文章信息
- 三阴性乳腺癌免疫及靶向治疗研究进展
- Research Progress on Immunization and Targeted Therapy for Triple-negative Breast Cancer
- 肿瘤防治研究, 2023, 50(7): 710-716
- Cancer Research on Prevention and Treatment, 2023, 50(7): 710-716
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2023.22.1426
- 收稿日期: 2022-12-01
- 修回日期: 2023-01-17
2. 050011 石家庄,河北省肿瘤微环境与耐药重点实验室
2. Hebei Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang 050011, China
2020年国际癌症研究机构(International Agency for Research on Cancer, IARC)调查数据显示,女性乳腺癌首次超过肺癌成为最常见的癌症[1]。三阴性乳腺癌(triple-negative breast cancer, TNBC)的定义是雌激素受体(estrogen receptors, ER)、孕激素受体(progesterone receptors, PR)表达均 < 1%,人表皮生长因子受体-2(human epidermal growth factor receptor-2, HER2)表达缺失或FISH阴性,该病具有侵袭性强、复发率高、预后差等特点[2]。由于缺乏明确的治疗靶点,传统的肿瘤切除和化疗往往疗效有限。
近年来,随着TNBC的分子分型和基因组测序的进展,大量证据表明,与其他亚型相比,TNBC具有更高的遗传不稳定性、频繁的拷贝数变异和复杂的结构重排,表明该疾病具有高度异质性[3-4]。研究者们在临床研究中探索了各种药物,包括细胞表面或细胞内受体、信号通路以及抗体-药物结合物(antibody drug conjugates, ADCs)等。现就TNBC免疫及靶向治疗部分的最新进展进行综述,以期为临床诊断和治疗提供参考。
1 三阴性乳腺癌的免疫治疗正常情况下,机体通过正向免疫调节清除病原微生物和坏死细胞,而通过负向调节机制避免自身免疫系统疾病。负调控共刺激分子常指免疫检查点,肿瘤细胞可以通过免疫检查点系统逃避宿主免疫系统的识别和破坏。因此,阻断免疫检查点系统是实现有效抗肿瘤免疫的一种有前途的治疗策略。实体瘤免疫检查点抑制(epidemic checkpoint inhibitors, ICIs)技术的发展,改变了癌症治疗的原有模式,ICIs单药及联合治疗方案在TNBC患者中取得了一些令人满意的结果,也为深入探索TNBC的治疗策略提供了新途径。目前用于药物开发的重要检查点分子包括PD-1、PD-L1和CTLA-4、LAG3等。
1.1 PD-1与PD-L1作为一种人源化的抗PD-1抗体——帕博利珠单抗(pembrolizumab)是目前唯一获批可用于早期高危TNBC治疗的免疫治疗药物。Keynote-012Ⅰb期研究入组了27例晚期TNBC患者,其治疗总有效率为18.5%,中位有效时间为17.9周[5]。I-SPY2研究中,在标准新辅助化疗(紫杉醇+阿霉素+环磷酰胺方案)的基础上加用帕博利珠单抗,试验组与对照组相比,其病理完全缓解率(pCR)增加了近三倍(60% vs. 20%)[6]。Keynote-335Ⅲ期临床试验结果表明,与单纯化疗相比,帕博利珠单抗联合化疗可使患者中位无进展生存期(PFS)从5.6个月提高到9.7个月,综合治疗的客观有效率(ORR)从40%提升到53%,并且只有2.5%的患者发生了致命的不良事件[7]。因此,帕博利珠单抗联合化疗在2020年11月被美国食品和药物管理局(FDA)加速批准用于局部复发、无法切除或转移性TNBC患者的治疗。此外,Ⅲ期临床试验KEYNOTE-522研究比较了早期TNBC患者在接受紫杉醇联合卡铂的基础上加用帕博利珠单抗的疗效,结果显示,与安慰剂组相比,帕博利珠单抗组的pCR率更高(64.8% vs. 51.2%; P < 0.001),随访期为15.5个月,帕博利珠单抗组发生肿瘤进展的比例更低(7.4% vs. 11.8%; HR: 0.63, 95%CI: 0.43~0.93; P < 0.05),不良反应发生率稍高于安慰剂组(78% vs. 73%)[8]。
2016年5月,FDA批准抗PD-L1抗体阿替利珠单抗(Atezolizumab)用于局部晚期和转移性肿瘤的治疗[9]。IMpassion130Ⅲ期临床试验评估了阿替利珠单抗联合白蛋白结合型紫杉醇作为转移性TNBC患者一线治疗的效果,在PD-L1阳性肿瘤患者中,与安慰剂+白蛋白紫杉醇相比,阿替利珠单抗联合白蛋白紫杉醇显著延长中位总生存期(mOS)(25.0个月vs. 15.5个月)[10]。另一项Ⅰb期临床试验(NCT01633970)检测了33例转移性TNBC患者应用阿替利珠单抗(一剂或多剂)联合白蛋白紫杉醇治疗的安全性、耐受性和临床活性,所有患者均经历了至少1次与治疗相关的不良事件(adverse events, AE),21%的患者有3/4级的特殊不良事件,无死亡事件发生[11]。IMpassion031研究表明,在早期TNBC患者中,无论PD-L1状态如何,阿替利珠单抗单用或与化疗药物联合均可提高pCR,且该疗法安全性良好[12],但考虑到产品的适应证,目前对于新辅助治疗患者,CSCO指南仅推荐患者参加该药物相关设计的临床研究。此外,PD-1/PD-L1抑制剂单独或与其他药物联合应用的临床试验正在积极进行中,这些研究有望在不久的将来为免疫治疗提供更精准的发展方向。
1.2 CTLA-4细胞毒性T淋巴细胞相关蛋白4(CTLA-4)是一种抑制性受体,在调节性T细胞(Treg)上结构性表达,在活化的CD4+和CD8+T细胞表面上调[13-14]。抗原提呈细胞(APC)上表达的CD-80/B7-1和CD-86/B7-2配体可与T细胞上的CD-28结合,诱导T细胞活化和细胞因子分泌,CTLA-4与CD-28竞争结合CD-80/B7-1和CD-86/B7-2配体,负向调节T细胞功能,因此,抑制CTLA-4可以防止T细胞抑制并增强T细胞抗肿瘤活性,使其成为了基于抗体治疗的有吸引力的靶点。
Ipilimumab是一种抗CTLA-4抗体,已被FDA批准用于治疗晚期黑色素瘤。一项Ⅰ期临床研究(NCT01927419)显示,作为一线治疗,Ipilimumab和Nivolumab(抗PD-1抗体)联合治疗晚期黑色素瘤可以将ORR提高到61%[15]。进一步的研究(NCT01927419)表明,与单一疗法相比,联合疗法显著改善了晚期黑色素瘤患者的ORR,2年OS也显著增加(63.8% vs. 53.6%),然而,联合治疗组不良反应的发生率也明显增高(59% vs. 20%)[16]。在TNBC转移小鼠模型中,Bernier等研究发现,表面新型微管靶向小分子化合物DZ-2384与CTLA-4抑制剂联合应用可显著延长小鼠的存活时间。在一项单独的Ⅱ期临床试验(NCT02536794)中,抗PD-1抗体Durvalumab和抗CTLA-4抗体Tremelimumab被用于联合治疗,与单一治疗进行对比,该研究受试对象为雌激素受体阳性(ER+)乳腺癌和TNBC患者,初步数据显示,71%的TNBC患者有临床获益,但ER+乳腺癌患者没有获益[17],不过由于ORR未达到预期标准,这项试验已被终止。目前的临床试验表明,与双重免疫检查点抑制相关的风险可能不会超过获益。因此,优化联合方案可能是靶向CTLA-4免疫治疗TNBC的关键。
1.3 LAG3淋巴细胞激活基因3(lymphocyte activating 3, LAG3),是一种表达于激活后的T细胞、B细胞、NK细胞及浆细胞样树突状细胞表面上的抑制性受体,通过LAG-3/MHCⅡ(LAG-3的配体)相互作用来下调T细胞介导的免疫反应,其在肿瘤免疫耐受中起关键作用[18-20]。
目前有多种针对LAG3的药物正在进行临床试验。最初研发的临床试验药物是IMP321(Prima BioMed/Immutep),IMP321是一种可溶性二聚体重组蛋白,由四个LAG3胞外区与人IgG1(LAG3-Ig)的Fc部分融合而成,LAG3-Ig与人未成熟DC上MHC-Ⅱ类细胞的相互作用诱导CD80/CD86上调,引起IL-12和IFNα的分泌,并促进形态变化,如树突状细胞的形成等[21-22]。LAG3-Ig刺激DC还诱导了一种独特的趋化因子模式(CCL22、CCL17),允许迁移到次级淋巴器官以启动初始的CD4+和CD8+ T细胞[23]。LAG3-Ig(IMP321)与10%的MHC-Ⅱ+人PBMC结合刺激髓系细胞产生肿瘤坏死因子α和CCL4[24]。因此,推测IMP321可能作为一种免疫增强剂,通过树突状细胞的成熟激活CD8+ T细胞,提供新的肿瘤免疫治疗方法。Burugu等采用组织芯片对4 322例乳腺癌标本的研究发现,肿瘤微环境内肿瘤浸润淋巴细胞(tumors infiltrate lymphocytes, TILs)中LAG3阳性表达与不良预后显著相关[25]。此外在肿瘤组织中免疫检查点PD-1/PD-L1与LAG3可能存在共表达,进一步证明阻断LAG3可以作为乳腺癌患者的治疗选择。Wang等研究了LAG3在三阴型乳腺癌中的表达及预后价值,表明新辅助化疗前LAG3水平与病理缓解率呈显著相关,在肿瘤残余组织中LAG3高表达,特别是与PD-1共表达与不良预后相关[26]。此外,在黑色素瘤、结肠腺癌和卵巢癌的小鼠模型中,将CD4+和CD8+TIL表面表达的LAG3和PD1共同阻断,诱导了增强的抗肿瘤反应[27-28]。目前,尽管抗LAG3阻断本身没有显示出显著的抗肿瘤效果,但当与抗PD-1阻断联合使用时,可能会产生协同的抗肿瘤免疫反应。在小鼠肿瘤模型以及一些对抗PD-1治疗无效的癌症患者中,联合使用抗LAG3和抗PD-1可能有助于克服抗PD-1免疫治疗的耐药性。这对于正在进行的LAG3作为替代免疫检查点靶点的探索以及作为临床反应潜在预测生物标志物的研究具有重要意义[29]。
2 三阴性乳腺癌的靶向治疗由于TNBC的高度异质性,针对研究发现的靶点开发的靶向治疗疗效仍有待提高。目前,有大量针对特定受体或基于免疫组织化学染色结果的TNBC靶向治疗的临床试验正在进行中。
2.1 PARP抑制剂多聚腺苷二磷酸核糖聚合酶(polyadenosine diphosphate ribose polymerase, PARP),是一类DNA修复酶,由18种蛋白质组成的超家族,它的主要功能是维持基因组的稳定性、修复DNA,并参与细胞周期的进展和凋亡[30]。抑制PARP将导致DNA修复功能的丧失,从而诱发细胞凋亡。有研究表明,PARP抑制剂可以明显增强放疗和化疗的治疗效果[31]。此外,PARP抑制剂对BRCA1/2缺陷的肿瘤有明显的抗肿瘤作用,对肿瘤的抑制作用比没有BRCA1/2突变的肿瘤高100~1 000倍[32]。olympiAD研究显示,对于存在BRCA1/2胚系突变的HER2阴性晚期乳腺癌患者,奥拉帕利相较于化疗可显著延长患者的PFS(7个月vs. 4.2个月),因此,CSCO指南建议存在BRCA1/2胚系突变的患者可以接受奥拉帕利的治疗,或积极入组相关临床研究[33-34]。因此,PARP抑制剂被认为可能是正在研究的针对BRCA1/2突变以及针对TNBC的最重要的治疗药物。同时,有研究推测在TNBC患者中可能存在其他DNA修复机制,使这些患者仅对PARP抑制剂不敏感。研究表明,除了调节细胞的生长、代谢和存活外,PI3K还通过与同源重组复合体相互作用稳定双链断裂,引起BRCA缺乏的状态,从而为联合使用DNA损伤剂和PI3K抑制剂提供了临床前的理论基础[35]。
为了评估PARP抑制剂Niraparib和PD-1抑制剂帕博利珠单抗的联合临床疗效,TOPACIOⅡ期试验招募了55例晚期三阴性乳腺癌(mTNBC)患者,发现15例BRCA基因突变患者的ORR为47%,中位PFS为8.3个月[36]。奥拉帕利(Olaparib)和杜伐单抗(Durvalumab)在具有胚系BRCA突变的mTNBC中的MEDIOLA试验(NCT02734004)显示ORR为58.8%,更类似于单药PARP治疗,中位PFS为4.9个月。这些初步试验的非随机化设计、不同的PARP抑制剂和小样本限制了最终结论。更大规模试验正在进行中,进一步的结果仍需期待。
2.2 抗体偶联药物抗体偶联药物(antibody-conjugated drugs, ADCs)是一类新型的抗癌药物,其将单抗与有效的细胞毒素相结合,可以准确有效的对靶细胞进行杀伤。LiV-1是STAT3下游的锌转运蛋白,其在90%以上的乳腺癌组织中表达,参与了细胞黏附和上皮-间质转化[37]。Ladiratuzumab vedotin是一种由人源化的IgG1、针对LiV-1的单抗和微管抑制剂MMAE组成的ADC,正在进行LiV-1阳性晚期/转移性乳腺癌患者的Ⅰ期研究显示,在LV单药治疗试验中,结果显示63例转移性TNBC患者ORR为32%,中位PFS为11.3周,中位DOR为13.3周[38],总体耐受性良好,显示了可喜的抗肿瘤活性和耐受性。rastuzumab deruxtecan(DS-8201a)是一种针对HER2的人源化抗体,通过可裂解的肽基连接物与拓扑异构酶I抑制剂exatecan衍生物(DX-8951衍生物,DXd)结合的ADC。有研究观察到在人组织来源的异种移植模型中,HER2高表达和低表达的肿瘤生长均受到了抑制,这表明即使在HER2低表达的肿瘤中,DS-8201a也能有效地运送具有更高DAR的有效载荷[39]。DESTINY-Breast04是一项多中心的Ⅲ期临床试验,研究入组了540例HER2低表达(IHC2+且ISH−或IHC1+)、既往接受过1或2线化疗的不可切除或转移性乳腺癌患者,其最新研究结果表明在所有患者(包括HR-和HR+)中,T-Dxd治疗组中位无进展生存期(PFS)相较于医生选择化疗(TPC)组延长了4.8个月(9.9个月vs. 5.1个月),疾病进展或死亡风险显著降低(HR: 0.50, 95%CI: 0.40~0.63, P < 0.001),且安全性总体可控[40]。该临床研究的成功将为HER2低表达患者建立新的靶向治疗标准,乃至改变整个晚期乳腺癌的治疗格局。
人滋养层细胞表面抗原2(trophoblast cell surface antigen 2, Trop2)在TNBC组织中的阳性表达率显著高于非TNBC和正常乳腺组织。Sacituzumab Govitecan-hziy(SG)(IMMU-132)的Ⅰ/Ⅱ期临床试验IMMU-132-01显示在多线治疗的TNBC患者中有33.3%的有效率,其中3例达到了完全缓解(CR),临床获益率为45.4%,患者不良反应也在可耐受范围。基于这些结果,FDA于2020年4月22日加速批准SG用于至少接受过两种转移性疾病治疗的转移性TNBC患者的临床治疗[41]。最新研究结果显示,在入组468例转移性TNBC患者中,SG组的中位总生存期为12.1个月,化疗组为6.7个月,SG组的ORR为35%,化疗组为5%[42]。Cardillo等将SG联合PARP抑制剂作用于BRCA1/2基因突变的TNBC治疗,发现联合治疗的抗肿瘤作用显著高于单药治疗,并且使肿瘤细胞停滞在S期,提示SG与PARP抑制剂联合治疗TNBC患者有潜在的临床获益[43]。据报道,肿瘤大小与癌症患者血清中抗Trop2抗体的水平有关,两个新型的Trop2单克隆抗体——AR47A6.4.2和Pr1E11,在体外和体内都显示出抗体依赖性细胞毒性(antibody-dependent cytotoxicity,ADCC)和抗肿瘤活性[44]。但目前尚无可进行体内抗肿瘤治疗的临床研究证据。针对Trop2和CD3的双特异性抗体F7AK3,在TNBC中显示了体外和体内的抗肿瘤活性,但仍需临床研究验证疗效[45]。
2.3 表皮生长因子受体表皮生长因子受体(EGFR)是一种跨膜受体,具有酪氨酸激酶活性,属于ErbB受体家族的一员,该家族包括EGFR(ErbB-1)、HER2/c-neu(ErbB-2)、HER3(ErbB-3)和HER4(ErbB-4),参与血管生成、细胞增殖、转移和抑制细胞凋亡等。与其他非TNBC乳腺癌相比,TNBC中的EGFR表达明显更高,表达量高达52%~54%[46]。有研究进一步发现,70%~78%的基底类TNBC样本高度表达EGFR。EGFR的表达已被证明是较差的DFS和OS的独立预后指标[47-48]。因此,有人推测,EGFR可能是TNBC的一个治疗靶点。然而,一项随机Ⅱ期试验(NCT00232505)选择了120例TNBC患者,发现西妥昔单抗单独治疗的反应率低于6%,而西妥昔单抗和卡铂联合治疗的反应率只有17%[49]。Cho等[50]的研究结果表明,ErbB信号是通过间接途径激活的,分子亚型在单细胞水平上发生变化。因此,单纯的EGFR靶向治疗不能取得明显疗效。
2.4 抗血管生成抑制剂血管内皮生长因子(VEGF)在30%~60%的TNBC中表达[51]。VEGF通过刺激内皮细胞的增殖和迁移、抑制内皮细胞的凋亡和支持新生血管来促进血管生成[52]。而血管生成被认为是推动肿瘤细胞增殖和存活的关键成分。目前研究较多的抗血管药物主要包括单克隆抗体以及小分子酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKI)。来自三个不同临床试验(ENCT00028990、NCT00333775和NCT00262067)的621例TNBC患者治疗结果显示,通过贝伐单抗联合治疗,TNBC患者的PFS和ORR显著改善[53-55]。在一项关于新辅助治疗的研究中,贝伐单抗的加入显著提高了患者的pCR率(27.9%~39.3%),但没有观察到DFS或OS的改善[56-57]。此外,在转移性乳腺癌的一线或二线化疗的几项Ⅲ期研究中,也对添加贝伐单抗进行了评估,结果表明,加入贝伐单抗只改善了PFS,OS并无差异[58-60]。同时,也有研究得出相反结论,NSABP-B40试验结果显示,贝伐珠单抗仅显著提高了ER阳性的乳腺癌患者的pCR率,在TNBC各亚组中的差异无统计学意义[61]。由于对患者的治疗结果不一致,目前关于贝伐珠单抗在TNBC亚型中的应用价值有待进一步探讨。一项回顾性研究数据表明,抗VEGF受体(VEGFR)靶向药物阿帕替尼(apatinib)用于转移性TNBC三线治疗具有更好的疗效,阿帕替尼联合希罗达组ORR明显高于希罗达单药组(40.9% vs. 13.4%, P < 0.05)[62]。肿瘤血管生成是一个复杂的过程,要实现通过抗血管生成治疗肿瘤,还需要一系列的临床试验评估抗血管生成治疗的效果和不良反应[63]。
2.5 雄激素受体当前众多基础研究和临床试验,如有关基因同源重组缺陷、免疫细胞浸润、AR等,为突破TNBC的治疗难点带来希望。
研究表明,约10%~15%的TNBC存在雄激素受体过度表达[64]。Gucalp等于2013报道了AR拮抗剂比卡鲁胺(bicalutamide)抗雄激素治疗晚期乳腺癌的研究数据,424例TNBC患者中有51例(12%)患者雄激素受体表达阳性(核染色比例 > 10%),比卡鲁胺的临床获益率(clinical benefit rate, CBR)为19%,且并未发现严重治疗相关不良反应[65],这证明了靶向AR在TNBC治疗中的潜在临床作用。2015年ASCO会议上公布的新一代AR拮抗剂苯扎鲁胺(enzalutamide)的Ⅱ期试验数据显示,入组的118例患者中,可评估亚组中16周时的CBR为33%,明显高于意向治疗(intentional treatment population, ITT)人群的25%。其无进展生存期为3.3月vs. 2.9月,该研究表明苯扎鲁胺在晚期雄激素受体阳性三阴性乳腺癌患者中具有临床活性且耐受性良好[66]。此外,雄激素受体拮抗剂与其他药物联合使用的研究也在不断开展中,其结果同样值得期待。
3 结语TNBC是一种高度侵袭性和异质性的乳腺癌亚型,近年来,随着对TNBC分子特征、微环境结构等认识的加深,以及新型检测手段的诞生,以分子分型为基础,寻求更多生物标志物对TNBC分型进行精确预测,寻找新的靶点,开发新的靶向、免疫治疗药物,通过多种药物联合使用来实现个体化精准治疗已成为未来TNBC治疗的趋势。同时,分子生物学、免疫学、纳米技术和计算机网络等的新发现也将使临床医生有更多的工具来做出更早和更准确的诊断,提供个性化治疗。相信随着新的治疗策略逐渐应用于临床,TNBC患者的预后将得到极大改善。
利益冲突声明:
所有作者均声明不存在利益冲突。
作者贡献:
史超:查阅文献,论文撰写及修改
张香梅:指导论文撰写
刘运江:指导课题设计及论文修改
| [1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI:10.3322/caac.21660 |
| [2] |
Garrido-Castro AC, Lin NU, Polyak K. Insights into Molecular Classifications of Triple-Negative Breast Cancer: Improving Patient Selection for Treatment[J]. Cancer Discov, 2019, 9(2): 176-198. DOI:10.1158/2159-8290.CD-18-1177 |
| [3] |
Bareche Y, Venet D, Ignatiadis M, et al. Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis[J]. Ann Oncol, 2018, 29(4): 895-902. DOI:10.1093/annonc/mdy024 |
| [4] |
Jiang YZ, Ma D, Suo C, et al. Genomic and Transcriptomic Landscape of Triple-Negative Breast Cancers: Subtypes and Treatment Strategies[J]. Cancer Cell, 2019, 35(3): 428-440. e5. DOI:10.1016/j.ccell.2019.02.001 |
| [5] |
Nanda R, Chow LQ, Dees EC, et al. Pembrolizumab in Patients With Advanced Triple-Negative Breast Cancer: Phase Ib KEYNOTE-012 Study[J]. J Clin Oncol, 2016, 34(21): 2460-2467. DOI:10.1200/JCO.2015.64.8931 |
| [6] |
Schmid P, Salgado R, Park YH, et al. Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: results from the phase 1b open-label, multicohort KEYNOTE-173 study[J]. Ann Oncol, 2020, 31(5): 569-581. DOI:10.1016/j.annonc.2020.01.072 |
| [7] |
Cortes J, Cescon DW, Rugo HS, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial[J]. Lancet, 2020, 396(10265): 1817-1828. DOI:10.1016/S0140-6736(20)32531-9 |
| [8] |
Schmid P, Cortes J, Pusztai L, et al. Pembrolizumab for Early Triple-Negative Breast Cancer[J]. N Engl J Med, 2020, 382(9): 810-821. DOI:10.1056/NEJMoa1910549 |
| [9] |
Sidaway P. Bladder cancer: Atezolizumab effective against advanced-stage disease[J]. Nat Rev Urol, 2016, 13(5): 238. |
| [10] |
Schmid P, Adams S, Rugo HS, et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer[J]. N Engl J Med, 2018, 379(22): 2108-2121. DOI:10.1056/NEJMoa1809615 |
| [11] |
Adams S, Diamond JR, Hamilton E, et al. Atezolizumab Plus nab-Paclitaxel in the Treatment of Metastatic Triple-Negative Breast Cancer With 2-Year Survival Follow-up: A Phase 1b Clinical Trial[J]. JAMA Oncol, 2019, 5(3): 334-342. DOI:10.1001/jamaoncol.2018.5152 |
| [12] |
Harbeck N, Zhang H, Barrios CH, et al. LBA11 IMpassion031: Results from a phase Ⅲ study of neoadjuvant (neoadj)atezolizumab+chemotherapy in early triple-negative breast cancer (TNBC)[J]. Ann Oncol, 2020, 31(Suppl 4): S1144. |
| [13] |
Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors in cancer therapy: a focus on T-regulatory cells[J]. Immunol Cell Biol, 2018, 96(1): 21-33. DOI:10.1111/imcb.1003 |
| [14] |
Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation[J]. Immunity, 1994, 1(5): 405-413. DOI:10.1016/1074-7613(94)90071-X |
| [15] |
Postow MA, Chesney J, Pavlick AC, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma[J]. N Engl J Med, 2015, 372(21): 2006-2017. DOI:10.1056/NEJMoa1414428 |
| [16] |
Hodi FS, Chesney J, Pavlick AC, et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial[J]. Lancet Oncol, 2016, 17(11): 1558-1568. DOI:10.1016/S1470-2045(16)30366-7 |
| [17] |
Santa-Maria CA, Kato T, Park JH, et al. Durvalumab and tremelimumab in metastatic breast cancer (MBC): Immunotherapy and immunopharmacogenomic dynamics[J]. J Clin Oncol, 2017, 35(15_suppl): 3052-3052. DOI:10.1200/JCO.2017.35.15_suppl.3052 |
| [18] |
Triebel F, Jitsukawa S, Baixeras E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4[J]. J Exp Med, 1990, 171(5): 1393-1405. DOI:10.1084/jem.171.5.1393 |
| [19] |
Huard B, Mastrangeli R, Prigent P, et al. Characterization of the major histocompatibility complex class Ⅱ binding site on LAG-3 protein[J]. Proc Natl Acad Sci U S A, 1997, 94(11): 5744-5749. DOI:10.1073/pnas.94.11.5744 |
| [20] |
Wang JH, Meijers R, Xiong Y, et al. Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class Ⅱ MHC molecule[J]. Proc Natl Acad Sci U S A, 2001, 98(19): 10799-10804. DOI:10.1073/pnas.191124098 |
| [21] |
Andreae S, Piras F, Burdin N, et al. Maturation and activation of dendritic cells induced by lymphocyte activation gene-3 (CD223)[J]. J Immunol, 2002, 168(8): 3874-3880. DOI:10.4049/jimmunol.168.8.3874 |
| [22] |
Avice MN, Sarfati M, Triebel F, et al. Lymphocyte activation gene-3, a MHC class Ⅱ ligand expressed on activated T cells, stimulates TNF-alpha and IL-12 production by monocytes and dendritic cells[J]. J Immunol, 1999, 162(5): 2748-2753. DOI:10.4049/jimmunol.162.5.2748 |
| [23] |
Buisson S, Triebel F. MHC class Ⅱ engagement by its ligand LAG-3 (CD223) leads to a distinct pattern of chemokine and chemokine receptor expression by human dendritic cells[J]. Vaccine, 2003, 21(9-10): 862-868. DOI:10.1016/S0264-410X(02)00533-9 |
| [24] |
Brignone C, Grygar C, Marcu M, et al. A soluble form of lymphocyte activation gene-3 (IMP321) induces activation of a large range of human effector cytotoxic cells[J]. J Immunol, 2007, 179(6): 4202-4211. DOI:10.4049/jimmunol.179.6.4202 |
| [25] |
Burugu S, Gao D, Leung S, et al. LAG3+ tumor imfiltrating Lymphocytes in breast cancer clinical correlates and association with PD-I/PD-L1+ tumors[J]. Ann Oncol, 2017, 28(12): 2977-2984. DOI:10.1093/annonc/mdx557 |
| [26] |
Wang Y, Dong T, Xuan Q, et al. Lymphocyte-Activation Gene-3 Expression and Prognostic Value in Neoadjuvant-Treated Triple-Negative Breast Cancer[J]. J Breast Cancer, 2018, 21(2): 124-133. DOI:10.4048/jbc.2018.21.2.124 |
| [27] |
Woo SR, Turnis ME, Goldberg MV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape[J]. Cancer Res, 2012, 72(4): 917-927. DOI:10.1158/0008-5472.CAN-11-1620 |
| [28] |
Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer[J]. Proc Natl Acad Sci U S A, 2010, 107(17): 7875-7880. DOI:10.1073/pnas.1003345107 |
| [29] |
Ascierto PA, McArthur GA. Checkpoint inhibitors in melanoma and early phase development in solid tumors: what's the future?[J]. J Transl Med, 2017, 15(1): 173. DOI:10.1186/s12967-017-1278-5 |
| [30] |
Tentori L, Graziani G. Chemopotentiation by PARP inhibitors in cancer therapy[J]. Pharmacol Res, 2005, 52(1): 25-33. DOI:10.1016/j.phrs.2005.02.010 |
| [31] |
De Vos M, Schreiber V, Dantzer F. The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art[J]. Biochem Pharmacol, 2012, 84(2): 137-146. DOI:10.1016/j.bcp.2012.03.018 |
| [32] |
Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy[J]. Nature, 2005, 434(7035): 917-921. DOI:10.1038/nature03445 |
| [33] |
Robson M, Im SA, Senkus E, et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation[J]. N Engl J Med, 2017, 377(6): 523-533. DOI:10.1056/NEJMoa1706450 |
| [34] |
Robson ME, Tung N, Conte P, et al. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician's choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer[J]. Ann Oncol, 2019, 30(4): 558-566. DOI:10.1093/annonc/mdz012 |
| [35] |
Ibrahim YH, García-García C, Serra V, et al. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition[J]. Cancer Discov, 2012, 2(11): 1036-1047. DOI:10.1158/2159-8290.CD-11-0348 |
| [36] |
Vinayak S, Tolaney SM, Schwartzberg L, et al. Open-label Clinical Trial of Niraparib Combined With Pembrolizumab for Treatment of Advanced or Metastatic Triple-Negative Breast Cancer[J]. JAMA Oncol, 2019, 5(8): 1132-1140. DOI:10.1001/jamaoncol.2019.1029 |
| [37] |
Gucalp A, Tolaney S, Isakoff SJ, et al. Phase Ⅱ trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic Breast Cancer[J]. Clin Cancer Res, 2013, 19(19): 5505-5512. DOI:10.1158/1078-0432.CCR-12-3327 |
| [38] |
Modi S, Pusztai L, Forero A, et al. Abstract PD3-14: Phase 1 study of the antibody-drug conjugate SGN-LIV1A in patients with heavily pretreated triple-negative metastatic breast cancer[J]. Cancer Res, 2018, 78(4_suppl): PD3-14. |
| [39] |
Ogitani Y, Aida T, Hagihara K, et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1[J]. Clin Cancer Res, 2016, 22(20): 5097-5108. DOI:10.1158/1078-0432.CCR-15-2822 |
| [40] |
Modi S, Ohtani S, Lee CC, et al. A phase Ⅲ, multicenter, randomized, open label trial of [fam-] trastuzumab deruxtecan (DS-8201a) versus investigator's choice in HER2-low breast cancer[J]. J Clin Oncol, 2019, 37(15_suppl): TPS1102. DOI:10.1200/JCO.2019.37.15_suppl.TPS1102 |
| [41] |
Rose AA, Grosset AA, Dong Z, et al. Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer[J]. Clin Cancer Res, 2010, 16(7): 2147-2156. DOI:10.1158/1078-0432.CCR-09-1611 |
| [42] |
Bardia A, Hurvitz SA, Tolaney SM, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer[J]. N Engl J Med, 2021, 384(16): 1529-1541. DOI:10.1056/NEJMoa2028485 |
| [43] |
Cardillo TM, Sharkey RM, Rossi DL, et al. Synthetic ethality exploitation by an anti-Trop-2-SN-38 antibody-drug conjugate, IMMU-132, plus PARP inhibitors in BRCA1/2-wild-type triple-negative breast cancer[J]. Clin Cancer Res, 2017, 23(13): 3405-3415. DOI:10.1158/1078-0432.CCR-16-2401 |
| [44] |
Ikeda M, Kato K, Yamaguchi M, et al. Cell surface antibody retention influences In Vivo antitumor activity mediated by antibody-dependent cellular cytotoxicity[J]. Anticancer Res, 2016, 36(11): 5937-5944. DOI:10.21873/anticanres.11181 |
| [45] |
Liu H, Bai L, Huang L, et al. Bispecific antibody targeting TROP2xCD3 suppresses tumor growth of triple negative breast cancer[J]. J Immunother Cancer, 2021, 9(10): e003468. DOI:10.1136/jitc-2021-003468 |
| [46] |
Si Y, Xu Y, Guan J, et al. Anti-EGFR antibody-drug conjugate for triple-negative breast cancer therapy[J]. Eng Life Sci, 2020, 21(1-2): 37-44. |
| [47] |
Gonzalez-Conchas GA, Rodriguez-Romo L, Hernandez-Barajas D, et al. Epidermal growth factor receptor overexpression and outcomes in early breast cancer: A systematic review and a meta-analysis[J]. Cancer Treat Rev, 2018, 62: 1-8. DOI:10.1016/j.ctrv.2017.10.008 |
| [48] |
Abdelrahman AE, Rashed HE, Abdelgawad M, et al. Prognostic impact of EGFR and cytokeratin 5/6 immunohistochemical expression in triple-negative breast cancer[J]. Ann Diagn Pathol, 2017, 28: 43-53. DOI:10.1016/j.anndiagpath.2017.01.009 |
| [49] |
Carey LA, Rugo HS, Marcom PK, et al. TBCRC 001: randomized phase Ⅱ study of cetuximab in combination with carboplatin in stage Ⅳ triple-negative breast cancer[J]. J Clin Oncol, 2012, 30(21): 2615-2623. DOI:10.1200/JCO.2010.34.5579 |
| [50] |
Cho SY. Identification of ERBB Pathway-Activated Cells in Triple-Negative Breast Cancer[J]. Genomics Inform, 2019, 17(1): e3. DOI:10.5808/GI.2019.17.1.e3 |
| [51] |
da Silva JL, Cardoso Nunes NC, Izetti P, et al. Triple negative breast cancer: A thorough review of biomarkers[J]. Crit Rev Oncol Hematol, 2020, 145: 102855. DOI:10.1016/j.critrevonc.2019.102855 |
| [52] |
Miller KD, Chap LI, Holmes FA, et al. Randomized phase Ⅲ trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer[J]. J Clin Oncol, 2005, 23(4): 792-799. DOI:10.1200/JCO.2005.05.098 |
| [53] |
Carpenter D, Kesselheim AS, Joffe S. Reputation and precedent in the bevacizumab decision[J]. N Engl J Med, 2011, 365(2): e3. DOI:10.1056/NEJMp1107201 |
| [54] |
O'Shaughnessy J, Romieu G, Diéras V, et al. Ab-stract P6-12-03: Meta-analysis of patients with triple-negative breast cancer (TNBC)from three randomized trials of first-line bevacizumab (BV) and chemotherapy treat-ment for metastatic breast cancer (MBC)[J]. Cancer Res, 2010, 70(24_suppl): P6-12-03. |
| [55] |
Schneider BP, Gray RJ, Radovich M, et al. Prognostic and predictive value of tumor vascular endothelial growth factor gene amplification in metastatic breast cancer treated with paclitaxel with and with-out bevacizumab; results from ECOG 2100 trial[J]. Clin Cancer Res, 2013, 19(5): 1281-1289. DOI:10.1158/1078-0432.CCR-12-3029 |
| [56] |
von Minckwitz G, Eidtmann H, Rezai M, et al. Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer[J]. N Engl J Med, 2012, 366(4): 299-309. DOI:10.1056/NEJMoa1111065 |
| [57] |
Miller KD, O'Neill A, Gradishar W, et al. Double-Blind Phase ⅢTrial of Adjuvant Chemotherapy With and Without Bevacizumab in Patients With Lymph Node-Positive and High-Risk Lymph Node-Negative Breast Cancer (E5103)[J]. J Clin Oncol, 2018, 36(25): 2621-2629. DOI:10.1200/JCO.2018.79.2028 |
| [58] |
Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer[J]. N Engl J Med, 2007, 357(26): 2666-2676. DOI:10.1056/NEJMoa072113 |
| [59] |
Robert NJ, Diéras V, Glaspy J, et al. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer[J]. J Clin Oncol, 2011, 29(10): 1252-1260. DOI:10.1200/JCO.2010.28.0982 |
| [60] |
Brufsky AM, Hurvitz S, Perez E, et al. RIBBON-2: a randomized, double-blind, placebo-controlled, phase Ⅲ trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer[J]. J Clin Oncol, 2011, 29(32): 4286-4293. DOI:10.1200/JCO.2010.34.1255 |
| [61] |
Bear HD, Tang G, Rastogi P, et al. Neoadjuvant plus adjuventbevacizumab in early breast cancer(NSABPB-40[NRGOncology]): secondary outcomes of aphase3, Randomised controlled tria[J]. Lancet Oncol, 2015, 16(9): 1037-1048. DOI:10.1016/S1470-2045(15)00041-8 |
| [62] |
Li YH, Zhou Y, Wang YW, et al. Comparison of apatinib and capecitabine (Xeloda) with capecitabine (Xeloda) in advanced triple-negative breast cancer as third-line therapy: A retrospective study[J]. Medicine (Baltimore), 2018, 97(36): e12222. DOI:10.1097/MD.0000000000012222 |
| [63] |
康一坤, 袁芃. 三阴性乳腺癌的治疗进展[J]. 肿瘤防治研究, 2022, 49(8): 812-819. [Kang YK, Yuan P. Advances in Treatment of Triple Negative Breast Cancer[J]. Zhong Liu Fang Zhi Yan Jiu, 2022, 49(8): 812-819.] |
| [64] |
Gerratana L, Basile D, Buono G, et al. Androgen receptor in triple negative breast cancer: A potential target for the targetless subtype[J]. Cancer Treat Rev, 2018, 68: 102-110. DOI:10.1016/j.ctrv.2018.06.005 |
| [65] |
Gucalp A, Tolaney S, Isakoff SJ, et al. PhaseⅡ trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic Breast Cancer[J]. Clin Cancer Res, 2013, 19(19): 5505-5512. DOI:10.1158/1078-0432.CCR-12-3327 |
| [66] |
Traina TA, Miller K, Yardley DA, et al. Enzalutamide for the Treatment of Androgen Receptor-Expressing Triple-Negative Breast Cancer[J]. J Clin Oncol, 2018, 36(9): 884-890. DOI:10.1200/JCO.2016.71.3495 |
2023, Vol. 50


