的迁移、侵袭能力。ERK1/2抑制剂(U0126)和飞燕草素联用后,癌细胞的增殖和靶蛋白活性显著下降。
MiRNA在肿瘤的发生发展中可发挥不同的作用。一些miRNA,如miR-585-3p过表达可产生抑癌作用。一项体内动物实验发现miR-585-3p靶向肌动蛋白结合蛋白1(fascin actin-bundling protein 1, FSCN1)降低ERK1/2磷酸化水平,从而抑制肿瘤生长、增殖、迁移和侵袭[18]。此外,大量研究表明miR-126、miR-18a、miR-497、miR-585-3p、miR-651-3p等也可通过阻断ERK1/2信号通路,抑制卵巢癌的发生和转移[19-23]。而另一些miRNA则是通过激活ERK1/2发挥促癌作用,如miR-193a-3p、miR-665、miR-106b等[24-26]。ERK1/2信号通路在卵巢癌发生发展中发挥关键作用,且其作用与癌细胞的类型及周围环境密切相关,抑制该通路的激活可作为卵巢癌的一种潜在治疗手段。
2.2 ERK1/2信号通路与卵巢癌耐药机制近些年针对卵巢癌分子标志物及治疗靶点的研究不断兴起,选择性抑制卵巢癌耐药机制中的关键调控分子可能成为治疗卵巢癌最直接有效的一种方式。有证据表明ERK1/2信号通路的过度激活与卵巢癌发生耐药具有一定的相关性,该通路的功能获得性突变已被报道在卵巢癌多个亚型中出现。Hew等[27]实验发现,ERK1/2通路的异常激活作为高级别浆液性卵巢癌(high-grade serous ovarian carcinoma,HGSOC)的独立预后因素,可能是HGSOC抗雌激素治疗耐药的基础。在HGSOC体外模型中,靶向ERK1/2通路的MEK抑制剂(塞鲁美替尼)和雌激素受体拮抗剂(氟维司特)联合应用能逆转抗雌激素耐药性,显示出比单一治疗更强的抗肿瘤作用。研究者将PD98059作用于卵巢癌顺铂耐药细胞后发现,PD98059既可抑制卵巢癌细胞的增殖和迁移,使G0/G1期阻滞细胞增多,亦可通过抑制ERK1/2通路和上皮-间质转化(epithelial-mesenchymal transition, EMT),增强卵巢癌细胞对顺铂的药物敏感性[28]。Simpkins等[29]详细研究了MEK1/2抑制剂和SRC抑制剂(AZD0530)联合应用在增敏卵巢癌耐药细胞中的作用机制。AZD0530是一种在晚期卵巢癌中经常过表达和激活的酪氨酸激酶。实验通过上调人类表皮生长因子受体2(human epidermal growth factor receptor 2, HER2)和胰岛素受体表达,从而激活ERK1/2信号通路,结果显示卵巢癌细胞对AZD0530产生耐药性。而沉默HER2和胰岛素受体使ERK1/2信号通路失活,则可部分逆转卵巢癌细胞AZD0530耐药,这项实验表明ERK1/2信号通路的激活在卵巢癌耐药中具有一定的作用。
虽然靶向ERK1/2通路上游分子设计的抑制剂在临床试验中具有一定的治疗效果,但同时也会导致卵巢癌重新产生耐药,因而疗效有限。其主要原因是ERK1/2通路上游的激酶抑制剂虽然可以抑制细胞质中ERK1/2的功能活性,但同时也减少了其负反馈回路,从而诱导通路上游成分的过度激活和耐药性的产生。与RAS、RAF和MEK相比,ERK1/2在癌症中的突变较为罕见。ERK1/2抑制剂不仅可以逆转上游突变(包括RAS突变)导致MAPK途径的异常激活,也能够克服上游激酶抑制剂诱导的获得性耐药性[30]。基于此,Plotnikov等[31]设计了一种核转录序列衍生的肉豆蔻酰化磷酰胺肽(EPE肽),它可以阻断Importin7和ERK1/2之间的相互作用,从而抑制ERK1/2但不影响其诱导的细胞质突起,包括负反馈循环,这为靶向ERK1/2治疗卵巢癌耐药提供了一种新思路。越来越多的研究表明ERK1/2抑制剂可能比RAS、RAF或MEK抑制剂在克服耐药方面表现出更好的治疗效果。许多小分子及其衍生物含有杂环核,如:TZDs、吡唑、咪唑啉、喹烯酮、苯并噻唑等,已表现出ERK1/2抑制活性[32]。此外,一些ERK1/2小分子抑制剂包括GDC-0994、AZD0364、MK-8353、ASTX02等[33-36],都在进行临床试验且有些已经取得了较为满意的实验结果,但可用于临床的分子种类仍然有限。
ERK1/2通路抑制剂导致耐药性发生的另一种机制是旁路途径的激活,如ERK5提供的潜在旁路可抑制ERK1/2负反馈信号转导,拯救细胞增殖。此外,对ERK1/2级联的药理学抑制在减弱负反馈循环的同时,也将诱导一些受体酪氨酸激酶的前馈激活,由此进一步激活替代途径(如PI3K/AKT信号通路),从而维持肿瘤细胞存活,产生耐药[37]。有研究表明,同时在ERK1/2通路的两个节点进行抑制,与抑制单一节点相比,可以降低25%的卵巢癌耐药发生率[38]。因此,设计和开发出选择性高且安全性强、能够同时靶向ERK1/2和相关蛋白的抑制剂可能是增强抗癌作用和克服耐药性的有效方法和重要策略。
3 基于ERK1/2信号通路的卵巢癌联合疗法 3.1 ERK1/2抑制剂联合化疗虽然紫杉醇(paclitaxel, PTX)和卡铂的标准化疗方案已经取得一定的临床疗效,但化疗耐药仍然是卵巢癌治疗的主要障碍。一项早期研究表明,RAF或MEK抑制剂与标准化疗药物的结合可以显著提高铂类难治性癌症的临床疗效并其延缓耐药性[39]。Colic等[40]通过建立人子宫内膜样卵巢癌异种移植(patient-derived xenograft, PDX)模型发现,MEK抑制剂(贝美替尼)、贝伐珠单抗(bevacizumab, BEV)和紫杉醇PTX的新联合方案与使用BEV和PTX双重组合或单药疗法相比,在不增加毒性的情况下进一步提高了化疗药物的抗肿瘤活性。此前也有研究证实PTX可刺激ERK1/2磷酸化,使用MEK1/2抑制剂(PD98049)可通过抑制ERK1/2活性,明显增强PTX对卵巢癌细胞增殖和G2/M期的阻滞效应,这提示阻断ERK1/2信号通路可能是卵巢癌化疗中的一种有效辅助手段[41]。另外,一些靶向癌基因的小分子抑制剂(克唑替尼、索拉非尼等)均在与顺铂联用后显示出增强卵巢癌化疗敏感的特性[42-43]。
尽管目前MAPK抑制剂和化疗药物的联合使用已初步显示疗效,但大多数患者在不到一年的时间内就会对RAF和MEK抑制剂产生耐药性,因而更多直接作用于ERK1/2的小分子抑制剂正逐渐被开发并表现出良好的治疗效果。一项临床试验已经证实ERK1/2抑制剂(ONC201)联合PTX对靶向抑制MAPK通路上游节点产生耐药性的卵巢癌治疗有效(研究注册编号NCT04055649)[44]。Wang等[45]发现在人卵巢癌细胞系中,通过ERK1/2抑制剂(U0126)或通过小干扰RNA沉默抑制ERK2的活性,可使顺铂诱导的MAPK磷酸酶-1(MAPK phosphatase, MKP-1)表达下调,增强卵巢癌细胞对顺铂的敏感度,导致癌细胞死亡增加。BVD-523是临床实验中最常用的一种新的、可逆的、ATP竞争性ERK1/2抑制剂,目前在晚期实体肿瘤的治疗上取得了显著的效果[46]。Myers筛选合成的ERK1/2小分子抑制剂也能有效缩小小鼠模型中人卵巢癌细胞异种移植肿瘤的体积[47]。此外,木兰脂素是从木兰属物种中提取的一项天然活性成分,Song等[48]认为木兰脂素通过抑制ERK1/2激活使卵巢癌顺铂耐药细胞株停滞于G1期,从而发挥抗癌作用。高三尖杉酯碱、曲普瑞林等都被证实其具有抑制ERK1/2的有效成分,能够逆转卵巢癌顺铂耐药[49-50]。这些结果表明,ERK1/2抑制剂可能具有未开发的卵巢癌治疗潜力,之后的临床研究似乎应该考虑将更具有针对性的ERK1/2抑制剂联合卵巢癌标准化疗方案作为一种普遍的治疗选择。
3.2 ERK1/2抑制剂联合免疫治疗随着免疫调节分子在妇科肿瘤领域的研究不断开展,免疫治疗逐渐成为近年来提出的卵巢癌治疗新思路,如:免疫刺激细胞因子、肿瘤抗原疫苗和单克隆抗体类免疫检查点抑制剂等[51]。针对卵巢癌的免疫治疗主要是采用基于程序性死亡蛋白-1(programmed death-1, PD-1)/程序性死亡蛋白配体-1(programmed death ligand-1, PD-L1)通路的免疫检查点抑制剂,通过阻断抑制性免疫检查点与配体结合,增加肿瘤内CD8+T细胞数量及活性而增强抗肿瘤效果[52]。由于卵巢癌复杂的免疫环境,目前单独应用PD-1/PD-L1抑制剂治疗晚期/复发性卵巢癌的临床试验尚处于Ⅰ、Ⅱ期,研究表明其客观缓解率为5.9%~22%[53]。
研究表明,27%~36%的化疗耐药性卵巢癌会发生KRAS和BRAF突变,从而激活下游ERK激酶,增加肿瘤细胞增殖活性[54]。通常在侵袭性癌症中使用激酶抑制剂的靶向治疗可产生高应答率,然而由于全身细胞毒性反应、低生物利用度和肝脏代谢效应,单一使用MAPK抑制剂(如C1-1040、PD0325901和AZD6244)对卵巢癌的临床试验疗效并不令人满意[55-57]。一项卵巢癌肿瘤样本的病理检查结果显示,肿瘤细胞中过表达的Bcl-2和P53可交替激活ERK-MAPK和PI3K通路,增强其侵袭性及耐药性,导致不良预后[58]。另有研究发现通过抑制ERK-MAPK信号通路可激活T/B细胞、白细胞介素信号通路和由趋化因子和细胞因子介导的炎性反应逆转免疫抑制肿瘤微环境(tumor microenvironment, TME),产生免疫调节作用[59]。一项动物实验表明,联合使用BRAF/MEK抑制剂(达拉非尼/曲美替尼)和基于PD-1阻断的免疫疗法可增加CD8(+)肿瘤浸润淋巴细胞(tumor infiltrating lymphocytes, TILs)、CD4(+)T细胞和肿瘤相关巨噬细胞(tumor-associated macrophages, TAMs),产生较强的抗肿瘤活性[60]。
鉴于此,联合应用靶向多个致癌信号通路的抑制剂和免疫检查点抑制剂,将会是最大限度提高卵巢癌治疗效益的一项新策略。Ramesh及其团队[61]合成了一种双抑制剂负载的超分子纳米疗法(dual inhibitors-loaded supramolecular nanotherapeutic, DiLN),它可以同时装载两种分别靶向ERK-MAPK和PI3K信号通路的激酶抑制剂并将其递送至肿瘤细胞。体外实验研究结果显示,在卵巢透明细胞癌(TOV21G)耐药细胞中,DiLN与PD-L1免疫检查点抑制剂的协同组合,可介导T细胞激活免疫效应,在降低全身细胞毒性反应的同时,提高了活性药物成分的生物利用度。相比单一使用MAPK抑制剂或免疫检查点抑制剂来说,双激酶抑制剂和免疫治疗的联合应用可以有效地将靶向治疗的高反应率与免疫治疗的长期持久性相结合,具有更好的抗肿瘤效果和延长生存能力。对于靶向ERK-MAPK信号通路与PD-1/PD-L1抑制剂的药物组合尚无大规模的临床试验,这种联合用药在卵巢癌治疗中的具体方案设计及运用效果有待进一步挖掘。
4 结语全球卵巢癌的发病率呈逐年上升趋势,如何在确诊时给出更好的治疗方案和提供更有效的二线辅助治疗,最大限度延长卵巢癌患者的生存期成为目前亟待解决的难题。近年来,针对ERK1/2通路与卵巢癌发病机制及耐药性的相关研究越来越多。相信随着分子生物学、生物信息学、生物实验技术等学科的进步与发展,使用ERK1/2抑制剂的特异性治疗策略会更加明确,这将为卵巢癌的治疗开辟新的方向,也将为晚期卵巢癌患者的不良预后带来极大的改善。
利益冲突声明:
所有作者均声明不存在利益冲突。
作者贡献:
尚迪:文献的收集与整理,论文撰写
孙冬岩:把握研究方向,提供修改建议
陈艳玲、蒋芷荷:研究结果汇总
| [1] |
Majidi A, Na R, Jordan SJ, et al. Common analgesics and ovarian cancer survival: the Ovarian cancer Prognosis And Lifestyle (OPAL) Study[J]. J Natl Cancer Inst, 2023, 115(5): 570-577. DOI:10.1093/jnci/djac239 |
| [2] |
Garsed DW, Pandey A, Fereday S, et al. The genomic and immune landscape of long-term survivors of high-grade serous ovarian cancer[J]. Nat Genet, 2022, 54(12): 1853-1864. DOI:10.1038/s41588-022-01230-9 |
| [3] |
Lavoie H, Gagnon J, Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate[J]. Nat Rev Mol Cell Biol, 2020, 21(10): 607-632. DOI:10.1038/s41580-020-0255-7 |
| [4] |
Barbosa R, Acevedo LA, Marmorstein R. The MEK/ERK Network as a Therapeutic Target in Human Cancer[J]. Mol Cancer Res, 2021, 19(3): 361-374. DOI:10.1158/1541-7786.MCR-20-0687 |
| [5] |
Kiyatkin A, van Alderwerelt van Rosenburgh IK, Klein DE, et al. Kinetics of receptor tyrosine kinase activation define ERK signaling dynamics[J]. Sci Signal, 2020, 13(645): eaaz5267. DOI:10.1126/scisignal.aaz5267 |
| [6] |
Fu L, Chen S, He G, et al. Targeting Extracellular Signal-Regulated Protein Kinase 1/2 (ERK1/2) in Cancer: An Update on Pharmacological Small-Molecule Inhibitors[J]. J Med Chem, 2022, 65(20): 13561-13573. DOI:10.1021/acs.jmedchem.2c01244 |
| [7] |
Sugiura R, Satoh R, Takasaki T. ERK: a double-edged sword in cancer. ERK-dependent apoptosis as a potential therapeutic strategy for cancer[J]. Cells, 2021, 10(10): 2509. DOI:10.3390/cells10102509 |
| [8] |
Pan X, Pei J, Wang A, et al. Development of small molecule extracellular signal-regulated kinases (ERKs) inhibitors for cancer therapy[J]. Acta Pharm Sin B, 2022, 12(5): 2171-2192. DOI:10.1016/j.apsb.2021.12.022 |
| [9] |
Wang H, Chi L, Yu F, et al. The overview of Mitogen-activated extracellular signal-regulated kinase (MEK)-based dual inhibitor in the treatment of cancers[J]. Bioorg Med Chem, 2022, 70: 116922. DOI:10.1016/j.bmc.2022.116922 |
| [10] |
Ramzy GM, Boschung L, Koessler T, et al. FOLFOXIRI Resistance Induction and Characterization in Human Colorectal Cancer Cells[J]. Cancers (Basel), 2022, 14(19): 4812. DOI:10.3390/cancers14194812 |
| [11] |
Li H, Yu DY, Li LB, et al. BCKDK Promotes Ovarian Cancer Proliferation and Migration by Activating the MEK/ERK Signaling Pathway[J]. J Oncol, 2022, 2022: 3691635. |
| [12] |
Harmych SJ, Kumar J, Bouni ME, et al. Nicotine inhibits MAPK signaling and spheroid invasion in ovarian cancer cells[J]. Exp Cell Res, 2020, 394(1): 112167. DOI:10.1016/j.yexcr.2020.112167 |
| [13] |
Yi YY, Cheng JC, Klausen C, et al. Activin A promotes ovarian cancer cell migration by suppressing E-cadherin expression[J]. Exp Cell Res, 2019, 382(2): 111471. DOI:10.1016/j.yexcr.2019.06.016 |
| [14] |
Pathania S, Rawal RK. An update on chemical classes targeting ERK1/2 for the management of cancer[J]. Future Med Chem, 2020, 12(7): 593-611. |
| [15] |
Ptak A, Gregoraszczuk EL. Bisphenol A induces leptin receptor expression, creating more binding sites for leptin, and activates the JAK/Stat, MAPK/ERK and PI3K/Akt signalling pathways in human ovarian cancer cell[J]. Toxicol Lett, 2012, 210: 332-337. DOI:10.1016/j.toxlet.2012.02.003 |
| [16] |
Li M, Zhao X, Yong H, et al. FBXO22 promotes growth and metastasis and inhibits autophagy in epithelial ovarian cancers via the MAPK/ERK pathway[J]. Front Pharmacol, 2021, 12: 778698. DOI:10.3389/fphar.2021.778698 |
| [17] |
Hazafa A, Rehman KU, Jahan N, et al. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells[J]. Nutr Cancer, 2020, 72(3): 386-397. DOI:10.1080/01635581.2019.1637006 |
| [18] |
Jia Y, Li J, Wang J, et al. Study on the Function and Mechanism of miR-585-3p Inhibiting the Progression of Ovarian Cancer Cells by Targeting FSCN1 to Block the MAPK Signaling Pathway[J]. Anal Cell Pathol(Amst), 2022, 2022: 1732365. |
| [19] |
Zhang YH, Qin XB, Jiang J, et al. MicroRNA-126 exerts antitumor functions in ovarian cancer by targeting EGFL7 and affecting epithelial-to-mesenchymal transition and ERK/MAPK signaling pathway[J]. Oncol Lett, 2020, 20(2): 1327-1335. DOI:10.3892/ol.2020.11687 |
| [20] |
Zhao Y, Liu XL, Huang JH, et al. MicroRNA-18a suppresses ovarian carcinoma progression by targeting CBX7 and regulating ERK/MAPK signaling pathway and epithelial-to-mesenchymal transition[J]. Eur Rev Med Pharmacol Sci, 2020, 24(10): 5292-5302. |
| [21] |
Wang W, Ren F, Wu QH, et al. MicroRNA-497 suppresses angiogenesis by targeting vascular endothelial growth factor A through the PI3K/AKT and MAPK/ERK pathways in ovarian cancer[J]. Oncol Rep, 2014, 32(5): 2127-2133. DOI:10.3892/or.2014.3439 |
| [22] |
Jia YM, Li JR, Wang JF, et al. Study on the Function and Mechanism of miR-585-3p Inhibiting the Progression of Ovarian Cancer Cells by Targeting FSCN1 to Block the MAPK Signaling Pathway[J]. Anal Cell Pathol (Amst), 2022, 2022: 1732365. |
| [23] |
Wang S, Wang CX, Liu OX, et al. miRNA-651-3p regulates EMT in ovarian cancer cells by targeting ZNF703 and via the MEK/ERK pathway[J]. Biochem Biophys Res Commun, 2022, 619: 76-83. DOI:10.1016/j.bbrc.2022.06.005 |
| [24] |
Chen K, Liu MX, Mak C, et al. Methylation-associated silencing of miR-193a-3p promotes ovarian cancer aggressiveness by targeting GRB7 and MAPK/ERK pathways[J]. Theranostics, 2018, 8(2): 423-436. DOI:10.7150/thno.22377 |
| [25] |
Zhou P, Xiong TC, Yao LL, et al. MicroRNA-665 promotes the proliferation of ovarian cancer cells by targeting SRCIN1[J]. Exp Ther Med, 2020, 19(2): 1112-1120. |
| [26] |
Chen KH, Ethan BK, Nguyen V, et al. Involvement of miR-106b in tumorigenic actions of both prolactin and estradiol[J]. Oncotarget, 2017, 8(22): 36368-36382. DOI:10.18632/oncotarget.16755 |
| [27] |
Hew KE, Miller PC, El-Ashry D, et al. MAPK Activation Predicts Poor Outcome and the MEK Inhibitor, Selumetinib, Reverses Antiestrogen Resistance in ER-Positive High-Grade Serous Ovarian Cancer MEK Inhibition Restores Response to ER Blockade in HGSOC[J]. Clin Cancer Res, 2016, 22(4): 935-947. DOI:10.1158/1078-0432.CCR-15-0534 |
| [28] |
Hou L, Hou X, Wang L, et al. PD98059 impairs the cisplatin-resistance of ovarian cancer cells by suppressing ERK pathway and epithelial mesenchymal transition process[J]. Cancer Biomark, 2018, 21(1): 187-194. |
| [29] |
Simpkins F, Jang K, Yoon H, et al. Dual Src and MEK Inhibition Decreases Ovarian Cancer Growth and Targets Tumor Initiating Stem-Like Cells Dual Src and Mek Inhibition Targets OVCA Stem Cells[J]. Clin Cancer Res, 2018, 24(19): 4874-4886. DOI:10.1158/1078-0432.CCR-17-3697 |
| [30] |
Gonzalez-Del Pino GL, Li K, Park E, et al. Allosteric MEK inhibitors act on BRAF/MEK complexes to block MEK activation[J]. Proc Natl Acad Sci, 2021, 118(36): e2107207118. DOI:10.1073/pnas.2107207118 |
| [31] |
Plotnikov A, Flores K, Maik-Rachline G, et al. The nuclear translocation of ERK1/2 as an anticancer target[J]. Nat Commun, 2015, 6: 6685. DOI:10.1038/ncomms7685 |
| [32] |
Pathania S, Rawal RK. An update on chemical classes targeting ERK1/2 for the management of cancer[J]. Future Med Chem, 2020, 12(7): 593-611. |
| [33] |
Weekes C, Lockhart A, LoRusso P, et al. A PhaseⅠb Study to Evaluate the MEK Inhibitor Cobimetinib in Combination with the ERK1/2 Inhibitor GDC-0994 in Patients with Advanced Solid Tumors[J]. Oncologist, 2020, 25(10): 833. DOI:10.1634/theoncologist.2020-0292 |
| [34] |
Flemington V, Davies EJ, Robinson D, et al. AZD0364 Is a Potent and Selective ERK1/2 Inhibitor That Enhances Antitumor Activity in KARS-Mutant Tumor Models when Combined with the MEK Inhibitor, Selumetinib[J]. Mol Cancer Ther, 2021, 20(2): 238-249. DOI:10.1158/1535-7163.MCT-20-0002 |
| [35] |
Stathis A, Tolcher AW, Wang J S, et al. Results of an open-label phase 1b study of the ERK inhibitor MK-8353 plus the MEK inhibitor selumetinib in patients with advanced or metastatic solid tumors[J]. Invest New Drugs, 2023, 41(3): 380-390. DOI:10.1007/s10637-022-01326-3 |
| [36] |
Heightman TD, Berdini V, Bevan L, et al. Discovery of ASTX029, A Clinical Candidate Which Modulates the Phosphorylation and Catalytic Activity of ERK1/2[J]. J Med Chem, 2021, 64(16): 12286-12303. DOI:10.1021/acs.jmedchem.1c00905 |
| [37] |
Miao L, Tian H. Development of ERK1/2 inhibitors as a therapeutic strategy for tumour with MAPK upstream target mutations[J]. J Drug Target, 2020, 28(2): 154-165. DOI:10.1080/1061186X.2019.1648477 |
| [38] |
Roskoski Jr R. Targeting ERK1/2 protein-serine/threonine kinases in human cancers[J]. Pharmacol Res, 2019, 142: 151-168. DOI:10.1016/j.phrs.2019.01.039 |
| [39] |
Long GV, Stroyakovskiy D, Gogas H, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma[J]. N Engl J Med, 2014, 371(20): 1877-1888. DOI:10.1056/NEJMoa1406037 |
| [40] |
Colic E, Patel PU, Kent OA. Aberrant MAPK Signaling Offers Therapeutic Potential for Treatment of Ovarian Carcinoma[J]. OncoTargets Ther, 2022, 15: 1331-1346. DOI:10.2147/OTT.S361512 |
| [41] |
Sánchez-Carranza JN, Díaz JF, Redondo-Horcajo M, et al. Gallic acid sensitizes paclitaxel-resistant human ovarian carcinoma cells through an increase in reactive oxygen species and subsequent downregulation of ERK activation[J]. Oncol Rep, 2018, 39(6): 3007-3014. |
| [42] |
Morand S, Devanaboyina M, Staats H, et al. Ovarian Cancer Immunotherapy and Personalized Medicine[J]. Int J Mol Sci, 2021, 22(12): 6532. DOI:10.3390/ijms22126532 |
| [43] |
Tian CT, Liu Y, Xue LF, et al. Sorafenib inhibits ovarian cancer cell proliferation and mobility and induces radiosensitivity by targeting the tumor cell epithelial-mesenchymal transition[J]. Open Life Sci, 2022, 17(1): 616-625. DOI:10.1515/biol-2022-0066 |
| [44] |
Moujaber T, Balleine RL, Gao B, et al. New therapeutic opportunities for women with low-grade serous ovarian cancer[J]. Endocr Relat Cancer, 2022, 29(1): R1-R16. DOI:10.1530/ERC-21-0191 |
| [45] |
Wang J, Zhou JY, Wu GS. ERK-dependent MKP-1–mediated cisplatin resistance in human ovarian cancer cells[J]. Cancer Res, 2007, 67(24): 11933-11941. DOI:10.1158/0008-5472.CAN-07-5185 |
| [46] |
Buchbinder EI, Cohen JV, Haq R, et al. A phaseⅡ study of ERK inhibition by ulixertinib (BVD-523) in metastatic uveal melanoma[J]. J Clin Oncol, 2020, 38(15_suppl): 10036. DOI:10.1200/JCO.2020.38.15_suppl.10036 |
| [47] |
Myers SM, Miller DC, Molyneux L, et al. Identification of a novel orally bioavailable ERK5 inhibitor with selectivity over p38α and BRD4[J]. Eur J Med Chem, 2019, 178: 530-543. DOI:10.1016/j.ejmech.2019.05.057 |
| [48] |
Song JH, Lee CJ, An HJ, et al. Magnolin targeting of ERK1/2 inhibits cell proliferation and colony growth by induction of cellular senescence in ovarian cancer cells[J]. Mol Carcinog, 2019, 58(1): 88-101. DOI:10.1002/mc.22909 |
| [49] |
程琛, 杨建, 秦公照, 等. 高三尖杉酯碱通过抑制ERK1/2信号通路逆转卵巢癌细胞顺铂耐药的研究[J]. 川北医学院学报, 2022, 37(12): 1519-1523. DOI:10.3969/j.issn.1005-3697.2022.12.002 |
| [50] |
吴冬, 惠宁, 欧俊. ERK1/2在曲普瑞林逆转卵巢癌OVCAR-3细胞顺铂耐药中的作用[J]. 现代妇产科进展, 2007, 16(10): 724-728. DOI:10.3969/j.issn.1004-7379.2007.10.002 |
| [51] |
Morand S, Devanaboyina M, Staats H, et al. Ovarian cancer immunotherapy and personalized medicine[J]. Int J Mol Sci, 2021, 22(12): 6532. DOI:10.3390/ijms22126532 |
| [52] |
Cheng TY, Liu YJ, Yan H, et al. Tumor Cell-Intrinsic BTLA Receptor Inhibits the Proliferation of Tumor Cells via ERK1/2[J]. Cells, 2022, 11(24): 4021. DOI:10.3390/cells11244021 |
| [53] |
Yang C, Xia BR, Zhang ZC, et al. Immunotherapy for Ovarian Cancer: Adjuvant, Combination, and Neoadjuvant[J]. Front Immunol, 2020, 11: 577869. DOI:10.3389/fimmu.2020.577869 |
| [54] |
De Leo A, Santini D, Ceccarelli C, et al. What Is New on Ovarian Carcinoma: Integrated Morphologic and Molecular Analysis Following the New 2020 World Health Organization Classification of Female Genital Tumors[J]. Diagnostics (Basel), 2021, 11(4): 697. DOI:10.3390/diagnostics11040697 |
| [55] |
Hendrikse CSE, Theelen PMM, van der Ploeg P, et al. The potential of RAS/RAF/MEK/ERK (MAPK) signaling pathway inhibitors in ovarian cancer: A systematic review and meta-analysis[J]. Gynecol Oncol, 2023, 171: 83-94. DOI:10.1016/j.ygyno.2023.01.038 |
| [56] |
Lee S, Yang W, Kim DK, et al. Inhibition of MEK-ERK pathway enhances oncolytic vaccinia virus replication in doxorubicin-resistant ovarian cancer[J]. Mol Ther Oncolytics, 2022, 25: 211-224. DOI:10.1016/j.omto.2022.04.006 |
| [57] |
Zhai TY, Mitamura T, Wang L, et al. Combination therapy with bevacizumab and a CCR2 inhibitor for human ovarian cancer: An in vivo validation study[J]. Cancer Med, 2023, 12(8): 9697-9708. DOI:10.1002/cam4.5674 |
| [58] |
Yang Z, Liu S, Yang Z, et al. Anti-PD-1/L1 lead-in before MAPK inhibitor combination maximizes antitumor immunity and efficacy[J]. Cancer Cell, 2021, 39(10): 1375-1387. DOI:10.1016/j.ccell.2021.07.023 |
| [59] |
Xiang LW, Xue H, Ha MW, et al. The effects of REG4 expression on chemoresistance of ovarian cancer[J]. J Obstet Gynaecol, 2022, 42: 3149-3157. DOI:10.1080/01443615.2022.2106834 |
| [60] |
Anchisi S, Wolfer A, Bisig B, et al. Deep and lasting response and acquired resistance to BRAFV600E targeting in a low-grade ovarian cancer patient[J]. Cancer Biol Ther, 2023, 24(1): 2193116. DOI:10.1080/15384047.2023.2193116 |
| [61] |
Ramesh A, Natarajan SK, Nandi D, et al. Dual Inhibitors-Loaded Nanotherapeutics that Target Kinase Signaling Pathways Synergize with Immune Checkpoint Inhibitor[J]. Cell Mol Bioeng, 2019, 12(5): 357-373. DOI:10.1007/s12195-019-00576-1 |
2023, Vol. 50


