文章信息
- 三阴性乳腺癌遗传易感性研究进展
- Research Progress on Genetic Susceptibility to Triple-Negative Breast Cancer
- 肿瘤防治研究, 2023, 50(8): 794-799
- Cancer Research on Prevention and Treatment, 2023, 50(8): 794-799
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2023.22.1463
- 收稿日期: 2022-12-12
- 修回日期: 2023-01-27
2. 563000 遵义,遵义医科大学附属医院骨科
2. Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
三阴性乳腺癌(triple-negative breast cancer, TNBC)是一种由于雌激素受体(estrogen receptor, ER)、孕激素受体(progesterone receptor, PR)缺乏以及人表皮生长因子受体-2(human epidermal growth factor receptor 2, HER-2)没有扩增的乳腺癌,具有明显异质性[1],对人类身体健康产生了严重的威胁,因此TNBC的防治已成为全球热点话题。由于其不同的分子亚型,包括免疫调节亚型(IM)、腔内雄激素受体亚型(LAR)、间充质样亚型(MES)和基底样免疫抑制亚型(BLIS)[2-3],使其治疗愈加困难。TNBC的发生发展由多种因素导致,除了饮酒增加、缺乏身体活动、外源性激素、初潮和初产年龄较小、母乳喂养以外[4],还与遗传易感性密切相关。本文系统综述了近年来与不同亚型TNBC相关的易感基因及其多态性,以期找到可靠的预测生物标志物,为针对特定的分子途径的药物研发提供新的思路。
1 TNBC的流行病学概况在最新的统计学调查中,乳腺癌新增病例已超过肺癌成为全球第一大恶性肿瘤,占所有女性新发肿瘤的31%[5],而TNBC约占所有新发乳腺癌的15%~20%[6],多见于年轻或绝经前患者[7-8]、非裔或西班牙裔[9]、较低社会经济地位者及BRCA1突变携带者[1],这提示遗传因素在TNBC的发生发展中有重要作用,为了进一步解释遗传因素的影响,常通过开展遗传易感性的研究来揭示疾病的发展进程。
2 TNBC的遗传多态性肿瘤是由多基因、多环境因素交互作用的复杂性疾病,即使暴露在同一环境中,由于个体的遗传易感性有差异,个体发生肿瘤的风险也有所不同。基因多态性已被证实与肿瘤的遗传易感性相关[10]。随着各种基因组测序方法的出现,如全基因组关联分析(genome-wide association study, GWAS)、下一代测序(next generation sequencing, NGS)、全外显子组测序(whole exome sequencing, WES)、实时聚合酶链反应(real-time polymerase chain reaction, PCR)以及限制性片段长度多态性聚合酶链反应(PCR-RFLP)等,TNBC的遗传易感性研究得到了快速发展。根据特殊的分子亚型发现可操作靶标,是近些年TNBC治疗研究的热点问题,对不同亚型TNBC的遗传多态性进行整理,有助于了解TNBC的遗传易感性。
2.1 与免疫调节亚型(IM)相关的遗传多态性TNBC中的IM亚型表达的基因主要参与免疫细胞的调节,由编码免疫抗原和细胞因子的基因以及核心免疫信号转导途径的基因组成[11],如参与细胞因子信号转导、抗原处理和呈递、趋化因子信号通路和免疫信号转导通路。
2.1.1 参与抗原处理和呈递过程的基因及其多态性主要组织相容性复合体(major histocompatibility complex, MHC)是负责抗原呈递的开关基因,包括MHC classⅠ(MHCⅠ)、MHC class Ⅱ(MHCⅡ)、MHC class Ⅲ (MHCⅢ),参与免疫应答的诱导与调节。Bareche等[12]研究发现,含有染色体5q和15q区染色体不稳定和拷贝数缺失的基因,如TMEM173(5q31.2; STING)和B2M(15q21.1)基因会导致几个MHCⅠ类和Ⅱ类基因的下调,与免疫细胞毒性降低独立相关,参与的相关基因常与间充质样亚型TNBC涉及的基因具有协同作用。在TNBC研究队列中发现,干扰素基因刺激因子(stimulator of interferon genes, STING)参与了MYC癌基因的免疫逃逸过程[13]。叉头框蛋白转录因子3(forkhead box protein P3, FOXP3)是叉状头转录因子家族中的一个成员,被认为是调节性T细胞(Treg)的标志性分子,Lopes等[14]在巴西人群中对50例患者和115例对照组的遗传多态性进行研究,观察到FOXP3基因多态性rs3761548上纯合AA基因型与TNBC易感性呈正相关(OR=3.78; 95%CI: 1.02~14.06; P=0.026)。但在一项Meta分析中并未发现该位点与中国人群乳腺癌易感性相关[15],从遗传学角度来看,对不同种族和不同TNBC亚型的研究不足,具体的基因多态性有待进一步研究。
2.1.2 参与趋化因子信号通路的基因及其多态性趋化因子介导免疫细胞的迁移和定位,在先天免疫系统中具有重要作用,主要通过结合G蛋白偶联跨膜受体进行信号转导。有研究表明,C-C基序趋化因子配体5(C-C motif chemokine ligand 5, CCL5)信号基因中的CCND1 rs614367-TT基因型与TNBC风险之间存在高度显著的相关性(OR=5.14, P=0.004)[16];C-X-C基序趋化因子配体12(C-X-C motif chemokine ligand 12, CXCL12)的基因多态性rs1801157G > A增加了TNBC的危险性(OR=7.23, 95%CI: 1.15~45.41, P=0.035)[17];同时还发现了C-C基序趋化因子受体2(C-C motif chemokine receptor 2, CCR2)、CXCL10、CXCL11以及CXCL13基因均表明与IM的发生密切相关,但还未涉及其基因多态性的研究[3]。非典型趋化因子受体1(atypical chemokine receptor 1, ACKR1)也被证实与癌症风险相关的趋化因子平衡有关,在Newman等[18]研究中发现ACKR1rs2814778基因多态性可能成为TNBC独立的预测因子。趋化因子家族是一个庞大的家族,与TNBC的IM亚型的研究密切相关,现对TNBC的易感基因研究甚广,但仍有许多的易感基因位点未阐明清楚,趋化因子的基因多态性可以作为TNBC的一个研究重点。
2.1.3 参与免疫信号转导通路的基因及其多态性随着现代免疫学与分子生物学的发展,科学家们发现多种信号通路与免疫调节相关,与IM亚型相关的有Toll样受体(Toll-like receptors, TLRs)信号通路、T细胞活化通路、B细胞活化通路等。在Zhang等[19]研究中发现免疫相关基因BIRC3、BTN3A1、CSF2RB、GIMAP7、GZMB、HCLS1、LCP2和SELL在TNBC的IM亚型中异常表达。目前的文献并未有明确的与IM亚型TNBC易感性相关的基因多态性的报道。
2.2 与腔内雄激素受体亚型(LAR)相关的遗传多态性LAR亚型为ER阴性,表现出类固醇合成和雄激素/雌激素代谢的基因过表达[20],主要为酪氨酸激酶受体和细胞周期途径的某些独特基因组改变。AR是核受体超家族的一员,属于类固醇激素,通过与雄激素结合而被激活, 改变自身构象, 发挥生物学效应[21]。β2-肾上腺素能受体(β2-adrenergic receptor, β2-AR)属于G蛋白偶联受体家族,是由ADRB2基因编码,有研究表明ADRB2单核苷酸多态性(SNP)rs1042713和rs1042714可以改变β2-AR的表达和构象,使得TNBC细胞增殖[22]。也有研究表明LAR亚型显示更多的酪氨酸激酶受体2(ERBB2)体细胞突变[23],ERBB2属于表皮生长因子受体(EGFR)家族成员之一,在Aravind等[24]研究中发现ERBB2rs527779103多态性与TNBC显著相关(OR=21.19, 95%CI: 5.14~94.32, P < 0.05)。有研究表明,PIK3CA,PTEN和PIK3R1突变与腔内雄激素受体(LAR)密切相关[22],LAR肿瘤与较高的突变负荷相关,PI3KCA(55%)、AKT1(13%)和CDH1(13%)基因的突变显著富集[25]。在TNBC的形成过程中,磷酸肌醇3激酶(PI3K)信号通路由于生长因子或配体与许多膜相关受体酪氨酸激酶(RTK)结合激活AKT,进而激活下游效应分子mTOR,从而促进TNBC细胞的生长,上游调节因子功能受体(如EGFR)的过度表达,激活PI3K催化亚基α(PIK3CA)的突变,磷酸酶和张力蛋白同源物(PTEN)的功能过度表达都是促进PI3K/AKT/mTOR通路激活的下调剂[26]。有研究表明该信号通路涉及的mTOR rs2295080和rs2536,AKT1 rs2494750和rs2494752以及pTEN rs701848与亚洲人群乳腺癌的发生风险密切相关[27],但与TNBC的发生风险是否有关还需要进一步的研究且应该在不同人群中进行验证。在另外一项研究中发现AKT1(rs3730358)可提高TNBC发生风险[28],PI3K/AKT/mTOR通路的异常激活在TNBC的发生、发展中有着非常重要的作用,抑制该通路中相关靶点,对于TNBC的靶向治疗具有重要作用。
雌激素受体1(estrogen receptor 1, ESR1)扩增与BC的发病机制相关,有研究表明ESR1基因只与TNBC相关[29],在韩国人群中发现ESR1(rs2881766与rs926778)增加了TNBC的发生风险而rs3798577降低了TNBC的发生风险[30]。在欧洲人群中发现了rs12662670(OR=1.18; 95%CI: 1.10~1.26, P=3.52×10-4)和位点rs2046210(OR=1.15, 95%CI: 1.03~1.28, P=4.4×10-7)与TNBC易感性相关[31];在Ellsworth等[32]的一篇综述中也整理了与NBC相关的ESR1基因多态性,发现rs3757318位点是TNBC发生的危险因素(OR=1.33, 95%CI: 1.17~1.51, P=9.3×10-6)。LAR肿瘤发生过程也有细胞周期的负调控因子视网膜母细胞瘤基因(retinoblastoma l, RB1)的参与,并显示出频繁的抑癌基因CDKN2A改变导致TNBC的发生[23]。
LAR亚型的TNBC与PI3K/AKT/mTOR通路的激活和某些特殊的细胞周期途径基因相关,目前针对亚型的研究广泛,但大部分研究只是关于欧洲人群,对不同种族的研究甚少。
2.3 与间充质样亚型(MES)相关的基因及其多态性干细胞相关基因的表达以及参与某些生长因子信号通路和血管生成的基因与MES亚型是唯一相关的[23]。双肾上腺素样激酶1(doublecortin like kinase 1, DCLK1)已被公认为癌症干细胞标志物[33],STAT3信号通路在该亚型中富集,显示出高水平的pSTAT3通路特征评分,意味着靶向JAK2/STAT3途径可能是专门针对MES亚型的一种选择[34-36],具体哪一个基因及其多态性如何通过该信号通路影响TNBC的易感性有待进一步研究。
SMARCA4(SWI/SNF染色质重塑复合物的ATP酶亚基)失活导致上皮-间充质转化(EMT)途径被激活,从而诱导了间充质样亚型TNBC的发生[37]。膜联蛋白(Annexin)家族可以调控细胞与细胞外基质相互作用于EMT途径[38],膜联蛋白A3(Annexin A3, ANXA3)是Annexin家族成员之一,有研究表明在印度人群中ANXA3(exm408776)的多态性与TNBC的发病风险有关[39]。由于MES亚型具有中间基因组图谱,很难使用特定的基因组特征与其他亚型区分开来。未来若找到特征性基因位点,对于MES亚型的TNBC的靶向治疗将具有深刻意义。
2.4 与基底样和免疫抑制亚型(BLIS)相关的遗传多态性与BLIS亚型发生发展相关的基因主要参与细胞周期调节、DNA修复以及一些细胞因子的免疫抑制途径,如乳腺癌易感基因BRCA1/BRCA2、DNA修复基因家族、非受体酪氨酸激酶等。
2.4.1 参与DNA修复途径的基因及其多态性自1990年发现乳腺癌1号基因(breast cancer 1, BRCA1)以来,对其研究较多,BRCA1对通过同源重组进行的DNA双链断裂修复具有重要作用[40]。乳腺癌易感基因BRCA1和BRCA2是最早被发现与TNBC有关的遗传基因,67%TNBC的发生发展由BRCA1/BRCA2的种系/体细胞突变引起[41]。BRCA1和BRCA2是DNA修复途径中的肿瘤抑制基因,缺乏功能性BRCA1或BRCA2的细胞失去双链断裂修复过程。大量研究表明,BRCA1/BRCA2基因上rs2464195、rs78378222、rs141526427、rs6064、rs206435[42]、rs6558174[43]、rs80359520、rs80358557、rs397507627、rs397507926[44]均与TNBC相关。Ling等[45]在中国汉族女性人群(包括414例TNBC患者和354例无癌对照)的首次病例对照研究中,调查了BRCA1-A复合基因与TNBC发生风险之间的相关性,并在编码BRCA1-A复合物的ABRAXAS、RAP80、BRE、BRCC36和NBA1/MERIT40基因中发现这些基因均与TNBC相关,NBA1基因变异可能是TNBC易感性的重要遗传决定因素,这是一个重要发现,需在多人群中进行验证。
有研究发现特异核苷酸切除修复交叉互补基因2(excision repair cross complementation group 2,ERCC2)上rs121913016、rs1651654、exm585172多态性通过核苷酸切除修复,参与细胞DNA的修复过程,诱导TNBC细胞的产生[24]。DNA修复基因家族中X射线修复交叉补体组3(X-ray repair cross-complementing 3, XRCC3)也被发现与TNBC易感性相关,Su等[46]在中国台湾人群中采用病例对照研究共纳入2 464例台湾公民(1 232例BC患者和1 232例对照者),发现XRCC3(rs121913016)与TNBC显著相关(OR=2.05, 95%CI: 1.46~4.28, P=4.63×10−4),该易感突变位点还可以作为台湾人群TNBC潜在预测生物标志物。在另一项波兰人群的研究中并未发现XRCC2-41657C/T多态性与TNBC的发病有关联[47]。说明DNA修复基因家族在TNBC易感性方面还有待进一步研究,以期找到不同人群的潜在预测生物标志物。
2.4.2 参与细胞周期调节的基因及其多态性卷曲螺旋结构域(coiled-coil domain containing, CCDC)蛋白通过改变细胞增殖周期,从而促进恶性肿瘤细胞的侵袭[48],有研究发现CCDC42 exm1292477多态性与TNBC发病风险相关[39]。Verma等[49]研究表明,富含脯氨酸的酪氨酸激酶2(proline-rich tyrosine kinase 2, PYK2)是一种非受体酪氨酸激酶,参与细胞周期过程,与基底样TNBC的发生机制相关,且表皮生长因子受体(epidermal growth factor receptor, EGFR)和PYK2/FAK共靶向对基底样TNBC具有有效协同作用[50]。成纤维生长因子受体2(fibroblast growth factor receptor 2, FGFR2)与EGFR同属于生长因子受体家族,与基底样型TNBC的发展密切相关,Han等[51]对1 511例病例和1 454例欧洲人群对照的研究中,发现了FGFR2(rs2981579)与TNBC风险呈正相关(OR=2.26, 95%CI: 1.82~2.80, P < 0.05)。泛素特异性蛋白酶39(ubiquitin specific peptidase 39, USP39)是去泛素化酶家族的一员,参与细胞周期调节过程,该基因上rs7187167位点与TNBC细胞的增殖相关[52]。
2.4.3 参与免疫抑制途径的基因及其多态性白细胞介素-10(interleukin-10, IL-10)是一种免疫抑制细胞因子,通过免疫逃逸参与致癌[53]。有研究表明,IL-10启动子A-1082G(rs1800896)的G等位基因会增加TNBC的发病风险(OR=1.25, 95%CI: 1.07~1.46, P=0.005)[54]。同时还发现IL-7(RAThr244Ile)TT基因型与TNBC肿瘤易感性增加显著相关[55]。参与免疫抑制途径的基因很难在TNBC的亚型中区分出来,因此找到可靠的预测生物标志物,对于不同亚型的TNBC的靶向治疗具有重要意义。
3 总结与展望TNBC是一类治疗困难、预后极差的乳腺癌,当前还没有系统的TNBC靶向治疗方案。随着基因组学、分子生物学的飞速发展,对TNBC的发病机制有了一定的了解,找出TNBC不同亚型明确的生物标志物对患者的治疗有重要作用。但是影响不同亚型TNBC的基因多态性之间具有协同作用,使得找准精确的分子靶点愈加困难,考虑到位点突变与不同亚型TNBC风险关联的复杂性,还需要单独分析相关的基于位点与TNBC的风险的关联程度在不同人群中的差异,这也是未来TNBC研究的重点。未来临床试验的成功取决于研究人员破译TNBC的异质性,并通过不同亚型特异性基因多态性对患者进行分层,更好地使分子状态与适当的治疗保持一致,利用有效医疗资源做到精准防治。
利益冲突声明:
所有作者均声明不存在利益冲突。
作者贡献:
张丽佳:论文构思、撰写及修改
刘佳芮、张沅、陈薪宇:参与文献收集及整理
王信:指导论文修改
张怡:写作指导及审阅
| [1] |
Derakhshan F, Reis-Filho JS. Pathogenesis of Triple-Negative Breast Cancer[J]. Annu Rev Pathol, 2022, 17: 181-204. DOI:10.1146/annurev-pathol-042420-093238 |
| [2] |
Burstein MD, Tsimelzon A, Poage GM, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer[J]. Clin Cancer Res, 2015, 21(7): 1688-1698. DOI:10.1158/1078-0432.CCR-14-0432 |
| [3] |
Liu YR, Jiang YZ, Xu XE, et al. Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer[J]. Breast Cancer Res, 2016, 18(1): 33. DOI:10.1186/s13058-016-0690-8 |
| [4] |
John EM, Hines LM, Phipps AI, et al. Reproductive history, breast-feeding and risk of triple negative breast cancer: The Breast Cancer Etiology in Minorities (BEM) study[J]. Int J Cancer, 2018, 142(11): 2273-2285. DOI:10.1002/ijc.31258 |
| [5] |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. DOI:10.3322/caac.21708 |
| [6] |
Almansour NM. Triple-Negative Breast Cancer: A Brief Review About Epidemiology, Risk Factors, Signaling Pathways, Treatment and Role of Artificial Intelligence[J]. Front Mol Biosci, 2022, 9: 836417. DOI:10.3389/fmolb.2022.836417 |
| [7] |
Lin CH, Yap YS, Lee KH, et al. Contrasting Epidemiology and Clinicopathology of Female Breast Cancer in Asians vs the US Population[J]. J Natl Cancer Inst, 2019, 111(12): 1298-1306. DOI:10.1093/jnci/djz090 |
| [8] |
McCarthy AM, Friebel-Klingner T, Ehsan S, et al. Relationship of established risk factors with breast cancer subtypes[J]. Cancer Med, 2021, 10(18): 6456-6467. DOI:10.1002/cam4.4158 |
| [9] |
Plasilova ML, Hayse B, Killelea BK, et al. Features of triple-negative breast cancer: Analysis of 38, 813 cases from the national cancer database[J]. Medicine (Baltimore), 2016, 95(35): e4614. DOI:10.1097/MD.0000000000004614 |
| [10] |
陈薪宇, 张怡, 王信, 等. 结核病流行现况及遗传易感性研究进展[J]. 重庆医科大学学报, 2022, 47(12): 1441-1446. [Chen XY, Zhang Y, Wang X, et al. Research progress on tuberculosis epidemic status and genetic susceptibility[J]. Chongqing Yi Ke Da Xue Xue Bao, 2022, 47(12): 1441-1446. DOI:10.13406/j.cnki.cyxb.002941] |
| [11] |
Lehmann BD, Jovanović B, Chen X, et al. Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection[J]. PLoS One, 2016, 11(6): e0157368. DOI:10.1371/journal.pone.0157368 |
| [12] |
Bareche Y, Buisseret L, Gruosso T, et al. Unraveling Triple-Negative Breast Cancer Tumor Microenvironment Heterogeneity: Towards an Optimized Treatment Approach[J]. J Natl Cancer Inst, 2020, 112(7): 708-719. DOI:10.1093/jnci/djz208 |
| [13] |
Lee KM, Lin CC, Servetto A, et al. Epigenetic Repression of STING by MYC Promotes Immune Evasion and Resistance to Immune Checkpoint Inhibitors in Triple-Negative Breast Cancer[J]. Cancer Immunol Res, 2022, 10(7): 829-843. DOI:10.1158/2326-6066.CIR-21-0826 |
| [14] |
Lopes LF, Guembarovski RL, Guembarovski AL, et al. FOXP3 transcription factor: a candidate marker for susceptibility and prognosis in triple negative breast cancer[J]. Biomed Res Int, 2014, 2014: 341654. |
| [15] |
Chen Y, Qi X, Bian C, et al. The association of FOXP3 gene polymorphisms with cancer susceptibility: a comprehensive systemic review and meta-analysis[J]. Biosci Rep, 2019, 39(3): BSR20181809. DOI:10.1042/BSR20181809 |
| [16] |
Shan J, Chouchane A, Mokrab Y, et al. Genetic Variation in CCL5 Signaling Genes and Triple Negative Breast Cancer: Susceptibility and Prognosis Implications[J]. Front Oncol, 2019, 9: 1328. DOI:10.3389/fonc.2019.01328 |
| [17] |
Guembarovski AL, Guembarovski RL, Hirata BKB, et al. CXCL12 chemokine and CXCR4 receptor: association with susceptibility and prognostic markers in triple negative breast cancer[J]. Mol Biol Rep, 2018, 45(5): 741-750. DOI:10.1007/s11033-018-4215-7 |
| [18] |
Newman LA, Jenkins B, Chen Y, et al. Hereditary Susceptibility for Triple Negative Breast Cancer Associated With Western Sub-Saharan African Ancestry: Results From an International Surgical Breast Cancer Collaborative[J]. Ann Surg, 2019, 270(3): 484-492. DOI:10.1097/SLA.0000000000003459 |
| [19] |
Zhang J, Wang L, Xu X, et al. Transcriptome-Based Network Analysis Unveils Eight Immune-Related Genes as Molecular Signatures in the Immunomodulatory Subtype of Triple-Negative Breast Cancer[J]. Front Oncol, 2020, 10: 1787. DOI:10.3389/fonc.2020.01787 |
| [20] |
Vtorushin S, Dulesova A, Krakhmal N. Luminal androgen receptor (LAR) subtype of triple-negative breast cancer: molecular, morphological, and clinical features[J]. J Zhejiang Univ Sci B, 2022, 23(8): 617-624. DOI:10.1631/jzus.B2200113 |
| [21] |
You CP, Leung MH, Tsang WC, et al. Androgen Receptor as an Emerging Feasible Biomarker for Breast Cancer[J]. Biomolecules, 2022, 12(1): 72. DOI:10.3390/biom12010072 |
| [22] |
Xie WY, He RH, Zhang J, et al. β-blockers inhibit the viability of breast cancer cells by regulating the ERK/COX-2 signaling pathway and the drug response is affected by ADRB2 single-nucleotide polymorphisms[J]. Oncol Rep, 2019, 41(1): 341-350. |
| [23] |
Jiang YZ, Ma D, Suo C, et al. Genomic and Transcriptomic Landscape of Triple-Negative Breast Cancers: Subtypes and Treatment Strategies[J]. Cancer Cell, 2019, 35(3): 428-440. e5. DOI:10.1016/j.ccell.2019.02.001 |
| [24] |
Aravind Kumar M, Singh V, Naushad SM, et al. Microarray-based SNP genotyping to identify genetic risk factors of triple-negative breast cancer (TNBC) in South Indian population[J]. Mol Cell Biochem, 2018, 442(1-2): 1-10. DOI:10.1007/s11010-017-3187-6 |
| [25] |
Aine M, Boyaci C, Hartman J, et al. Correction to: Molecular analyses of triple-negative breast cancer in the young and elderly[J]. Breast Cancer Res, 2021, 23(1): 28. DOI:10.1186/s13058-021-01405-y |
| [26] |
Costa RLB, Han HS, Gradishar WJ. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review[J]. Breast Cancer Res Treat, 2018, 169(3): 397-406. DOI:10.1007/s10549-018-4697-y |
| [27] |
Zhang Z, Chen Q, Zhang J, et al. Associations of genetic polymorphisms in pTEN/AKT/Mtor signaling pathway genes with cancer risk: A meta-analysis in Asian population[J]. Sci Rep, 2017, 7(1): 17844. DOI:10.1038/s41598-017-17250-z |
| [28] |
Pop LA, Cojocneanu-Petric RM, Pileczki V, et al. Genetic alterations in sporadic triple negative breast cancer[J]. Breast, 2018, 38: 30-38. DOI:10.1016/j.breast.2017.11.006 |
| [29] |
Purrington KS, Slager S, Eccles D, et al. Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer[J]. Carcinogenesis, 2014, 35(5): 1012-1019. DOI:10.1093/carcin/bgt404 |
| [30] |
Son BH, Kim MK, Yun YM, et al. Genetic polymorphism of ESR1 rs2881766 increases breast cancer risk in Korean women[J]. J Cancer Res Clin Oncol, 2015, 141(4): 633-645. DOI:10.1007/s00432-014-1849-2 |
| [31] |
Stevens KN, Vachon CM, Lee AM, et al. Common breast cancer susceptibility loci are associated with triple-negative breast cancer[J]. Cancer Res, 2011, 71(19): 6240-6249. DOI:10.1158/0008-5472.CAN-11-1266 |
| [32] |
Ellsworth DL, Turner CE, Ellsworth RE. A Review of the Hereditary Component of Triple Negative Breast Cancer: High- and Moderate-Penetrance Breast Cancer Genes, Low-Penetrance Loci, and theRole of Nontraditional Genetic Elements[J]. J Oncol, 2019, 2019: 4382606. |
| [33] |
Zhao S, Ma D, Xiao Y, et al. Molecular Subtyping of Triple-Negative Breast Cancers by Immunohistochemistry: Molecular Basis and Clinical Relevance[J]. Oncologist, 2020, 25(10): 1481-1491. DOI:10.1634/theoncologist.2019-0982 |
| [34] |
Sonnenblick A, Brohée S, Fumagalli D, et al. Constitutive phosphorylated STAT3-associated gene signature is predictive for trastuzumab resistance in primary HER2-positive breast cancer[J]. BMC Med, 2015, 13: 177. DOI:10.1186/s12916-015-0416-2 |
| [35] |
Marotta LL, Almendro V, Marusyk A, et al. The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24- stem cell-like breast cancer cells in human tumors[J]. J Clin Invest, 2011, 121(7): 2723-2735. DOI:10.1172/JCI44745 |
| [36] |
Bharadwaj U, Kasembeli MM, Robinson P, et al. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution[J]. Pharmacol Rev, 2020, 72(2): 486-526. DOI:10.1124/pr.119.018440 |
| [37] |
Kim J, Jang G, Sim SH, et al. SMARCA4 Depletion Induces Cisplatin Resistance by Activating YAP1-Mediated Epithelial-to-Mesenchymal Transition in Triple-Negative Breast Cancer[J]. Cancers (Basel), 2021, 13(21): 5474. DOI:10.3390/cancers13215474 |
| [38] |
Mussunoor S, Murray GI. The role of annexins in tumour development and progression[J]. J Pathol, 2008, 216(2): 131-140. DOI:10.1002/path.2400 |
| [39] |
Aravind Kumar M, Naushad SM, Narasimgu N, et al. Whole exome sequencing of breast cancer (TNBC) cases from India: association of MSH6 and BRIP1 variants with TNBC risk and oxidative DNA damage[J]. Mol Biol Rep, 2018, 45(5): 1413-1419. DOI:10.1007/s11033-018-4307-4 |
| [40] |
Algebaly AS, Suliman RS, Al-Qahtani WS. Comprehensive study for BRCA1 and BRCA2 entire coding regions in breast cancer[J]. Clin Transl Oncol, 2021, 23(1): 74-81. DOI:10.1007/s12094-020-02385-9 |
| [41] |
Staaf J, Glodzik D, Bosch A, et al. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study[J]. Nat Med, 2019, 25(10): 1526-1533. DOI:10.1038/s41591-019-0582-4 |
| [42] |
Zhang H, Ahearn TU, Lecarpentier J, et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses[J]. Nat Genet, 2020, 52(6): 572-581. DOI:10.1038/s41588-020-0609-2 |
| [43] |
Wu J, Mamidi TKK, Zhang L, et al. Integrating Germline and Somatic Mutation Information for the Discovery of Biomarkers in Triple-Negative Breast Cancer[J]. Int J Environ Res Public Health, 2019, 16(6): 1055. DOI:10.3390/ijerph16061055 |
| [44] |
Yang XR, Devi BCR, Sung H, et al. Prevalence and spectrum of germline rare variants in BRCA1/2 and PALB2 among breast cancer cases in Sarawak, Malaysia[J]. Breast Cancer Res Treat, 2017, 165(3): 687-697. DOI:10.1007/s10549-017-4356-8 |
| [45] |
Ling H, Li S, Wu Y, et al. Genetic evaluation of BRCA1 associated a complex genes with triple-negative breast cancer susceptibility in Chinese women[J]. Oncotarget, 2016, 7(9): 9759-9772. DOI:10.18632/oncotarget.7112 |
| [46] |
Su CH, Chang WS, Hu PS, et al. Contribution of DNA Double-strand Break Repair Gene XRCC3 Genotypes to Triple-negative Breast Cancer Risk[J]. Cancer Genomics Proteomics, 2015, 12(6): 359-367. |
| [47] |
Michalska MM, Samulak D, Romanowicz H, et al. Single Nucleotide Polymorphisms (SNPs) of RAD51-G172T and XRCC2-41657C/T Homologous Recombination Repair Genes and the Risk of Triple- Negative Breast Cancer in Polish Women[J]. Pathol Oncol Res, 2015, 21(4): 935-940. DOI:10.1007/s12253-015-9922-y |
| [48] |
Rackham OJ, Madera M, Armstrong CT, et al. The evolution and structure prediction of coiled coils across all genomes[J]. J Mol Biol, 2010, 403(3): 480-493. DOI:10.1016/j.jmb.2010.08.032 |
| [49] |
Verma N, Müller AK, Kothari C, et al. Correction: Targeting of PYK2 Synergizes with EGFR Antagonists in Basal-like TNBC and Circumvents HER3-Associated Resistance via the NEDD4-NDRG1 Axis[J]. Cancer Res, 2020, 80(2): 362. DOI:10.1158/0008-5472.CAN-19-3573 |
| [50] |
Shin SY, Müller AK, Verma N, et al. Systems modelling of the EGFR-PYK2-c-Met interaction network predicts and prioritizes synergistic drug combinations for triple-negative breast cancer[J]. PLoS Comput Biol, 2018, 14(6): e1006192. DOI:10.1371/journal.pcbi.1006192 |
| [51] |
Han MR, Deming-Halverson S, Cai Q, et al. Evaluating 17 breast cancer susceptibility loci in the Nashville breast health study[J]. Breast Cancer, 2015, 22(5): 544-551. DOI:10.1007/s12282-014-0518-2 |
| [52] |
Wozniak K, Krupa R, Synowiec E, et al. Polymorphism of UBC9 gene encoding the SUMO-E2-conjugating enzyme and breast cancer risk[J]. Pathol Oncol Res, 2014, 20(1): 67-72. DOI:10.1007/s12253-013-9659-4 |
| [53] |
Ouyang W, O'Garra A. IL-10 Family Cytokines IL-10 and IL-22: from Basic Science to Clinical Translation[J]. Immunity, 2019, 50(4): 871-891. DOI:10.1016/j.immuni.2019.03.020 |
| [54] |
Chen KY, Chien WC, Liao JM, et al. Contribution of Interleukin-10 Genotype to Triple Negative Breast Cancer Risk[J]. Anticancer Res, 2021, 41(5): 2451-2457. DOI:10.21873/anticanres.15020 |
| [55] |
Vitiello GAF, Losi Guembarovski R, Amarante MK, et al. Interleukin 7 receptor alpha Thr244Ile genetic polymorphism is associated with susceptibility and prognostic markers in breast cancer subgroups[J]. Cytokine, 2018, 103: 121-126. DOI:10.1016/j.cyto.2017.09.019 |
2023, Vol. 50


