
文章信息
- RNA修饰在胃癌发生发展中的作用机制研究进展
- RNA Modification in Carcinogenesis and Development of Gastric Cancer
- 肿瘤防治研究, 2023, 50(8): 738-744
- Cancer Research on Prevention and Treatment, 2023, 50(8): 738-744
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2023.23.0067
- 收稿日期: 2023-02-01
- 修回日期: 2023-03-21
2. 230000 合肥,安徽医科大学第一附属医院医学转化研究院
2. Institute of Medical Transformation, the First Affiliated Hospital of Anhui Medical University, Hefei 230000, China
胃癌(gastric cancer, GC)是常见的恶性肿瘤之一,我国胃癌的发病率和死亡率在各种恶性肿瘤排名中均位居前三。尽管早期内镜筛查、手术、放化疗和靶向治疗等综合治疗方案的实施,胃癌发病率和死亡率呈下降趋势,但总体预后仍不容乐观[1-2]。胃癌的致病因素主要包括环境因素(幽门螺杆菌感染、吸烟、饮酒和不良饮食习惯等)、遗传因素以及表观遗传因素等。其中,表观遗传因素在肿瘤发生发展过程中发挥重要作用。表观遗传是指DNA序列不发生改变,但是调控模式和基因表达可以发生遗传且可逆的改变[3]。表观遗传主要包括DNA甲基化、非编码RNA调控、RNA修饰、组蛋白修饰和染色质重塑等[3]。近年来,随着高通量技术的快速发展及分析化学相关技术的进步,越来越多的RNA修饰被鉴定,包括N6-甲基腺苷(N6-methyladenosine, m6A)、N4-乙酰胞苷(N4-acetylcytidine, ac4C)、5-甲基胞苷(5-methylcytosine, m5C)等,这些修饰在基因转录后调控过程中发挥着极为重要的作用,参与包括肿瘤在内的多种疾病的发生发展[4]。本文就不同的RNA修饰在胃癌发生发展中的作用和调控机制进行综述。
1 N6-甲基腺苷m6A修饰是真核生物中普遍存在且丰度最高的RNA化学修饰[5]。m6A修饰是一种动态可逆的过程,由甲基转移酶复合物(writers)催化RNA发生甲基化,RNA甲基转移酶复合物主要由甲基转移酶样蛋白3/14(methyltransferase-like 3/14,METTL3/14)[6-7]、甲基转移酶样蛋白16(methyltransferase-like 16, METTL16)[8]和肾母细胞瘤1相关蛋白(wilms tumor 1-associated protein, WTAP)[9]组成,可能还包括病毒样m6A甲基转移酶相关蛋白(vir-like m6A methyltransferase-associated protein, VIRMA)[10]、锌指CCCH结构域蛋白13(zinc finger CCCH domain-containing protein 13, ZC3H13)[11]和RNA结合基序蛋白15/15B(RNA-binding motif protein 15/15B, RBM15/15B)[12]等。同时,脂肪含量和肥胖相关蛋白(fat mass and obesity-associated protein, FTO)[13]和α酮戊二酸依赖性双加氧酶同系物5(alpha-ketoglutarate-dependent dioxygenase alkB homolog 5, ALKBH5)[14]是去甲基化酶(erasers),可以擦除RNA上的m6A修饰。在此过程中,需要特异的RNA结合蛋白(readers)识别并结合m6A修饰位点从而调控RNA代谢。RNA readers主要包括一些YTH结构域蛋白1/2(YTH domain-containing protein 1/2, YTHDC1/2)[15]、胰岛素样生长因子2结合蛋白1/2/3(insulin-like growth factor 2 binding protein 1/2/3, IGF2BP1/2/3)[16]、异质核糖核蛋白(heterogeneous nuclear ribonucleoprotein A2B1, hnRNPA2B1)[17]、真核起始因子3(eukaryotic initiation factor 3, eIF3)[18]等。不同的RNA结合蛋白通过调控RNA剪接、出核、翻译、稳定性和降解等过程参与RNA代谢[19-21]。在此,本文系统回顾了m6A相关蛋白在胃癌恶性进展中的作用。
1.1 m6A甲基转移酶METTL3是最早发现的m6A甲基转移酶。近年来,关于METTL3上下游调控机制和功能研究已有很多报道。胃癌组织中METTL3的表达显著增加,并与胃癌患者的不良预后显著相关[22]。有研究发现敲减METTL3可以抑制AKT磷酸化及下游p70S6K和细胞周期蛋白D1(Cyclin D1)的表达,进而抑制胃癌细胞增殖和迁移[23]。此外,乙型肝炎X-相互作用蛋白(hepatitis B X interacting protein, HBXIP)通过促进METTL3表达增强癌基因MYC mRNA上的m6A修饰,促进MYC翻译,对胃癌细胞的增殖和迁移起促进作用[24-25]。最近研究发现P300介导组蛋白H3乙酰化(H3K27ac)促进METTL3转录激活,随后METTL3介导肝癌衍生生长因子(hepatoma-derived growth factor, HDGF)mRNA上m6A修饰,同时IGF2BP3识别并结合m6A修饰位点,维护HDGF mRNA的稳定性。HDGF可以分泌到细胞外促进肿瘤血管生成,还能进入细胞核促进糖酵解相关蛋白葡萄糖转运蛋白4(glucose transporter 4, GLUT4)和神经元变性烯醇化酶(neurone specific enolase-2, ENO2)的转录,增强胃癌细胞糖酵解能力,共同促进胃癌细胞的生长和肝转移[26]。此外,转录因子HOXA10能与转化生长因子TGFβ2基因的启动子区结合,激活TGFβ/Smad信号通路并促进METTL3表达,在胃癌转移中发挥着重要作用[27]。METTL3可以介导锌指MYM型蛋白1(zinc finger MYM-type containing 1, ZMYM1)mRNA上m6A修饰来维护其mRNA稳定性,随后ZMYM1通过与CtBP/LSD1/CoREST复合物结合并抑制E-钙粘蛋白(E-cadherin)表达,促进胃癌细胞上皮间质转化(EMT)和转移[22]。METTL3也可通过YTHDF1依赖性的方式促进鞘氨醇激酶2(sphingosine kinase 2, SPHK2)mRNA的翻译,介导Kruppel样因子2(KLF transcription factor 2, KLF2)磷酸化,导致KLF2蛋白发生泛素化降解,发挥促癌作用[28]。最近研究报道METTL3参与调控胃癌化疗敏感度,CD133阳性的胃癌干细胞通过METTL3介导PARP1 mRNA上的m6A修饰维护其mRNA稳定性,增强DNA损伤修复能力,导致胃癌细胞对奥沙利铂产生耐药[29]。可见,METTL3可以通过调控不同信号通路或下游关键节点分子促进胃癌发生发展,提示其可以作为胃癌临床诊断的分子标志物和潜在治疗靶点。
此外,一些非编码RNA被揭示可以调控METTL3表达。如miR-4429和miR-1269b可以负调控METTL3表达,抑制胃癌进展[30-31]。胚胎外胚层发育蛋白(embryonic ectoderm development, EED)介导组蛋白甲基化抑制miR-338-5p的表达,激活下游METTL3表达,进一步增加CUB结构域蛋白1(CUB domain containing protein 1, CDCP1)mRNA的m6A修饰,促进CDCP1翻译,促进胃癌细胞增殖和侵袭[32]。LncRNA BLACAT2通过吸附miR-193b-5p正调控METTL3,促进胃癌恶性进展[33]。最近有报道EB病毒(EBV)可产生多种环状RNA(circRNA),如ebv-circRPMS1与含KH结构域的RNA结合信号通路关联蛋白1(KHDRBS1)相互作用,将KHDRBS1招募到METTL3启动子促进METTL3表达,增加EB病毒感染的胃癌细胞增殖、迁移和侵袭,并抑制细胞凋亡[34]。这些研究提示靶向调控METTL3的非编码RNA也可能成为胃癌治疗的潜在分子靶标。
METTL14是RNA甲基转移酶复合物中的另一个核心分子,它与METTL3协同促进m6A修饰,发挥RNA结合支架、变构激活和增强METTL3催化活性的作用[7, 35]。有研究发现METTL14表达增强促使PI3K/AKT/mTOR和EMT通路失活,从而抑制胃癌细胞增殖和侵袭[36]。METTL14也能增强磷酸酶及张力蛋白同源物基因(PTEN)mRNA上的m6A修饰水平,维持PTEN mRNA的稳定,抑制胃癌生长和转移[37]。此外,METTL14介导LINC01320发生m6A修饰,LINC01320通过吸附miR-495-5p促进RAS癌基因家族蛋白RAB19的表达,促进胃癌细胞的增殖、迁移和侵袭[38]。METTL14介导CircORC5的m6A修饰可以抑制其表达,降低对miR-30c-2-3p吸附进而抑制富含脯氨酸AKT1底物蛋白(AKT1 substrate 1, AKT1S1)和真核翻译起始因子4B(eukaryotic translation initiation factor 4B, EIF4B)的表达,抑制胃癌生长和转移[39]。
WTAP作为m6A甲基转移酶复合物中的一个关键分子,其主要通过调节甲基转移酶复合物募集到RNA底物来稳定核心复合物并促进m6A修饰[9]。有研究发现WTAP可以抑制T淋巴细胞浸润,导致胃癌患者不良预后[40]。此外,WTAP介导己糖激酶2(hexokinase 2, HK2)3’-UTR附近的m6A修饰维护HK2 mRNA的稳定性,增强胃癌的糖酵解,促进胃癌发生发展[41]。
METTL16是第二个被鉴定出具有m6A甲基转移酶活性的蛋白,是一种独立于METTL3/METTL14复合物的“编码器”。研究发现METTL16介导细胞周期蛋白D1(cyclin D1)的m6A修饰促进其表达,加快胃癌细胞增殖[42]。
KIAA1429是新发现的m6A甲基化转移酶,其参与特定位点的m6A甲基转移酶复合物催化核心组分METTL3-METTL14-WTAP的募集[10]。KIAA1429与原癌基因蛋白/活化蛋白1抗体(c-Jun)的3’-UTR结合,以m6A非依赖性的方式稳定c-Jun mRNA和调节c-Jun的表达,促进胃癌发生[43]。KIAA1429也能催化LINC00958上的m6A修饰,并介导其与GLUT1 mRNA相互作用增加GLUT1 mRNA稳定性,促进胃癌细胞葡萄糖代谢和恶性进展[44]。可见,METTL3/14、WTAP、METT16及KIAA1429可能以复合物的形式存在共同调控下游分子的m6A修饰,影响胃癌的恶性进程。所以,利用多分子联合评估胃癌预后可能提高其预测效能,针对复合物的药物研发也将为胃癌治疗提供新思路。
1.2 m6A去甲基化酶FTO作为第一个被发现的m6A去甲基化酶,在胃癌中的表达显著上调,且FTO高表达与胃癌患者预后不良显著相关,可能作为胃癌诊断和预后评价的潜在分子标志物[45-46]。有研究发现FTO抑制下游靶基因同源盒蛋白B13(homeobox B13, HOXB13)的m6A修饰促进其表达,激活PI3K/AKT/mTOR信号通路,促进胃癌细胞的迁移、侵袭和增殖[47]。转录因子叉头框蛋白A2(forkhead box A2, FOXA2)与FTO基因启动子结合抑制其表达,降低MYC癌基因的m6A修饰水平,增强MYC mRNA的稳定性,促进胃癌进展[48]。此外,FTO以m6A修饰依赖的方式促进微囊蛋白1(caveolin-1, CAV-1)mRNA的降解,调节线粒体的分裂融合和代谢,促进胃癌生长和转移[49]。然而,也有少量研究报道FTO抑制胃癌细胞增殖、迁移和侵袭[50-51]。
ALKBH5是FTO的同源物,介导m6A的去甲基化,影响mRNA加工、出核和RNA代谢等多个过程[52]。研究发现ALKBH5结合并降低lncRNA NEAT1(nuclear paraspeckle assembly transcript 1, NEAT1)的m6A水平,促进胃癌转移[53]。髓鞘转录因子1激酶(protein kinase, membrane associated tyrosine/threonine 1, PKMYT1)是ALKBH5的下游靶基因,IGF2BP3通过识别和结合PKMYT1的m6A修饰位点维持其mRNA稳定性,促进胃癌侵袭和转移[54]。目前ALKBH5在胃癌中的系统研究还较少,其在胃癌恶性进展中的作用机制值得深入探索。
1.3 m6A阅读蛋白YTH家族蛋白通过特定RNA结构域以m6A依赖性方式识别和结合RNA,调控RNA的剪接、核输出、翻译和mRNA降解等过程[15],其高表达与胃癌恶性进展和预后不良显著相关[55]。YTHDF1通过与翻译机制相互作用积极促进蛋白质合成[56]。YTHDF1促进卷曲蛋白家族受体7(frizzled drosophila homolog of 7, FZD7)翻译表达,激活Wnt/β-catenin信号通路从而促进胃癌的发生发展[57]。此外,YTHDF1能识别泛素特异性肽酶14(ubiquitin specific peptidase 14, USP14)mRNA上的m6A修饰,促进USP14翻译,增加胃癌生长和转移[58]。YTHDF2是最先被发现,也是研究最多的m6A阅读器蛋白,抑制叉头框基因C2(forkhead box proteinC2, FOXC2)的表达,从而抑制胃癌恶性进展,其可作为判断胃癌预后的分子标志物[59]。
2 N4-乙酰胞苷ac4C修饰主要存在于稳定且高丰度的转运RNA(transfer RNA, tRNA)和核糖体RNA(ribosome RNA, rRNA)上。N-乙酰基转移酶10(N-acetyltransferase 10, NAT10)是目前唯一被鉴定具有催化mRNA发生ac4C修饰的酶[60-61]。最近研究发现胃癌中NAT10高表达,且与胃癌患者不良预后相关。NAT10催化Ⅴ型胶原蛋白a1链(collagen type Ⅴ alpha 1 chain, COL5A1)mRNA上发生ac4C修饰,提高其mRNA稳定性和表达,促进胃癌细胞迁移和侵袭[62]。另有研究发现幽门螺杆菌可以诱导NAT10的表达,NAT10通过催化鼠双微体2(murine double minute 2, MDM2)mRNA上的ac4C修饰,促进其表达并介导P53泛素化降解,增加胃癌恶性进展[63]。目前关于ac4C修饰的生物学功能和调控机制研究尚在起步阶段,介导ac4C去乙酰化的酶以及特异识别ac4C修饰的阅读器蛋白还有待鉴定。
3 N6, 2’-O-二甲基腺苷N6, 2’-O-二甲基腺苷(N6, 2’-O-dimethyladenosine, m6Am)修饰是脊椎生物mRNA上一种含量丰富的RNA甲基化修饰,存在于mRNA的转录起始区域,通常mRNA的5’末端7-甲基鸟苷(m7G)帽子结构后的第一个2’-O-甲基腺苷(Am)会被催化为m6Am[64]。磷酸化CTD相互作用因子1(phosphorylated CTD interacting factor 1, PCIF1)是目前唯一被鉴定可以催化mRNA发生m6Am修饰的酶,能特异性识别mRNA上的m7G结构,发挥m6Am甲基转移酶活性作用[65]。最近研究发现m6Am修饰和PCIF1表达在胃癌中显著增加,而且PCIF1可以作为判断胃癌预后的独立风险因子。PCIF1促进跨膜蛋白9超家族成员1(transmembrane 9 superfamily member 1, TM9SF1)mRNA上m6Am修饰以抑制其mRNA翻译,抑制TM9SFl的蛋白表达,促进胃癌恶性发展[66]。目前,识别m6Am修饰的阅读器蛋白还未发现,m6Am的调控机制值得深入研究,其在胃癌恶性进程中的生物学作用还待阐明。
4 5-甲基胞嘧啶m5C修饰也是一种常见且重要的RNA修饰,在tRNA、rRNA和mRNA上广泛分布。m5C修饰可以调控RNA结构稳定、RNA加工和翻译效率以及mRNA出核等,与人类疾病的发生密切相关[67]。
NOP2/Sun甲基转移酶6(NOP2/Sun RNA methyltransferase 6, NSUN6)是一个特异催化tRNA-Thr和tRNA-Cys发生m5C修饰的甲基转移酶[67]。NOP2/Sun甲基转移酶2(NOP2/Sun RNA methyltransferase 2, NSUN2)可以增强周期依赖激酶抑制子1C(cyclin dependent kinase inhibitor 1C, CDKN1C)mRNA发生m5C修饰进而促进胃癌恶性进展[68]。小泛素样调节蛋白2/3(small ubiquitin like modifier 2/3, SUMO2/3)通过非共价键与NSUN2的SIM(236-240aa)结构域相互作用,调节其核转运,增加其致癌活性[69]。LncRNA-FOXC2-AS1介导NSUN2催化FOXC2 mRNA上发生m5C修饰,随后被Y-框结合蛋白1(Y-box binding protein 1, YBX1)识别促进FOXC2的表达,增加胃癌的恶性进展[70],提示NSUN2可能成为胃癌诊断新的生物标志物及潜在的治疗靶点。目前m5C修饰调控肿瘤发生发展的作用机制研究还不够深入,这可能与m5C修饰在细胞中整体丰度不高有关,但是随着检测灵敏度的提高以及测序技术的改进,这一领域一定会有更多的发现。
5 小结与展望目前临床上治疗胃癌的可用靶点和药物较少、受众较窄。因此,深入研究调控胃癌发生发展关键分子的作用机制,评估其作为预测胃癌风险及预后的分子标志物和潜在治疗靶点的价值,将对制定胃癌防治策略具有重要意义。RNA修饰作为当前表观遗传学领域的研究前沿和热点,其相关基因和蛋白表达水平的变化有可能成为肿瘤分子诊断的潜在标志物,针对关键分子的药物研发可能为肿瘤临床靶向治疗提供新的思路。目前关于RNA新修饰的鉴定和功能研究正如火如荼地展开,其中m6A修饰作为丰度最高且研究较早的转录后修饰,调控包括胃癌在内的多个肿瘤发生发展,调节肿瘤的增殖、转移、侵袭、糖酵解、自噬和EMT等过程。
开发靶向RNA修饰相关蛋白的抑制剂用于癌症临床治疗已有突破,其中一些候选药物在临床前研究中显示出较好的疗效。例如FAO抑制剂大黄酸能够可逆性地结合FTO,竞争性阻止m6A底物的识别,增加mRNA的m6A修饰水平,抑制胃癌进展[51]。研究发现奥美拉唑可以诱导FTO失活,激活mTORC1信号通路,从而增强5-氟尿嘧啶、顺铂和紫杉醇对胃癌细胞的抗肿瘤效果[71]。mTOR抑制剂依维莫司靶向胃癌细胞中METTL3/miR-17-92/TMEM127和PTEN/mTOR信号通路,在METTL3高表达的肿瘤中抑制作用更为显著。一项Ⅱ期临床研究结果显示依维莫司对晚期胃癌患者显示出较好的疗效[72]。小分子抑制剂CS1(Bisantrene)和CS2(Brequinar)可以直接与FTO的酶促反应中心结合,阻断其与靶基因mRNA的结合,抑制其去甲基酶活性。CS1和CS2化合物具有广谱抗癌特性,并对多种实体瘤(乳腺癌、胰腺癌和胶质母细胞瘤)表现出显著的抑制效果[73]。但是由于METTL3广泛调控基因的表达,靶向METTL3药物的潜在不良反应也需要密切关注。
免疫治疗是当前肿瘤治疗的研究热点。微卫星不稳定型MSI-H患者在胃癌中占有一定的比例,这部分患者可在免疫治疗中获益。有研究发现,m6A修饰可能与MSI阳性胃癌患者免疫治疗的效果相关[74],其机制研究也是未来一个新的研究方向。m6A修饰与PD-1/L1免疫疗法响应也显著相关,抑制FTO表达可以增强肿瘤细胞对INF-γ和抗PD-L1治疗敏感度[75]。研究提示m6A修饰参与调控肿瘤免疫微环境,在肿瘤免疫治疗中可能发挥重要作用。
RNA表观遗传研究的兴起扩展了我们对肿瘤病因学的认知。然而,在胃癌中m6A修饰的机制研究才刚刚起步,有许多问题还未完全阐明。例如,在胃癌发生发展的不同阶段,RNA修饰的变化特征,不同类型RNA修饰之间,是否存在相互影响尚不清楚,甲基化酶和去甲基化酶如何实现对不同靶RNA的准确调控,RNA修饰类型与表型之间的调控关系等。我们相信,随着对RNA修饰调控机制的深入研究,越来越多新型、特异、有效的RNA修饰抑制剂和激活剂有望被开发和批准用于临床,更好地造福肿瘤患者。
利益冲突声明:
所有作者均声明不存在利益冲突。
作者贡献:
徐佳雯:论文构思和撰写
王强:论文修改
王守宇:论文指导、修改和审校
[1] |
Jemal A, Center MM, Desantis C, et al. Global patterns of cancer incidence and mortality rates and trends[J]. Cancer Epidemiol Biomarkers Prev, 2010, 19(8): 1893-907. DOI:10.1158/1055-9965.EPI-10-0437 |
[2] |
Smyth EC, Nilsson M, Grabsch HI, et al. Gastric cancer[J]. Lancet, 2020, 396(10251): 635-648. DOI:10.1016/S0140-6736(20)31288-5 |
[3] |
Peixoto P, Cartron PF, Serandour AA, et al. From 1957 to Nowadays: A Brief History of Epigenetics[J]. Int J Mol Sci, 2020, 21(20): 7571. DOI:10.3390/ijms21207571 |
[4] |
Nebbioso A, Tambaro FP, Dell'aversana C, et al. Cancer epigenetics: Moving forward[J]. PLoS Genet, 2018, 14(6): e1007362. DOI:10.1371/journal.pgen.1007362 |
[5] |
Liang Z, Kidwell RL, Deng H, et al. Epigenetic N6-methyladenosine modification of RNA and DNA regulates cancer[J]. Cancer Biol Med, 2020, 17(1): 9-19. DOI:10.20892/j.issn.2095-3941.2019.0347 |
[6] |
Schumann U, Shafik A, Preiss T. METTL3 Gains R/W Access to the Epitranscriptome[J]. Mol Cell, 2016, 62(3): 323-324. DOI:10.1016/j.molcel.2016.04.024 |
[7] |
Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014, 10(2): 93-95. DOI:10.1038/nchembio.1432 |
[8] |
Pendleton KE, Chen B, Liu K, et al. The U6 snRNA mA Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention[J]. Cell, 2017, 169(5): 824-835. DOI:10.1016/j.cell.2017.05.003 |
[9] |
Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2): 177-189. DOI:10.1038/cr.2014.3 |
[10] |
Zhu W, Wang JZ, Wei JF, et al. Role of m6A methyltransferase component VIRMA in multiple human cancers (Review)[J]. Cancer Cell Int, 2021, 21(1): 172. DOI:10.1186/s12935-021-01868-1 |
[11] |
Wen J, Lv R, Ma H, et al. Zc3h13 Regulates Nuclear RNA mA Methylation and Mouse Embryonic Stem Cell Self-Renewal[J]. Mol Cell, 2018, 69(6): 1028-1038. DOI:10.1016/j.molcel.2018.02.015 |
[12] |
Patil DP, Chen CK, Pickering BF, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression[J]. Nature, 2016, 537(7620): 369-373. DOI:10.1038/nature19342 |
[13] |
Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887. DOI:10.1038/nchembio.687 |
[14] |
Wang J, Wang J, Gu Q, et al. The biological function of m6A demethylase ALKBH5 and its role in human disease[J]. Cancer Cell Int, 2020, 20: 347. DOI:10.1186/s12935-020-01450-1 |
[15] |
Dai XY, Shi L, Li Z, et al. Main N6-Methyladenosine Readers: YTH Family Proteins in Cancers[J]. Front Oncol, 2021, 11: 635329. DOI:10.3389/fonc.2021.635329 |
[16] |
Huang H, Weng H, Sun W, et al. Recognition of RNA N-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20(3): 285-295. DOI:10.1038/s41556-018-0045-z |
[17] |
Wu B, Su S, Patil DP, et al. Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1[J]. Nat Commun, 2018, 9(1): 420. DOI:10.1038/s41467-017-02770-z |
[18] |
Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 608-624. DOI:10.1038/s41580-019-0168-5 |
[19] |
He L, Li H, Wu A, et al. Functions of N6-methyladenosine and its role in cancer[J]. Mol Cancer, 2019, 18(1): 176. DOI:10.1186/s12943-019-1109-9 |
[20] |
Dai D, Wang H, Zhu L, et al. N6-methyladenosine links RNA metabolism to cancer progression[J]. Cell Death Dis, 2018, 9(2): 124. DOI:10.1038/s41419-017-0129-x |
[21] |
Zhou Z, Lv J, Yu H, et al. Mechanism of RNA modification N6-methyladenosine in human cancer[J]. Mol Cancer, 2020, 19(1): 104. DOI:10.1186/s12943-020-01216-3 |
[22] |
Yue B, Song C, Yang L, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer[J]. Mol Cancer, 2019, 18(1): 142. DOI:10.1186/s12943-019-1065-4 |
[23] |
Lin S, Liu J, Jiang W, et al. METTL3 Promotes the Proliferation and Mobility of Gastric Cancer Cells[J]. Open Med (Wars), 2019, 14: 25-31. DOI:10.1515/med-2019-0005 |
[24] |
Yang DD, Chen ZH, Yu K, et al. METTL3 Promotes the Progression of Gastric Cancer via Targeting the MYC Pathway[J]. Front Oncol, 2020, 10: 115. DOI:10.3389/fonc.2020.00115 |
[25] |
Yang Z, Jiang X, Li D, et al. HBXIP promotes gastric cancer METTL3-mediated MYC mRNA m6A modification[J]. Aging (Albany NY), 2020, 12(24): 24967-24982. |
[26] |
Wang Q, Chen C, Ding Q, et al. METTL3-mediated mA modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance[J]. Gut, 2020, 69(7): 1193-1205. DOI:10.1136/gutjnl-2019-319639 |
[27] |
Song C, Zhou C. HOXA10 mediates epithelial-mesenchymal transition to promote gastric cancer metastasis partly via modulation of TGFB2/Smad/METTL3 signaling axis[J]. J Exp Clin Cancer Res, 2021, 40(1): 62. DOI:10.1186/s13046-021-01859-0 |
[28] |
Huo FC, Zhu ZM, Zhu WT, et al. METTL3-mediated mA methylation of SPHK2 promotes gastric cancer progression by targeting KLF2[J]. Oncogene, 2021, 40(16): 2968-2981. DOI:10.1038/s41388-021-01753-1 |
[29] |
Li H, Wang C, Lan L, et al. METTL3 promotes oxaliplatin resistance of gastric cancer CD133+ stem cells by promoting PARP1 mRNA stability[J]. Cell Mol Life Sci, 2022, 79(3): 135. DOI:10.1007/s00018-022-04129-0 |
[30] |
He H, Wu W, Sun Z, et al. MiR-4429 prevented gastric cancer progression through targeting METTL3 to inhibit mA-caused stabilization of SEC62[J]. Biochem Biophys Res Commun, 2019, 517(4): 581-587. DOI:10.1016/j.bbrc.2019.07.058 |
[31] |
Kang J, Huang X, Dong W, et al. MicroRNA-1269b inhibits gastric cancer development through regulating methyltransferase-like 3 (METTL3)[J]. Bioengineered, 2021, 12(1): 1150-1160. DOI:10.1080/21655979.2021.1909951 |
[32] |
Zhang F, Yan Y, Cao X, et al. Methylation of microRNA-338-5p by EED promotes METTL3-mediated translation of oncogene CDCP1 in gastric cancer[J]. Aging (Albany NY), 2021, 13(8): 12224-12238. |
[33] |
Hu H, Kong Q, Huang XX, et al. Longnon-coding RNA BLACAT2 promotes gastric cancer progression via the miR-193b-5p/METTL3 pathway[J]. J Cancer, 2021, 12(11): 3209-3221. DOI:10.7150/jca.50403 |
[34] |
Zhang JY, Du Y, Gong LP, et al. ebv-circRPMS1 promotes the progression of EBV-associated gastric carcinoma via Sam68-dependent activation of METTL3[J]. Cancer Lett, 2022, 535: 215646. DOI:10.1016/j.canlet.2022.215646 |
[35] |
Geula S, Moshitch-moshkovitz S, Dominissini D, et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation[J]. Science, 2015, 347(6225): 1002-1006. DOI:10.1126/science.1261417 |
[36] |
Liu X, Xiao M, Zhang L, et al. The m6A methyltransferase METTL14 inhibits the proliferation, migration, and invasion of gastric cancer by regulating the PI3K/AKT/mTOR signaling pathway[J]. J Clin Lab Anal, 2021, 35(3): e23655. |
[37] |
Yao Q, He L, Gao X, et al. The m6A Methyltransferase METTL14-Mediated N6-Methyladenosine Modification of PTEN mRNA Inhibits Tumor Growth and Metastasis in Stomach Adenocarcinoma[J]. Front Oncol, 2021, 11: 699749. DOI:10.3389/fonc.2021.699749 |
[38] |
Hu N, Ji H. N6-methyladenosine (m6A)-mediated up-regulation of long noncoding RNA LINC01320 promotes the proliferation, migration, and invasion of gastric cancer via miR495-5p/RAB19 axis[J]. Bioengineered, 2021, 12(1): 4081-4091. DOI:10.1080/21655979.2021.1953210 |
[39] |
Fan HN, Chen ZY, Chen XY, et al. METTL14-mediated mA modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis[J]. Mol Cancer, 2022, 21(1): 51. DOI:10.1186/s12943-022-01521-z |
[40] |
Li H, Su Q, Li B, et al. High expression of WTAP leads to poor prognosis of gastric cancer by influencing tumour-associated T lymphocyte infiltration[J]. J Cell Mol Med, 2020, 24(8): 4452-4465. DOI:10.1111/jcmm.15104 |
[41] |
Yu H, Zhao K, Zeng H, et al. N-methyladenosine (mA) methyltransferase WTAP accelerates the Warburg effect of gastric cancer through regulating HK2 stability[J]. Biomed Pharmacother, 2021, 133: 111075. DOI:10.1016/j.biopha.2020.111075 |
[42] |
Wang XK, Zhang YW, Wang CM, et al. METTL16 promotes cell proliferation by up-regulating cyclin D1 expression in gastric cancer[J]. J Cell Mol Med, 2021, 25(14): 6602-6617. DOI:10.1111/jcmm.16664 |
[43] |
Miao R, Dai CC, Mei L, et al. KIAA1429 regulates cell proliferation by targeting c-Jun messenger RNA directly in gastric cancer[J]. J Cell Physiol, 2020, 235(10): 7420-7432. DOI:10.1002/jcp.29645 |
[44] |
Yang D, Chang S, Li F, et al. mA transferase KIAA1429-stabilized LINC00958 accelerates gastric cancer aerobic glycolysis through targeting GLUT1[J]. IUBMB Life, 2021, 73(11): 1325-1333. DOI:10.1002/iub.2545 |
[45] |
Chen B, Ye F, Yu L, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor[J]. J Am Chem Soc, 2012, 134(43): 17963-17971. DOI:10.1021/ja3064149 |
[46] |
Li Y, Zheng D, Wang F, et al. Expression of Demethylase Genes, FTO and ALKBH1, Is Associated with Prognosis of Gastric Cancer[J]. Dig Dis Sci, 2019, 64(6): 1503-1513. DOI:10.1007/s10620-018-5452-2 |
[47] |
Guo C, Chu H, Gong Z, et al. HOXB13 promotes gastric cancer cell migration and invasion via IGF-1R upregulation and subsequent activation of PI3K/AKT/mTOR signaling pathway[J]. Life Sci, 2021, 278: 119522. DOI:10.1016/j.lfs.2021.119522 |
[48] |
Yang Z, Jiang X, Zhang Z, et al. HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer[J]. Cancer Gene Ther, 2021, 28(1-2): 141-155. DOI:10.1038/s41417-020-0193-8 |
[49] |
Zhou Y, Wang Q, Deng H, et al. N6-methyladenosine demethylase FTO promotes growth and metastasis of gastric cancer via mA modification of caveolin-1 and metabolic regulation of mitochondrial dynamics[J]. Cell Death Dis, 2022, 13(1): 72. DOI:10.1038/s41419-022-04503-7 |
[50] |
皮静楠, 张杰, 王学鹏, 等. FTO在胃癌组织中的表达降低及其对细胞系MGC-803功能的影响[J]. 基础医学与临床, 2017, 7: 907-911. [Pi JN, Zhang J, Wang XP, et al. Down-regulation of FTO in human gastric cancer and its effect on cell line MGC-803 function[J]. Ji Chu Yi Xue Yu Lin Chuang, 2017, 7: 907-911. DOI:10.16352/j.issn.1001-6325.2017.07.001] |
[51] |
Xu D, Shao W, Jiang Y, et al. FTO expression is associated with the occurrence of gastric cancer and prognosis[J]. Oncol Rep, 2017, 38(4): 2285-2292. DOI:10.3892/or.2017.5904 |
[52] |
Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29. DOI:10.1016/j.molcel.2012.10.015 |
[53] |
Zhang J, Guo S, Piao HY, et al. ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1[J]. J Physiol Biochem, 2019, 75(3): 379-389. DOI:10.1007/s13105-019-00690-8 |
[54] |
Hu Y, Gong C, Li Z, et al. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification[J]. Mol Cancer, 2022, 21(1): 34. DOI:10.1186/s12943-022-01522-y |
[55] |
Liu T, Yang S, Cheng YP, et al. The N6-Methyladenosine (m6A) Methylation Gene Reveals a Potential Diagnostic Role for Gastric Cancer[J]. Cancer Manag Res, 2020, 12: 11953-11964. DOI:10.2147/CMAR.S279370 |
[56] |
Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency[J]. Cell, 2015, 161(6): 1388-1399. DOI:10.1016/j.cell.2015.05.014 |
[57] |
Pi J, Wang W, Ji M, et al. YTHDF1 Promotes Gastric Carcinogenesis by Controlling Translation of FZD7[J]. Cancer Res, 2021, 81(10): 2651-2665. DOI:10.1158/0008-5472.CAN-20-0066 |
[58] |
Chen XY, Liang R, Yi YC, et al. The mA Reader YTHDF1 Facilitates the Tumorigenesis and Metastasis of Gastric Cancer via USP14 Translation in an mA-Dependent Manner[J]. Front Cell Dev Biol, 2021, 9: 647702. DOI:10.3389/fcell.2021.647702 |
[59] |
Shen X, Zhao K, Xu L, et al. YTHDF2 Inhibits Gastric Cancer Cell Growth by Regulating FOXC2 Signaling Pathway[J]. Front Genet, 2020, 11: 592042. |
[60] |
Arango D, Sturgill D, Alhusaini N, et al. Acetylation of Cytidine in mRNA Promotes Translation Efficiency[J]. Cell, 2018, 175(7): 1872-1886. DOI:10.1016/j.cell.2018.10.030 |
[61] |
Jin G, Xu M, Zou M, et al. The Processing, Gene Regulation, Biological Functions, and Clinical Relevance of N4-Acetylcytidine on RNA: A Systematic Review[J]. Mol Ther Nucleic Acids, 2020, 20: 13-24. DOI:10.1016/j.omtn.2020.01.037 |
[62] |
Zhang Y, Jing Y, Wang Y, et al. NAT10 promotes gastric cancer metastasis via N4-acetylated COL5A1[J]. Signal Transduct Target Ther, 2021, 6(1): 173. DOI:10.1038/s41392-021-00489-4 |
[63] |
Deng M, Zhang L, Zheng W, et al. Helicobacter pylori-induced NAT10 stabilizes MDM2 mRNA via RNA acetylation to facilitate gastric cancer progression[J]. J Exp Clin Cancer Res, 2023, 42(1): 9. DOI:10.1186/s13046-022-02586-w |
[64] |
Oerum S, Meynier V, Catala M, et al. A comprehensive review of m6A/m6Am RNA methyltransferase structures[J]. Nucleic Acids Res, 2021, 49(13): 7239-7255. DOI:10.1093/nar/gkab378 |
[65] |
Sendinc E, Valle-garcia D, Dhall A, et al. PCIF1 Catalyzes m6Am mRNA Methylation to Regulate Gene Expression[J]. Mol Cell, 2019, 75(3): 620-630.e9. DOI:10.1016/j.molcel.2019.05.030 |
[66] |
Zhuo W, Sun M, Wang K, et al. m6Am methyltransferase PCIF1 is essential for aggressiveness of gastric cancer cells by inhibiting TM9SF1 mRNA translation[J]. Cell Discov, 2022, 8(1): 48. DOI:10.1038/s41421-022-00395-1 |
[67] |
Liu RJ, Long T, Li J, et al. Structural basis for substrate binding and catalytic mechanism of a human RNA: m5C methyltransferase NSun6[J]. Nucleic Acids Res, 2017, 45(11): 6684-6697. DOI:10.1093/nar/gkx473 |
[68] |
Mei L, Shen C, Miao R, et al. RNA methyltransferase NSUN2 promotes gastric cancer cell proliferation by repressing p57 by an mC-dependent manner[J]. Cell Death Dis, 2020, 11(4): 270. DOI:10.1038/s41419-020-2487-z |
[69] |
Hu Y, Chen C, Tong X, et al. NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation[J]. Cell Death Dis, 2021, 12(9): 842. DOI:10.1038/s41419-021-04127-3 |
[70] |
Yan J, Liu J, Huang Z, et al. FOXC2-AS1 stabilizes FOXC2 mRNA via association with NSUN2 in gastric cancer cells[J]. Hum Cell, 2021, 34(6): 1755-1764. DOI:10.1007/s13577-021-00583-3 |
[71] |
Feng S, Qiu G, Yang L, et al. Omeprazole improves chemosensitivity of gastric cancer cells by m6A demethylase FTO-mediated activation of mTORC1 and DDIT3 up-regulation[J]. Biosci Rep, 2021, 41(1): BSR20200842. DOI:10.1042/BSR20200842 |
[72] |
Sun Y, Li S, Yu W, et al. N(6)-methyladenosine-dependent pri-miR-17-92 maturation suppresses PTEN/TMEM127 and promotes sensitivity to everolimus in gastric cancer[J]. Cell Death Dis, 2020, 11(10): 836. DOI:10.1038/s41419-020-03049-w |
[73] |
Su R, Dong L, Li Y, et al. Targeting FTO Suppresses Cancer Stem Cell Maintenance and Immune Evasion[J]. Cancer Cell, 2020, 38(1): 79-96.e11. DOI:10.1016/j.ccell.2020.04.017 |
[74] |
Meijing Z, Tianhang L, Biao Y. N6-Methyladenosine Modification Patterns and Tumor Microenvironment Immune Characteristics Associated With Clinical Prognosis Analysis in Stomach Adenocarcinoma[J]. Front Cell Dev Biol, 2022, 10: 913307. DOI:10.3389/fcell.2022.913307 |
[75] |
Zhang B, Wu Q, Li B, et al. m(6)A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer[J]. Mol Cancer, 2020, 19(1): 53. DOI:10.1186/s12943-020-01170-0 |