文章信息
- 铁死亡介导的抗肿瘤免疫治疗研究进展
- Research Progress on Ferroptosis-mediated Antitumor Immunotherapy
- 肿瘤防治研究, 2023, 50(7): 700-704
- Cancer Research on Prevention and Treatment, 2023, 50(7): 700-704
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2023.22.1321
- 收稿日期: 2022-11-09
- 修回日期: 2023-02-08
2. 210009 南京,中国药科大学国家药学实验教学示范中心
2. National Pharmacy Experimental Teaching Demonstration Center, China Pharmaceutical University, Nanjing 210009, China
据2020年全球癌症统计数据分析显示,我国正处于癌症转型期,并且在肺癌、结直肠癌和女性乳腺癌方面所承受的负担不断加重[1]。临床上,癌症患者多采用化疗、放疗等治疗手段,不良反应大,且易产生耐药性。铁死亡是一种调节性、铁依赖性细胞死亡的新形式,由Dixon等[2]于2012年提出。研究发现,癌细胞比正常上皮细胞对铁死亡更为敏感,如肺癌和乳腺癌[3]。此外,在耐药的肿瘤细胞中,间充质标志物上调和上皮标志物下调的细胞表现为对铁死亡的易感性[2]。因此,存在适当的治疗窗,可以在保留正常组织的同时,选择性诱导肿瘤细胞铁死亡。目前,铁死亡介导的免疫治疗以及与其他治疗方法的联合应用在抗肿瘤治疗中展现出广阔的前景。本文将基于铁死亡与免疫细胞的紧密联系,就铁死亡介导的抗肿瘤免疫治疗展开综述。
1 铁死亡铁死亡最主要的特征在于铁催化过量存在于细胞膜中的含多不饱和脂肪酸(polyunsaturated fatty acids, PUFA)的磷脂(phospholipids, PLs)过氧化。能量应激通过激活腺苷酸活化蛋白激酶,限制PUFA的生物合成并对抗铁死亡[4]。Yi等研究证明,过度激活的PI3K-AKT-mTORC1信号通路通过固醇调节元件结合蛋白1和硬脂酰辅酶A去饱和酶1介导生成单不饱和脂肪酸(monounsaturated fatty acid, MUFA),保护肿瘤细胞免受氧化应激和铁死亡的影响[5]。通过调节铁含量、含铁酶的活性以及抗氧化途径等,也可以使肿瘤细胞对铁死亡敏感。细胞铁稳态受铁调蛋白1和铁调节蛋白2的精细控制[6-7]。维生素E会影响脂氧合酶(lipoxygenase, LOX)活性[8]。Zou等发现,细胞色素P450氧化还原酶可以促进含PUFA的PLs发生过氧化[9]。Shigeta等研究表明,多药耐药基因MDR1通过促使谷胱甘肽(GSH)外流,提高肿瘤细胞对铁死亡的敏感度[10]。此外,Zeitler等也研究发现,免疫细胞分泌的氨基酸氧化酶白介素4诱导蛋白1(interleukin 4 induced 1, IL4i1)无细胞毒性,它可以产生代谢物吲哚3丙酮酸盐,并通过自由基清除机制和协调基因表达谱来抑制肿瘤细胞铁死亡[11]。由此推测,IL4i1抑制剂可以调节肿瘤细胞的死亡途径。
2 铁死亡与免疫细胞 2.1 铁死亡与CD8+T细胞CD8+T细胞是肿瘤微环境(tumor microenvironment, TME)中抗肿瘤免疫的主要执行者。CD8+T细胞通过释放干扰素γ(interferonγ, IFNγ)降低胱氨酸/谷氨酸转运蛋白(System Xc-)亚单位SLC3A2和SLC7A11的表达水平,而促进肿瘤细胞铁死亡[12]。研究表明,T细胞来源的IFNγ与花生四烯酸(arachidonic acid, AA)结合可以诱导免疫原性肿瘤细胞的铁死亡。IFNγ通过刺激脂酰辅酶A合成酶长链家族成员4(acyl-CoA synthetase long-chain family 4, ACSL4)改变肿瘤细胞的脂质状态,从而增加AA与酰基链磷脂的结合[13]。发生铁死亡的肿瘤细胞可以释放多种免疫刺激信号,如高迁移率族框1、钙网蛋白、ATP和磷脂酰乙醇胺等。这些信号可以促进树突状细胞成熟,提高巨噬细胞吞噬铁死亡细胞的效率,并进一步增强CD8+T细胞对肿瘤的浸润[12]。然而,有研究表明,TME中CD36介导的铁死亡会抑制CD8+T细胞效应功能并损害其抗肿瘤能力。CD36通过肿瘤浸润CD8+T细胞摄取脂肪酸,诱导脂质过氧化和铁死亡,导致细胞毒性因子减少和抗肿瘤能力受损[14]。因此,铁死亡在某种程度上也会抑制抗肿瘤免疫并促进肿瘤生长。
2.2 铁死亡与巨噬细胞TME中M1型巨噬细胞对GPX4缺失诱导的铁死亡表现出更高的抵抗性。M2亚型由于缺乏诱导型一氧化氮合酶表达和一氧化氮生成,因此更容易受到GPX4抑制引发铁死亡的影响[15]。Dai等发现,铁死亡可以通过驱动TME中巨噬细胞的极化来促进肿瘤生长。KRASG12D蛋白是KRAS蛋白最常见的突变形式。在氧化应激诱导下,肿瘤细胞发生自噬依赖性铁死亡,KRASG12D从肿瘤细胞释放到TME中被巨噬细胞吸收,并通过STAT3依赖的脂肪酸氧化途径,诱导巨噬细胞极化为M2亚型,加速肿瘤的发展[16]。因此,直接靶向细胞内信号通路以增加M1/M2的比率,可能是肿瘤治疗的另一个方向。
2.3 铁死亡与自然杀伤细胞自然杀伤细胞(natural killer cell, NK)功能缺陷导致肿瘤发生率和生长率提高。研究发现,TME中功能障碍的NK细胞表现出与脂质过氧化、氧化损伤有关蛋白表达的增加,且细胞形态与铁死亡细胞相似。脂质过氧化相关的氧化应激会抑制NK细胞的葡萄糖代谢,导致TME中NK细胞功能障碍[17]。激活的核相关因子NRF2在体内可以挽救NK细胞的葡萄糖代谢和抗肿瘤活性[18]。由此推测,TME中的NK细胞发生铁死亡,导致功能障碍,造成肿瘤细胞免疫逃逸。然而,铁死亡诱导剂和抑制剂对肿瘤相关NK细胞存活和功能的影响还有待进一步探讨。
2.4 铁死亡与树突状细胞树突状细胞功能也受铁死亡的影响。Wiernicki等发现,骨髓来源初始树突状细胞在成熟过程中,LOX12/15表达水平升高,产生大量的脂质过氧化物,可以反向抑制树突状细胞成熟[19]。研究表明,肿瘤相关树突状细胞中4羟基壬烯醛蛋白质复合物水平的增加,可能触发X-box结合蛋白1的激活和树突状细胞的功能失常[20]。因此,以GPX4或System Xc-为靶标可能会削弱TME中初始树突状细胞的成熟过程和正常树突状细胞功能。
3 铁死亡介导的抗肿瘤免疫治疗 3.1 免疫治疗免疫检查点抑制剂(immunocheckpoint inhibitor, ICIs)主要通过激活CD8+T细胞,释放IFNγ,激活JAK-STAT1通路,进而下调SLC7A11和SLC3A2的表达,促进肿瘤细胞脂质过氧化依赖性铁死亡[12]。在临床中,ACSL4提高了ICIs治疗的癌症患者生存率[13]。同样,在黑色素瘤患者中,SLC3A2表达的降低与ICIs疗效的提高密切相关[21]。铁死亡细胞释放的损伤相关分子促进树突状细胞成熟并诱导CD8+T细胞激活。激活的CD8+T细胞通过与TYRO3结合抑制铁死亡,并且通过降低M1/M2巨噬细胞比例促进了促肿瘤微环境的发展,导致抗PD-1/PD-L1治疗的耐药[22]。研究发现,抗PD-1药物与转化生长因子β抑制剂可以协同增强TME中的免疫反应,导致M1巨噬细胞中H2O2的含量增加,促进Fenton反应,诱导肿瘤细胞铁死亡[23]。由此推测,铁死亡对肿瘤免疫治疗的长期影响取决于肿瘤细胞和各种免疫细胞亚群之间的相互作用。
3.2 免疫治疗与纳米治疗纳米技术在肿瘤治疗方面取得了显著的成功,然而,由于残余细胞毒性等原因,在临床应用方面受到严峻的挑战。研究表明,由柳氮磺胺吡啶(sulfasalazine, SAS)负载的磁性纳米颗粒(Fe3O4)和血小板(platelet, PLT)膜组装而成的Fe3O4-SAS@PLT介导的铁死亡,不仅能诱导肿瘤特异性免疫应答,还能有效地将免疫抑制型M2再极化为抗肿瘤型M1,调节肿瘤细胞与巨噬细胞间的抗肿瘤相互作用[24]。此外,在血红蛋白(Hemoglobin, Hb)与光敏剂氯蛋白e6(chlorin e6, Ce6)连接,负载索拉菲尼(Sorafenib, SRF)构建的纳米颗粒SRF@Hb-Ce6中,Hb利用自身与氧结合的铁,在为光动力疗法(photo dynamic therapy, PDT)提供氧气的同时,为铁死亡提供铁。PDT通过诱导免疫细胞分泌IFNγ增强了铁死亡[25]。综上所述,抗癌巨噬细胞天然转化联合铁死亡治疗可能具有广阔的应用前景。
3.3 免疫治疗与放射治疗放射治疗可直接诱导癌细胞铁死亡。毛细血管扩张突变基因(ataxia telangiectasia-mutated gene, ATM)介导的SLC7A11下调和ACSL4上调是放疗诱导癌细胞铁死亡的重要原因[26-27]。但随着放射治疗的进行,癌细胞进化出适应性反应,例如上调SLC7A11或GPX4表达。研究证明,放射治疗介导的p53激活可以拮抗放射治疗诱导的SLC7A11表达,抑制GSH合成,从而促进放疗诱导的脂质过氧化和铁死亡[3]。Koppula等发现,通过抑制铁死亡抑制蛋白1来诱导铁死亡,可以使Kelch样环氧氯丙烷相关蛋白1缺陷的癌细胞或患者来源的异种移植肿瘤模型对放疗敏感[28]。此外,研究发现,免疫治疗激活的CD8+T细胞和放射治疗激活的巨噬细胞释放的IFNγ可以独立而协同地抑制SLC7A11,导致胱氨酸摄取减少,进而增加脂质过氧化水平和铁死亡,使肿瘤细胞对放射治疗敏感[26]。综上,放射治疗联合铁死亡诱导剂和免疫检查点抑制剂可能成为消除放射治疗抵抗的新策略。
3.4 免疫治疗与靶向治疗肿瘤细胞对靶向治疗的抵抗仍然是一个巨大挑战。铁死亡诱导可以有效逆转肿瘤的多药耐药,突破化疗药物的耐药局限。目前,已应用于临床或具有强大临床转化潜力的促铁死亡药物,见表 1。免疫治疗与靶向治疗联用协同抗肿瘤效应存在较大的开发潜力。
|
铁死亡在抗肿瘤免疫中是一把双刃剑。一方面,诱导铁死亡可能抑制抗肿瘤免疫细胞的存活并导致功能缺陷,如CD8+T细胞、NK细胞和树突状细胞。另一方面,一些免疫抑制细胞也需要GPX4或其他潜在因子来防止铁死亡和维持肿瘤细胞活化,如M2型巨噬细胞。因此,提高铁死亡诱导剂特异性,并严格控制铁死亡诱导剂的用量,对于减少正常组织的不良反应至关重要。此外,癌细胞的异质性导致其对铁死亡敏感度存在差异。因此,调节影响癌细胞铁死亡敏感度的关键因子,对避免恶性肿瘤从抗癌治疗中逃逸具有重要的临床意义。综上,铁死亡诱导在抗肿瘤治疗中存在巨大潜力,并且随着我们对铁死亡及其与其他生物学过程关系理解的加深,同时调节多种细胞死亡途径将有助于改善抗肿瘤的治疗效果。进一步深入研究铁死亡在TME中的具体调节机制,将有助于设计靶向癌症治疗的铁死亡诱导剂,为临床肿瘤耐药治疗提供通过铁死亡触发免疫反应的新选择。
利益冲突声明:
所有作者均声明不存在利益冲突。
作者贡献:
黄桂芹:论文构思、撰写及修改
付宇、缪明星:指导论文修改
颜天华:论文构思、写作指导及审阅
| [1] |
Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791. DOI:10.1097/CM9.0000000000001474 |
| [2] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI:10.1016/j.cell.2012.03.042 |
| [3] |
Lei G, Zhang Y, Hong T, et al. Ferroptosis as a mechanism to mediate p53 function in tumor radiosensitivity[J]. Oncogene, 2021, 40(20): 3533-3547. DOI:10.1038/s41388-021-01790-w |
| [4] |
Lee H, Zandkarimi F, Zhang Y, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020, 22(2): 225-234. DOI:10.1038/s41556-020-0461-8 |
| [5] |
Yi J, Zhu J, Wu J, et al. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis[J]. Proc Natl Acad Sci U S A, 2020, 117(49): 31189-31197. DOI:10.1073/pnas.2017152117 |
| [6] |
Li Y, Jin C, Shen M, et al. Iron regulatory protein 2 is required for artemether -mediated anti-hepatic fibrosis through ferroptosis pathway[J]. Free Radic Biol Med, 2020, 160: 845-859. DOI:10.1016/j.freeradbiomed.2020.09.008 |
| [7] |
Yao F, Cui X, Zhang Y, et al. Iron regulatory protein 1 promotes ferroptosis by sustaining cellular iron homeostasis in melanoma[J]. Oncol Lett, 2021, 22(3): 657. DOI:10.3892/ol.2021.12918 |
| [8] |
Hu Q, Zhang Y, Lou H, et al. GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis[J]. Cell Death Dis, 2021, 12(7): 706. DOI:10.1038/s41419-021-04008-9 |
| [9] |
Zou Y, Li H, Graham ET, et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis[J]. Nat Chem Biol, 2020, 16(3): 302-309. DOI:10.1038/s41589-020-0472-6 |
| [10] |
Shigeta K, Hasegawa M, Kikuchi E, et al. Role of the MUC1-C oncoprotein in the acquisition of cisplatin resistance by urothelial carcinoma[J]. Cancer Sci, 2020, 111(10): 3639-3652. DOI:10.1111/cas.14574 |
| [11] |
Zeitler L, Fiore A, Meyer C, et al. Anti-ferroptotic mechanism of IL4i1-mediated amino acid metabolism[J]. Elife, 2021, 10: e64806. DOI:10.7554/eLife.64806 |
| [12] |
Wang W, Green M, Choi JE, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019, 569(7755): 270-274. DOI:10.1038/s41586-019-1170-y |
| [13] |
Liao P, Wang W, Wang W, et al. CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4[J]. Cancer Cell, 2022, 40(4): 365-378. DOI:10.1016/j.ccell.2022.02.003 |
| [14] |
Ma X, Xiao L, Liu L, et al. CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability[J]. Cell Metab, 2021, 33(5): 1001-1012. DOI:10.1016/j.cmet.2021.02.015 |
| [15] |
Kapralov AA, Yang Q, Dar HH, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death[J]. Nat Chem Biol, 2020, 16(3): 278-290. DOI:10.1038/s41589-019-0462-8 |
| [16] |
Dai E, Han L, Liu J, et al. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein[J]. Autophagy, 2020, 16(11): 2069-2083. DOI:10.1080/15548627.2020.1714209 |
| [17] |
Poznanski SM, Singh K, Ritchie TM, et al. Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment[J]. Cell Metab, 2021, 33(6): 1205-1220. DOI:10.1016/j.cmet.2021.03.023 |
| [18] |
Renken S, Nakajima T, Magalhaes I, et al. Targeting of Nrf2 improves antitumoral responses by human NK cells, TIL and CAR T cells during oxidative stress[J]. J Immunother Cancer, 2022, 10(6): e004458. DOI:10.1136/jitc-2021-004458 |
| [19] |
Wiernicki B, Maschalidi S, Pinney J, et al. Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity[J]. Nat Commun, 2022, 13(1): 3676. DOI:10.1038/s41467-022-31218-2 |
| [20] |
Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, et al. ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis[J]. Cell, 2015, 161(7): 1527-1538. DOI:10.1016/j.cell.2015.05.025 |
| [21] |
Ubellacker JM, Tasdogan A, Ramesh V, et al. Lymph protects metastasizing melanoma cells from ferroptosis[J]. Nature, 2020, 585(7823): 113-118. DOI:10.1038/s41586-020-2623-z |
| [22] |
Jiang Z, Lim SO, Yan M, et al. TYRO3 induces anti-PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis[J]. J Clin Invest, 2021, 131(8): e139434. DOI:10.1172/JCI139434 |
| [23] |
Zhang F, Li F, Lu GH, et al. Engineering Magnetosomes for Ferroptosis/Immunomodulation Synergism in Cancer[J]. ACS Nano, 2019, 13(5): 5662-5673. DOI:10.1021/acsnano.9b00892 |
| [24] |
Jiang Q, Wang K, Zhang X, et al. Platelet Membrane-Camouflaged Magnetic Nanoparticles for Ferroptosis-Enhanced Cancer Immunotherapy[J]. Small, 2020, 16(22): e2001704. DOI:10.1002/smll.202001704 |
| [25] |
Xu T, Ma Y, Yuan Q, et al. Enhanced Ferroptosis by Oxygen-Boosted Phototherapy Based on a 2-in-1 Nanoplatform of Ferrous Hemoglobin for Tumor Synergistic Therapy[J]. ACS Nano, 2020, 14(3): 3414-3425. DOI:10.1021/acsnano.9b09426 |
| [26] |
Lang X, Green MD, Wang W, et al. Radiotherapy and Immunotherapy Promote Tumoral Lipid Oxidation and Ferroptosis via Synergistic Repression of SLC7A11[J]. Cancer Discov, 2019, 9(12): 1673-1685. DOI:10.1158/2159-8290.CD-19-0338 |
| [27] |
Kwon YS, Lee MG, Baek J, et al. Acyl-CoA synthetase-4 mediates radioresistance of breast cancer cells by regulating FOXM1[J]. Biochem Pharmacol, 2021, 192: 114718. DOI:10.1016/j.bcp.2021.114718 |
| [28] |
Koppula P, Lei G, Zhang Y, et al. A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers[J]. Nat Commun, 2022, 13(1): 2206. DOI:10.1038/s41467-022-29905-1 |
| [29] |
Radu AF, Bungau SG. Management of Rheumatoid Arthritis: An Overview[J]. Cells, 2021, 10(11): 2857. DOI:10.3390/cells10112857 |
| [30] |
Yuan S, Wei C, Liu G, et al. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1alpha/SLC7A11 pathway[J]. Cell Prolif, 2022, 55(1): e13158. |
| [31] |
Viswanathan VS, Ryan MJ, Dhruv HD, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway[J]. Nature, 2017, 547(7664): 453-457. DOI:10.1038/nature23007 |
| [32] |
Yi R, Wang H, Deng C, et al. Dihydroartemisinin initiates ferroptosis in glioblastoma through GPX4 inhibition[J]. Biosci Rep, 2020, 40(6): BSR20193314. DOI:10.1042/BSR20193314 |
| [33] |
Chen GQ, Benthani FA, Wu J, et al. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis[J]. Cell Death Differ, 2020, 27(1): 242-254. DOI:10.1038/s41418-019-0352-3 |
| [34] |
Guan Z, Chen J, Li X, et al. Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation[J]. Biosci Rep, 2020, 40(8): BSR20201807. DOI:10.1042/BSR20201807 |
| [35] |
Guo J, Xu B, Han Q, et al. Ferroptosis: A Novel Anti-tumor Action for Cisplatin[J]. Cancer Res Treat, 2018, 50(2): 445-460. DOI:10.4143/crt.2016.572 |
| [36] |
Ma S, Henson ES, Chen Y, et al. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells[J]. Cell Death Dis, 2016, 7(7): e2307. DOI:10.1038/cddis.2016.208 |
| [37] |
Villalpando-Rodriguez GE, Blankstein AR, Konzelman C, et al. Lysosomal Destabilizing Drug Siramesine and the Dual Tyrosine Kinase Inhibitor Lapatinib Induce a Synergistic Ferroptosis through Reduced Heme Oxygenase-1 (HO-1) Levels[J]. Oxid Med Cell Longev, 2019, 2019: 9561281. |
| [38] |
Kong Z, Liu R, Cheng Y. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway[J]. Biomed Pharmacother, 2019, 109: 2043-2053. DOI:10.1016/j.biopha.2018.11.030 |
| [39] |
Okon IS, Coughlan KA, Zhang M, et al. Gefitinib-mediated reactive oxygen specie (ROS) instigates mitochondrial dysfunction and drug resistance in lung cancer cells[J]. J Biol Chem, 2015, 290(14): 9101-9110. DOI:10.1074/jbc.M114.631580 |
| [40] |
Sugiyama A, Ohta T, Obata M, et al. xCT inhibitor sulfasalazine depletes paclitaxel-resistant tumor cells through ferroptosis in uterine serous carcinoma[J]. Oncol Lett, 2020, 20(3): 2689-2700. DOI:10.3892/ol.2020.11813 |
| [41] |
Zhu S, Zhang Q, Sun X, et al. HSPA5 Regulates Ferroptotic Cell Death in Cancer Cells[J]. Cancer Res, 2017, 77(8): 2064-2077. DOI:10.1158/0008-5472.CAN-16-1979 |
| [42] |
Song Q, Peng S, Sun Z, et al. Temozolomide Drives Ferroptosis via a DMT1-Dependent Pathway in Glioblastoma Cells[J]. Yonsei Med J, 2021, 62(9): 843-849. DOI:10.3349/ymj.2021.62.9.843 |
| [43] |
Kasukabe T, Honma Y, Okabe-Kado J, et al. Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells[J]. Oncol Rep, 2016, 36(2): 968-976. DOI:10.3892/or.2016.4867 |
| [44] |
Zhang Y, Tan H, Daniels JD, et al. Imidazole Ketone Erastin Induces Ferroptosis and Slows Tumor Growth in a Mouse Lymphoma Model[J]. Cell Chem Biol, 2019, 26(5): 623-633. DOI:10.1016/j.chembiol.2019.01.008 |
| [45] |
Yangyun W, Guowei S, Shufen S, et al. Everolimus accelerates Erastin and RSL3-induced ferroptosis in renal cell carcinoma[J]. Gene, 2022, 809: 145992. DOI:10.1016/j.gene.2021.145992 |
| [46] |
Hassannia B, Wiernicki B, Ingold I, et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma[J]. J Clin Invest, 2018, 128(8): 3341-3355. DOI:10.1172/JCI99032 |
| [47] |
Llabani E, Hicklin RW, Lee HY, et al. Diverse compounds from pleuromutilin lead to a thioredoxin inhibitor and inducer of ferroptosis[J]. Nat Chem, 2019, 11(6): 521-532. DOI:10.1038/s41557-019-0261-6 |
| [48] |
Mai TT, Hamai A, Hienzsch A, et al. Salinomycin kills cancer stem cells by sequestering iron in lysosomes[J]. Nat Chem, 2017, 9(10): 1025-1033. DOI:10.1038/nchem.2778 |
| [49] |
Kerimoglu B, Lamb C, Mcpherson RD, et al. Cyst(e)inase-Rapamycin Combination Induces Ferroptosis in Both In Vitro and In Vivo Models of Hereditary Leiomyomatosis and Renal Cell Cancer[J]. Mol Cancer Ther, 2022, 21(3): 419-426. DOI:10.1158/1535-7163.MCT-21-0661 |
2023, Vol. 50


