文章信息
- 骨肉瘤中PD-1和CTLA-4的表达与患者临床病理特征及预后的相关性
- Correlation Between PD-1/CTLA-4 Expressions with C linicopathological Features and Prognosis of Osteosarcoma Patients
- 肿瘤防治研究, 2023, 50(1): 63-68
- Cancer Research on Prevention and Treatment, 2023, 50(1): 63-68
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2023.22.0483
- 收稿日期: 2022-05-05
- 修回日期: 2022-07-21
骨肉瘤是最常见的原发性骨恶性肿瘤,好发于儿童和青春期,具有局部侵袭和早期肺转移的倾向。新辅助化疗联合手术切除可将5年生存率最高提至70%,但其余患者死于转移和复发[1]。近年来肿瘤免疫疗法为恶性肿瘤的治疗提供了新的手段,在多种恶性肿瘤中取得了良好疗效,其中CTLA-4和PD-1两种免疫检查点分子是研究热点之一。CTLA-4是一种1型跨膜糖蛋白,主要在活化的T细胞上表达,CTLA-4相对CD28以更高的亲和力竞争性结合B7,降低T细胞增殖能力和细胞因子的分泌[2-3]。PD-1在T细胞、B细胞、树突状细胞等多种免疫细胞中表达,在T细胞耗竭中起关键作用。PD-1在肿瘤浸润淋巴细胞(TIL)上的表达可以导致肿瘤免疫耐受[4]。中和性抗体拮抗以上两种分子可以在多种肿瘤中发挥抗肿瘤作用。本文检测了骨肉瘤中CTLA-4和PD-1的表达,分析其与临床病理特征和预后的关系,为骨肉瘤免疫治疗的靶点选择提供依据。
1 资料与方法 1.1 病例资料收集本院2007—2016年初诊初治并明确诊断的58例骨肉瘤患者,临床病理学特征包括性别、年龄、发病部位、切除方式、术前化疗、肿瘤最大直径及Ennecking分期等,见表 1。病理诊断经2名以上副高以上职称病理医师复诊确认。
所有含骨标本经脱钙(质软标本除外)、4%中性福尔马林固定后石蜡包埋。免疫组织化学实验经过烤片、脱蜡、3%双氧水封闭、EDTA高压修复后,按照Envision法孵育抗体。一抗为CTLA-4(1:250,兔抗人,购自英国Abcam公司)和PD-1(1:200,小鼠抗人,购自加拿大GenomeMe公司)。二抗、抗体稀释剂及DAB显色剂均购自丹麦DAKO公司。
1.3 结果判读CTLA-4和PD-1均定位于细胞膜,出现完整的棕黄色膜染色判定为阳性细胞。随机选取5个高倍镜视野,按阳性细胞占总细胞数的百分比计分:< 3%为阴性(0分),≥3%~10%为1分,≥10%~ < 25%为2分,≥25%为3分。阳性细胞着色程度计分:阴性为0分,弱阳性为1分,中等阳性为2分,强阳性为3分。将上述两项评分相乘作为最终结果:0~2分为阴性表达,3~9分为阳性表达。本实验经两位资深病理医师双盲阅片。
1.4 随访所有患者术后及化疗结束后皆进行门诊随访、电子病历和电话追踪。总生存期(OS)是指从手术后第一天至死亡或失访时间;无病生存期(DFS)是指从肿瘤切除后到肿瘤复发或转移的时间。
1.5 统计学方法所有数据用SPSS25.0软件进行统计分析。当进行生存分析时,采用Kaplan-Meier检验法,使用Log rank检验生存曲线差异。两离散变量分析采用列联表卡方检验或Fisher精确检验。多因素分析采用Cox比例风险模型分析。P < 0.05为差异有统计学意义。
2 结果 2.1 PD-1及CTLA-4表达与骨肉瘤患者临床病理特征的关系PD-1表达于大部分骨肉瘤标本中,其中阳性表达31例(53.4%)。股骨比其他原发部位PD-1阳性比例更高(P=0.017)。接受过新辅助化疗的患者PD-1阳性比例明显高于未接受过的患者(P=0.036)。PD-1阳性患者肿瘤复发率显著高于阴性患者(P=0.007)。PD-1阳性患者肿瘤转移发生率显著高于阴性患者(P=0.046)。PD-1表达与其他临床病理数据比较无明显差异。CTLA-4在骨肉瘤中表达较弱,其中阳性19例(32.8%)。CTLA-4阳性患者Ennecking分期较阴性患者更晚,但差异的统计学意义不显著(P=0.051)。CTLA-4与其他临床病理数据间比较无明显差异,见图 1、表 2。
|
| A: pathomorphological manifestation of osteosarcoma samples (HE staining, ×200); B: positive expression of PD-1 in osteosarcoma (Envision staining, ×200); C: positive expression of CTLA-4 in osteosarcoma (Envision staining, ×200). 图 1 PD-1和CTLA-4在骨肉瘤中的表达情况 Figure 1 Expression of PD-1 and CTLA-4 in osteosarcoma |
|
PD-1和CTLA-4双阳性12例(20.7%),双阴性20例(34.5%),单阳性26例(44.8%)。PD-1和CTLA-4双阳性表达患者肿瘤复发率显著高于双阴性及单阳性组(P=0.035)。双阳性表达患者肿瘤转移率显著高于双阴性及单阳性组(P=0.047)。其他临床病理数据间比较差异无统计学意义,见表 3。
|
本组中失访12例,死亡27例,术后复发18例,远处转移29例,总生存率约53.4%。生存曲线分析显示PD-1阴性患者的DFS及OS均显著长于阳性患者(P=0.020; P=0.022)。CTLA-4阴性患者的DFS显著长于阳性患者(P=0.014),但两者OS没有明显差异。PD-1和CTLA-4的双阴性组的预后最好,双阳性组的预后最差,差异有统计学意义(DFS: P=0.005; OS: P=0.024),见图 3。
|
| A: positive expression of PD-1 was associated with shortened DFS in osteosarcoma patients (P < 0.05); B: positive expression of PD-1 was associated with shortened OS in osteosarcoma patients (P < 0.05); C: positive expression of CTLA-4 was associated with shortened DFS in osteosarcoma patients (P < 0.05); D: expression of CTLA-4 was not associated with OS in osteosarcoma patients (P > 0.05). 图 2 PD-1表达或CTLA-4表达与骨肉瘤患者预后的相关性 Figure 2 Correlation of PD-1 or CTLA-4 expression with survival time of osteosarcoma patients |
|
| 图 3 PD-1和CTLA-4共同表达情况与骨肉瘤患者生存期的相关性 Figure 3 Correlation of double positive expression of PD-1 and CTLA-4 with survival time of osteosarcoma patients |
经单因素分析及查阅文献后,我们认为手术方式、新辅助化疗、Ennecking分期、肿瘤最大径可能是影响患者预后的重要因素,因此将以上因素及PD-1和CTLA-4共表达情况纳入Cox多因素回归分析,发现Ennecking分期和PD-1、CTLA-4共表达情况是DFS的独立危险因素(P=0.032, P=0.008),见表 4,而在OS中则不是(P=0.101),见表 5。
|
|
骨肉瘤是青少年最常见的恶性骨肿瘤,常规治疗方式是根治切除和化疗的综合治疗,仍有部分患者发生复发或肺转移,导致术后生存率显著下降[4]。目前肿瘤免疫治疗领域取得了重大突破,免疫检查点抑制剂在多种实体瘤治疗中有较好疗效,但在骨肉瘤等软组织肿瘤的研究才刚刚起步[5]。
PD-1是免疫检查点分子之一,主要表达于T细胞。PD-1参与免疫抑制,在T细胞耗竭中起关键作用,导致肿瘤免疫受抑,进而促进肿瘤进展[6-7]。PD-L1和PD-L2是PD-1的主要配体,有研究发现骨肉瘤中PD-L1表达量与肿瘤转移和死亡率有关[8-10]。但PD-L1抑制剂是否可以使晚期患者获益尚有争议[11]。本组接受新辅助化疗后,骨肉瘤中PD-1的表达升高,提示化疗药物对肿瘤的毒性作用可能引起了免疫微环境的变化。根治术后复发的患者PD-1表达升高,推测可能与肿瘤免疫逃逸有关,提示免疫细胞的活性受抑使监视残留肿瘤细胞的功能失效,提升了肿瘤复发率[12]。本研究中PD-1阳性与肿瘤转移有显著关联(P < 0.05),推测PD-1信号参与了骨肉瘤细胞的转移,与其他肿瘤研究一致[13]。另外股骨患者PD-1表达明显高于胫骨及其他部位,PD-1表达是否与肿瘤部位有关还需要大宗样本分析。生存分析表明,PD-1阳性表达患者的生存期和无病生存期较短,提示了PD-1阳性在骨肉瘤中是预后指标之一。
CTLA-4主要在活化的T细胞上表达,可以抑制肿瘤免疫反应并促进肿瘤进展[14-15]。在其他肿瘤研究中都发现CTLA-4的表达上调,且与不良预后相关[16]。CTLA-4单抗最先应用于治疗恶性黑色素瘤,取得了不错的疗效,但与PD-1抑制剂治疗黑色素瘤相比,其疗效稍差而毒性较高,并且与PD-1疗法已被应用于多种恶性肿瘤治疗不同,CTLA-4单抗的应用仍然限制在恶性黑色素瘤之中,而在其他肿瘤中效果不佳[17-18]。本组CTLA-4表达较弱,且与患者Ennecking分期有一定关联(P=0.051),分期较晚的患者CTLA-4表达比例较高,提示CTLA-4抑制免疫细胞功能,促进肿瘤生长。生存分析发现CTLA-4与OS关系不密切,但阳性表达的患者DFS更短,提示CTLA-4可能影响肿瘤复发及转移,这与其他肿瘤的研究一致[4]。
研究发现,阻断PD-1/PD-L1会上调CTLA-4表达,进而造成治疗抵抗[4],联用PD-1和CTLA-4抑制剂疗效更好,在动物实验中得到印证[3, 19-20]。本组PD-1和CTLA-4双阳性的患者发生术后复发和转移的比例远高于双阴性或单阳性的患者,提示PD-1和CTLA-4在骨肉瘤复发转移中可能存在协同作用。因此,PD-1和CTLA-4联合检测是预测患者复发转移风险较好的指标。生存分析中发现,无论是OS还是DFS,双阳性患者的预后较差,而双阴性预后则较好,并且是患者DFS的独立危险因素。由此推测,PD-1和CTLA-4的双重阻断可能对骨肉瘤有更好的治疗效果,与文献一致[20]。
综上所述,本组检测骨肉瘤样本中PD-1和CTLA-4表达,发现其与骨肉瘤患者临床病理及预后有相关性,并且PD-1和CTLA-4的双阳性表达患者预后不良,联用PD-1单抗和CTLA-4单抗相比单一免疫疗法,可能对骨肉瘤患者疗效更好且更易于控制不良反应。本研究探索了预测骨肉瘤患者预后的相关指标,并为骨肉瘤免疫治疗提供了依据。
作者贡献:
闫广宁:实验设计和文章撰写
喻玲:免疫组织化学实验
赖续文:数据分析及文献检索
叶丹丽:临床资料收集
王蔚:图表制作和修改
王卓才:指导研究设计及文章修改
| [1] |
Cesne AL, Marec-Berard P, Blay JY, et al. Programmed cell death 1 (PD-1) targeting in patients with advanced osteosarcomas: results from the PEMBROSARC study[J]. Euro J Cancer, 2019, 119: 151-157. DOI:10.1016/j.ejca.2019.07.018 |
| [2] |
高峰, 洪亚珍, 陈晨, 等. 癌症治疗的新兴免疫靶点及相关研究进展[J]. 中国肿瘤临床, 2020, 47(19): 1001-1006. [Gao F, Hong YZ, Chen C, et al. Current status of emerging targets for cancer immunotherapy[J]. Zhongguo Zhong Liu Lin Chuang, 2020, 47(19): 1001-1006. DOI:10.3969/j.issn.1000-8179.2020.19.736] |
| [3] |
Karpathiou G, Chauleur C, Mobarki M, et al. The immune checkpoints CTLA-4 and PD-L1 in carcinomas of the uterine cervix[J]. PatholRes Prac, 2019, 216(1): 152782. |
| [4] |
Wang SD, Li HY, Li BH, et al. The role of CTLA-4 and PD-1 in anti-tumor immune response and their potential efficacy against osteosarcoma[J]. Int Immunopharmacol, 2016, 38: 81-89. DOI:10.1016/j.intimp.2016.05.016 |
| [5] |
Que Y, Fang Z, Guan Y, et al. LAG-3 expression on tumor-infiltrating T cells in soft tissue sarcoma correlates with poor survival[J]. Cancer Biol Med, 2019, 16(2): 331-340. DOI:10.20892/j.issn.2095-3941.2018.0306 |
| [6] |
Datar I, Sanmamed MF, Wang J, et al. Expression Analysis and Significance of PD-1, LAG-3, and TIM-3 in Human Non-Small Cell Lung Cancer Using Spatially Resolved and Multiparametric Single-Cell Analysis[J]. Clin Cancer Res, 2019, 25(15): 4663-4673. DOI:10.1158/1078-0432.CCR-18-4142 |
| [7] |
周舸, 谢丽平, 林涛发, 等. 肝细胞癌组织中程序性死亡受体1和T淋巴细胞免疫球蛋白黏蛋白3的表达及意义[J]. 临床肝胆病杂志, 2020, 36(11): 2450-2455. [Zhou G, Xie LP, Lin TF, et al. Expression and significance of programmed death-1 and T-cell immunoglobulin-and mucin domain-3-contai-ning molecule 3 in hepatocellular carcinoma[J]. Lin Chuang Gan Dan Bing Za Zhi, 2020, 36(11): 2450-2455. DOI:10.3969/j.issn.1001-5256.2020.11.011] |
| [8] |
蓝瑞隆, 傅冷西, 陈瑞庆, 等. 骨肉瘤程序性死亡因子配体1的表达及临床意义[J]. 国际骨科学杂志, 2018, 39(4): 245-249. [Lan RL, Fu LX, Chen RQ, et al. PD-L1 expression in human osteosarcoma and its clinical significance[J]. Guo Ji Gu Ke Xue Za Zhi, 2018, 39(4): 245-249. DOI:10.3969/j.issn.1673-7083.2018.04.012] |
| [9] |
Toda Y, Kohashi K, Yamada Y, et al. PD-L1 and IDO1 expression and tumor-infiltrating lymphocytes in osteosarcoma patients: comparative study of primary and metastatic lesions[J]. J Cancer Res Clin Oncol, 2020, 146(10): 2607-2620. DOI:10.1007/s00432-020-03242-6 |
| [10] |
Zheng W, Xiao H, Liu H, et al. Expression of programmed death 1 is correlated with progression of osteosarcoma[J]. APMIS, 2015, 123(2): 102-107. DOI:10.1111/apm.12311 |
| [11] |
胡越皓, 鲍其远, 沈宇辉, 等. 程序性死亡受体1及其配体抑制剂治疗骨肉瘤的研究进展[J]. 国际骨科学杂志, 2019, 40(5): 263-267. [Hu YH, Bao QY, Shen YH, et al. Progress in the treatment of osteosarcoma with programmed death receptor 1 and its ligand inhibitors[J]. Guo Ji Gu Ke Xue Za Zhi, 2019, 40: 263-267. DOI:10.3969/j.issn.1673-7083.2019.05.002] |
| [12] |
Li Y, Liu J, Gao L, et al. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance[J]. Immunol Lett, 2020, 220: 88-96. DOI:10.1016/j.imlet.2019.03.006 |
| [13] |
Sudo S, Kajiya H, Okano S, et al. Cisplatin-induced programmed cell death ligand-2 expression is associated with metastasis ability in oral squamous cell carcinoma[J]. Cancer Sci, 2020, 111(4): 1113-1123. DOI:10.1111/cas.14336 |
| [14] |
Verma N, Burns SO, Walker LSK, et al. Immune deficiency and autoimmunity in patients with CTLA-4 (CD152) mutations[J]. Clin Exp Immunol, 2017, 190(1): 1-7. DOI:10.1111/cei.12997 |
| [15] |
Zhang C, Chen J, Song Q, et al. Comprehensive analysis of CTLA-4 in the tumor immune microenvironment of 33 cancer types[J]. Int Immunopharmacol, 2020, 85: 106633. DOI:10.1016/j.intimp.2020.106633 |
| [16] |
Kawano M, Itonaga I, Iwasaki T, et al. Enhancement of antitumor immunity by combining anti-cytotoxic T lymphocyte antigen-4 antibodies and cryotreated tumor lysate-pulsed dendritic cells in murine osteosarcoma[J]. Oncol Rep, 2013, 29(3): 1001-1006. DOI:10.3892/or.2013.2224 |
| [17] |
Liu Y, Zheng P. Preserving the CTLA-4 Checkpoint for Safer and More Effective Cancer Immunotherapy[J]. Trends Pharmacol Sci, 2019, 41(1): 4-12. |
| [18] |
Robert C, Schachter J, Long GV, et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma[J]. N Engl J Med, 2015, 372(26): 2521-2532. DOI:10.1056/NEJMoa1503093 |
| [19] |
Patel SP, Othus M, Chae YK, et al. A PhaseⅡ Basket Trial of Dual Anti-CTLA-4 and Anti-PD-1 Blockade in Rare Tumors (DART SWOG 1609) in Patients with Nonpancreatic Neuroendocrine Tumors[J]. Clin Cancer Res, 2020, 26(10): 2290-2296. DOI:10.1158/1078-0432.CCR-19-3356 |
| [20] |
Lussier DM, Johnson JL, Hingorani P, et al. Combination immunotherapy with alpha-CTLA-4 and alpha-PD-L1 antibody blockade prevents immune escape and leads to complete control of metastatic osteosarcoma[J]. J Immunother Cancer, 2015, 3: 21. DOI:10.1186/s40425-015-0067-z |
2023, Vol. 50


