文章信息
- 如何发挥放疗在胰腺癌治疗中的作用
- How to Exert Role of Radiotherapy in Treatment of Pancreatic Cancer
- 肿瘤防治研究, 2021, 48(11): 989-993
- Cancer Research on Prevention and Treatment, 2021, 48(11): 989-993
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2021.21.0883
- 收稿日期: 2021-08-06
- 修回日期: 2021-09-06
2. 100142 北京,空军特色医学中心放射治疗科;
3. 100016 北京,清华大学附属第一医院放疗科
2. Department of Radiotherapy, Air Force Medical Center, Beijing 100142, China;
3. Department of Radiotherapy, The First Affiliated Hospital of Tsinghua University, Beijing 100016, China
胰腺癌恶性程度高、进展迅速,大部分患者容易出现远处转移,目前尚无有效的全身系统治疗药物或方法,因此,尽管在精准医疗的模式下,其他多种肿瘤经手术、放疗、化疗、靶向药物及免疫疗法等治疗疗效明显提高,但胰腺癌仍被认为“癌中之王”,即使经过治疗后总体疗效改善仍不明显。放疗被誉为癌症治疗的“三驾马车”之一,在胰腺癌各期的治疗中均占有重要地位,卫健委胰腺癌诊疗规范(2018年版)指出“放射治疗是胰腺癌的基本治疗手段,贯穿各个分期”。但现有数据显示接受放疗的患者总生存延长有限[1],这与剂量模式的选取、照射的精准性及其他治疗方式的配合等因素有关。
近年来放疗技术发展迅速,局部控制率得到明显提高,放疗技术的优势同样在胰腺癌治疗方面得到展现。胰腺与胃肠道关系密切,肿瘤进展时部分肿瘤侵犯胃肠,胃肠道放射损伤成为提高剂量照射限制因素。且因胃肠体积变化、呼吸运动等因素,会对放疗精度产生一定影响[2-3]。放疗剂量仍有待提高,即使采用立体定向放射治疗(stereotactic body radiation therapy, SBRT)模式,如果仅给有限的放疗剂量(30~33)Gy/5次,肿瘤的局控率仍有限,有研究表明给予33 Gy/5次后手术切除的胰腺癌1年局部复发率可高达50%[4]。因此,在胰腺癌中如何应用精准放疗技术和创新剂量模式是当前研究的热点问题。
1 采用精准放疗技术 1.1 采用多模态影像勾画靶区本课题组前期研究得出弥散加权MRIGTV的胰腺病灶体积及最长径均较增强CTGTV小[5],Caravatta等研究认为基于MRI图像与CT相比肿瘤边界更清楚,不同勾画者的差异性小[6],但需注意MRIGTV较病理大体样本小,直径平均减少9.4%[7]。PET在胰腺癌诊疗中的作用逐渐得到重视,明确远处转移情况对临床有重要帮助,但在靶区勾画方面因目前缺乏与病理对照的依据,仍仅为辅助勾画肿瘤内靶区[8],与4D-CT下的GTV相比,PETGTV的直径更小,在左右方向最大径中位数相差1.7~1.8 cm,前后相差1.4~1.6 cm,头脚方向相差1.9~2.1 cm[9]。
1.2 根据复发情况设定靶区范围Zhang等收集48例胰头癌、胰体癌切除术后局部复发的临床和影像学资料,根据局部复发病灶相对腹腔动脉或肠系膜上动脉的分布,在CT图像上建立三维局部复发地图模型,腹腔动脉和肠系膜上动脉轮廓向上1.4 cm、向下1.9 cm、左侧2.6 cm、右侧3.1 cm、前部1.9 cm、后部1.6 cm外扩,形成了涵盖90%局部失败的临床靶区[10]。“新”目标体积远小于RTOG 0848方案的标准体积,“新”计划中危及器官接受的剂量也较低。Zhu等对局部晚期胰腺癌接受SBRT序贯化疗后的复发情况进行分析,放疗中位处方剂量37 Gy(32.5~49.6 Gy)/(5~8)次,腹腔干、肠系膜上动脉及腹膜后区域复发百分比分别为33.2%、28.2%及27.1%,同时侵犯腹腔干和肠系膜上动脉占22.5%,复发灶距腹腔干、肠系膜上动脉及腹膜后区域的平均距离分别为9.0、8.3和11.7 mm,根据这些数据在靶区勾画时,在保护好正常组织的前提下适当外扩或局部增加剂量,以减少局部复发的可能[11]。
1.3 监测胃肠道变化Magallon-Baro等监测包括35例胰腺癌患者SBRT治疗期间的腹部CT影像变化,共计131套CT扫描图像,建立了腹部胃肠器官的每日运动模型,发现胃前后方向收缩扩张5~13 mm,肠上下变形7~14 mm。十二指肠向外侧移动,但幅度较小(4~8 mm)[3]。Loi等通过剂量学评估35例患者在40 Gy/5 f的剂量模式下,单分次水平胃肠道的剂量学变化,发现胃肠道V35、D2、D5、D10和Dmax的中位数分别提高了1.0、4.4%、2.3%、3.3%和12.0%[12]。本课题组前期通过剂量学研究发现在胰腺癌放疗期间因胃肠道解剖学变化,所受剂量也发生变化,其中十二指肠的剂量影响最明显,因此,建议在放疗期间适时进行放疗验证,必要时更改放疗计划[2]。
2 改变常规放疗剂量模式 2.1 靶中靶同步推量模式采用精准放疗技术方法将肿瘤周围正常组织照射剂量控制在可接受范围内后,肿瘤靶区剂量从外向内层层递增,形成靶中靶同步推量(simultaneous in field boost, SIB)模式,有助于提高肿瘤区照射剂量。Bertholet等的剂量学比较研究得出在靶区外围处方剂量线33 Gy/5 f或42.5 Gy/15 f,内部递增剂量分别达到50 Gy/5 f、67.5 Gy/15 f[13]。本课题组充分利用螺旋断层放疗系统(tomotherapy system, TOMO)剂量学优势,进行剂量学研究发现在外靶区(PTV)50 Gy、内靶区(GTV)70 Gy的基础上靶区内部逐渐加量至100 Gy,周围胃肠道的受照剂量并未显著增加,限制剂量仍满足要求[14]。本课题组采用TOMO治疗109例Ⅲ期胰腺癌患者,PTV50 Gy、CTV60 Gy、GTV70 Gy,15~20次,中位生存时间(overall survival, OS)为10月,1年OS率为42.4%,局控率为85.3%(93/109)[15]。
2.2 高剂量少分次放疗模式提高放疗单次剂量较2 Gy剂量有利于改变肿瘤微环境、诱发免疫反应,所产生的临床效应大于线性二次(linear quadratic, LQ)模型所预测的疗效。细胞实验提示单次剂量≥5 Gy时能有效地抑制集落形成并诱导G2/M期细胞周期阻滞。此外,免疫调节细胞表面分子的表达水平发生改变,可能增强肿瘤细胞对细胞毒性T细胞裂解的敏感度[16]。
本课题组采用我国体部γ刀技术治疗局限性胰腺癌,采用PTV50%剂量线50 Gy,CTV60%剂量线60 Gy,GTV70%剂量线70 Gy,共10~15次,2~3周完成方案,获得中位生存18月、5年生存率17%的结果[17],表明高剂量少分次剂量模式总体趋势正在向10~15分次发展[13]。
3 保护正常组织免受损伤 3.1 放疗保护药物应用临床上现有应用明确的胃肠道保护作用的药物为氨磷汀,而其他的胃肠道放疗相关保护剂均在动物实验研究阶段。本课题组发现接受氨磷汀的患者2级及以上消化道反应发生率为32.3%,而对照组高达62.5%(P < 0.05)[18]。p53基因状态与放射性胃肠炎的易感性相关,Pant等用MDM2抑制剂中断小鼠的P53-MDM2相互作用,结果通过增强p53活性,减少了小鼠胃肠道不良反应的发生[19]。Fujimoto等给予胰腺肿瘤小鼠高剂量放疗联合FG-4592(EGLN抑制剂),肿瘤照射剂量为75 Gy/15 f,对照组56%的小鼠出现致命性胃肠道出血,而FG4592组小鼠均无出血(P=0.0001),与对照组相比,FG4592肠上皮细胞凋亡减少一半(P=0.002),肠微血管密度增加了80%[20]。
3.2 增加肿瘤与胃肠间的距离本课题组曾研发了一种用于扩大胰腺与十二指肠间距的装置,获得发明专利:放射治疗用内脏相邻器官推开距离装置(发文号:201706140036540),因属于有创性的,置入后的稳定性等问题还有待解决,仅为概念性装置,尚未用于临床。
4 放疗联合其他治疗 4.1 放疗联合手术治疗放疗与手术治疗可以相互融合,先接受放疗,再行肿瘤手术切除或胃肠改道,较术后放疗更体现放疗的优势,改善患者的预后。
4.1.1 新辅助放疗新冠肺炎疫情爆发给世界带来巨大影响,同样也影响胰腺癌放疗的实施,欧洲肿瘤内科学会(European Society for Medical Oncology, ESMO)建议疫情期间胰腺癌应考虑新辅助治疗的开展[21]。Chopra等回顾了418例新辅助治疗胰腺癌患者结果,病例对照匹配分析后得出与单独化疗相比,新辅助放化疗可降低淋巴结阳性率(P=0.007)及脉管侵犯概率(P=0.02),并有助于延长患者DFS(disease-free survival)(P=0.006)[22]。Miccio等回顾美国国家癌症数据库(NCDB)中4 599例术前接受多药化疗单独或者联合放疗的患者资料,得出联合放疗组拥有更高的完全病理缓解率(5% vs. 2%, P < 0.001)和R0切除率(86% vs. 80%, P < 0.001)[23]。Lewis等前瞻性收集18例初诊临界可切除患者,给予新辅助SIB放化疗治疗GTV剂量57 Gy/25 f,CTV剂量45 Gy/25 f,同时每周一次吉西他滨,结果15例(50%)患者部分缓解,7例(39%)接受了R0切除术,OS为17.3月,R0切除术患者中位无进展生存时间(progression-free survival, PFS)和OS分别为27月和35.5月[24]。
4.1.2 放疗后手术改道胰腺肿瘤紧邻或累及周围胃肠道组织,难以给予肿瘤区域更高的剂量,阻碍了根治性剂量放疗的实施,可通过行胃肠手术旷置,减轻高剂量照射带来的胃肠道不良反应。本课题组正在开展根治性放疗联合手术改道治疗试验,征集无转移的胰腺头颈部癌临近或侵犯胃肠道患者,给予根治性剂量照射后一周内行胃肠、肠肠吻合,旷置受到高剂量照射的胃、十二指肠。10例受试患者中位GTV D95 55 Gy,CTV D95 45 Gy。胃、十二指肠的D5cc分别为27.82 Gy和36.1 Gy,D10cc分别为22.2 Gy和30.68 Gy,仅1例在术后两月时出现3级腹痛,对症治疗后好转,癌痛缓解率为100%(8/8),局控率100%[25]。
4.2 放疗联合药物治疗 4.2.1 联合化疗药物胰腺患者放疗同步化疗治疗具有协同效应,一方面化疗可增加放疗治疗的敏感度;另外,化疗药物本身治疗全身病灶,甚至与放疗协同激发免疫效益,用于控制全身肿瘤。放疗前行强化化疗是目前放疗联合系统化疗的主要趋势,Auclin等回顾性分析局部晚期或临界可切除胰腺癌接受FOLFIRINOX后行同步放化疗,与单独FOLFIRINOX组比较,中位OS明显延长(21.8月vs. 16.8月)[26]。Ye等利用胰腺癌小鼠模型证明了SBRT同步mFOLFIRINOX同时给予比单独或序贯治疗组具有更好的肿瘤控制效果,而且这种联合治疗方案增加了免疫原性细胞死亡的程度,这反过来又增强了树突状细胞的肿瘤抗原呈递和瘤内CD8+T细胞的浸润,这个结果为SBRT联合强力化疗提供了理论基础[27]。
4.2.2 联合靶向药物目前被临床证实有效的胰腺癌靶向药物少有,主要需要依靠KRAS、NRAS、BRCA1/2、HER2、NTRK、MSI等基因检测结果指导用药,但联合放疗是否产生协同作用还需进一步研究。动物实验提示BRCA2突变型和野生型拥有相同放疗敏感度,奥拉帕尼联合放疗并没有较单独放疗增加肿瘤杀伤效果[28]。其他靶向药物联合放疗的研究也多数仍在细胞或动物实验阶段,比如体内外实验显示胰腺肿瘤组织接受放疗后,微环境内的肿瘤相关成纤维细胞分泌体中iNOS的表达和一氧化氮(NO)的分泌明显增加,促进肿瘤细胞释放炎性细胞因子,抑制iNOS联合放射治疗可延缓胰腺肿瘤的生长[29]。
4.2.3 联合免疫疗法胰腺癌免疫治疗除了占比极少的微卫星不稳定患者可以获益以外,目前尚无其他患者的获得阳性结果报道,但在理论上放疗后激发免疫效应,增加肿瘤抗原释放,可能有利于免疫疗法发挥疗效[30]。近期有动物实验报道显示消融放疗较常规分次放疗更有利于召集T细胞,提高血管灌注率,从而改变肿瘤微环境,消融放疗后行抗PD-L1治疗可提高动物存活率,67%的受治疗动物在肿瘤接种后存活超过30天,而对照组的中位存活时间为16.5天[31]。Xie等开展了一项前瞻性SBRT联合Durvalumab或Durvalumab+Tremelimumab免疫药物,二线治疗转移性胰腺癌的安全可行性试验,59例患者入组,39例可评估疗效,不良反应评价并未达到剂量限制性毒性,总体反应率5.1%,25 Gy/5 f联合Durvalumab组中位OS为9月,其他组中位OS为2.1~4.2月[32]。放疗与免疫疗法疗效的体现,今后还需在联合时机、照射剂量、免疫药物类型等问题上深入研究。
5 选择性采用放疗部分胰腺癌患者全身进展迅速,即使现有的影像工具证实无远处病灶,但在接受治疗1至2月后复查发现已远处转移,通过肿瘤指标高低、病灶大小等可辅助判断,而部分专家认为在放化疗前采用诱导化疗的方式,作为一种筛查方法,筛选具有较低侵袭性生物学行为的局部胰腺癌患者,从而提高放疗的疗效、体现放疗的作用[33]。
除以上方法外,质子、重离子放疗在胰腺癌治疗中也开展了尝试,相比光子,在生物和物理特性方面占有明显优势,Raturi等对9例患者的剂量学研究显示,调强质子较光子调强放疗明显降低胰头癌患者胃肠道损伤[34],但临床研究的循证医学证据尚不足,目前多是小样本研究结果[35-36]。
6 结论及展望总之,保护胃肠道组织、增加照射剂量是提高胰腺癌放疗作用的关键;放疗全流程精准实施,是提高胰腺癌放疗作用的保证;放疗联合其他治疗手段,是提高胰腺癌放疗作用的途径。精准放疗技术的出现和随之而来的放疗理念的改变,将使放疗在胰腺癌治疗中的作用进一步提高,为广大胰腺癌患者提供治疗选择。
作者贡献:
任刚:论文撰写与修改
夏廷毅:选题设计、论文审校
王颖杰:论文审校
| [1] |
Li Y, Liu W, Zhao L, et al. The Main Bottleneck for Non-Metastatic Pancreatic Adenocarcinoma in Past Decades: A Population-Based Analysis[J]. Med Sci Monit, 2020, 26: e921515. |
| [2] |
Ren G, Zhu F, Wang Y, et al. Dosimetric Effects of Anatomical Changes for Abdominal Organs at Risk during the Course of Hypofractionated Radiotherapy in Pancreatic Cancer Patients[J]. Int J Radiat Oncol Biol Phys, 2018, 102: E79. |
| [3] |
Magallon-Baro A, Loi M, Milder MTW, et al. Modeling daily changes in organ-at-risk anatomy in a cohort of pancreatic cancer patients[J]. Radiother Oncol, 2019, 134: 127-134. DOI:10.1016/j.radonc.2019.01.030 |
| [4] |
Kharofa J, Mierzwa M, Olowokure O, et al. Pattern of Marginal Local Failure in a Phase Ⅱ Trial of Neoadjuvant Chemotherapy and Stereotactic Body Radiation Therapy for Resectable and Borderline Resectable Pancreas Cancer[J]. Am J Clin Oncol, 2019, 42(3): 247-252. DOI:10.1097/COC.0000000000000518 |
| [5] |
韩若冰, 任刚, 王轩, 等. 基于DWMRI和增强CT勾画胰腺癌GTV对比研究[J]. 中华放射肿瘤学杂志, 2016, 25(9): 939-943. [Han RB, Ren G, Wang X, et al. A comparative analysis of diffusion-weighted magnetic resonance imaging and contrast-enhanced CT in target volume delineation for pancreatic cancer[J]. Zhonghua Fang She Zhong Liu Xue Za Zhi, 2016, 25(9): 939-943. DOI:10.3760/cma.j.issn.1004-4221.2016.09.006] |
| [6] |
Caravatta L, Cellini F, Simoni N, et al. Magnetic resonance imaging (MRI) compared with computed tomography (CT) for interobserver agreement of gross tumor volume delineation in pancreatic cancer: a multi-institutional contouring study on behalf of the AIRO group for gastrointestinal cancers[J]. Acta Oncol, 2019, 58(4): 439-447. DOI:10.1080/0284186X.2018.1546899 |
| [7] |
Hall WA, Mikell JL, Mittal P, et al. Tumor size on abdominal MRI versus pathologic specimen in resected pancreatic adenocarcinoma: implications for radiation treatment planning[J]. Int J Radiat Oncol Biol Phys, 2013, 86(1): 102-107. DOI:10.1016/j.ijrobp.2012.11.019 |
| [8] |
Fiorentino A, Laudicella R, Ciurlia E, et al. Positron emission tomography with computed tomography imaging (PET/CT) for the radiotherapy planning definition of the biological target volume: PART 2[J]. Crit Rev Oncol Hematol, 2019, 139: 117-124. DOI:10.1016/j.critrevonc.2019.03.008 |
| [9] |
Takahashi S, Anada M, Kinoshita T, et al. Differences in gross tumor volumes for pancreatic cancer: a comparison of ungated positron emission tomography and contrast-enhanced four-dimensional computed tomography[J]. Jpn J Radiol, 2019, 37(4): 336-340. DOI:10.1007/s11604-019-00812-8 |
| [10] |
Zhang TT, Wei L, Yuan GW, et al. A new delineation method research of the clinical target volume for pancreatic cancer adjuvant radiotherapy[J]. Cancer Radiother, 2019, 23(3): 201-208. DOI:10.1016/j.canrad.2018.09.004 |
| [11] |
Zhu X, Ju X, Cao Y, et al. Patterns of Local Failure After Stereotactic Body Radiation Therapy and Sequential Chemotherapy as Initial Treatment for Pancreatic Cancer: Implications of Target Volume Design[J]. Int J Radiat Oncol Biol Phys, 2019, 104(1): 101-110. DOI:10.1016/j.ijrobp.2019.01.075 |
| [12] |
Loi M, Magallon-Baro A, Suker M, et al. Pancreatic cancer treated with SBRT: Effect of anatomical interfraction variations on dose to organs at risk[J]. Radiother Oncol, 2019, 134: 67-73. DOI:10.1016/j.radonc.2019.01.020 |
| [13] |
Bertholet J, Hunt A, Dunlop A, et al. Comparison of the dose escalation potential for two hypofractionated radiotherapy regimens for locally advanced pancreatic cancer[J]. Clin Transl Radiat Oncol, 2019, 16: 21-27. DOI:10.1016/j.ctro.2019.03.001 |
| [14] |
Ren G, Zhu F, Xia T, et al. Dosimetric study on dose escalation in internal target of pancreatic cancer with helical tomotherapy[J]. Int J Radiat Oncol Biol Phys, 2014, 90(1Suppl): S357. |
| [15] |
Ren G, Xia T, Di Y, et al. Hypofractionated and Simultaneous Integrated Boost Radiation Therapy for Locally Advanced Pancreatic Cancer With Helical Tomotherapy[J]. Int J Radiat Oncol Biol Phys, 2015, 93(3Suppl): E149-E150. |
| [16] |
Schröter P, Hartmann L, Osen W, et al. Radiation-induced alterations in immunogenicity of a murine pancreatic ductal adenocarcinoma cell line[J]. Sci Rep, 2020, 10(1): 686. DOI:10.1038/s41598-020-57456-2 |
| [17] |
Wang J, Xia T, Wang Y, et al. Long-term results of gamma ray-based stereotactic body radiotherapy in treatment of medically unfit or inoperable non-metastatic pancreatic adenocarcinoma[J]. Int J Radiat Oncol Biol Phys, 2012, 84(3 Suppl): S815-816. |
| [18] |
刘立华, 王轩, 夏廷毅. 氨磷汀减轻胰腺癌放疗急性不良反应效果观察[J]. 山东医药, 2014, 54(2): 64-65. [Liu LH, Wang X, Xia TY. Effect of amiphosphine on reducing acute adverse effects of radiotherapy for pancreatic cancer[J]. Shandong Yi Yao, 2014, 54(2): 64-65. DOI:10.3969/j.issn.1002-266X.2014.02.025] |
| [19] |
Pant V, Xiong S, Wasylishen AR, et al. Transient enhancement of p53 activity protects from radiation-induced gastrointestinal toxicity[J]. Proc Natl Acad Sci U S A, 2019, 116(35): 17429-17437. DOI:10.1073/pnas.1909550116 |
| [20] |
Fujimoto TN, Colbert LE, Huang Y, et al. Selective EGLN Inhibition Enables Ablative Radiotherapy and Improves Survival in Unresectable Pancreatic Cancer[J]. Cancer Res, 2019, 79(9): 2327-2338. DOI:10.1158/0008-5472.CAN-18-1785 |
| [21] |
Catanese S, Pentheroudakis G, Douillard JY, et al. ESMO Management and treatment adapted recommendations in the COVID-19 era: Pancreatic Cancer[J]. ESMO Open, 2020, 5(Suppl3): e000804. |
| [22] |
Chopra A, Hodges JC, Olson A, et al. Outcomes of Neoadjuvant Chemotherapy Versus Chemoradiation in Localized Pancreatic Cancer: A Case-Control Matched Analysis[J]. Ann Surg Oncol, 2021, 28(7): 3779-3788. DOI:10.1245/s10434-020-09391-9 |
| [23] |
Miccio JA, Talcott WJ, Patel T, et al. Margin negative resection and pathologic downstaging with multiagent chemotherapy with or without radiotherapy in patients with localized pancreas cancer: A national cancer database analysis[J]. Clin Transl Radiat Oncol, 2020, 27: 15-23. |
| [24] |
Lewis S, Sastri SC, Arya S, et al. Dose escalated concurrent chemo-radiation in borderline resectable and locally advanced pancreatic cancers with tomotherapy based intensity modulated radiotherapy: a phase Ⅱ study[J]. J Gastrointest Oncol, 2019, 10(3): 474-482. DOI:10.21037/jgo.2019.01.25 |
| [25] |
Ren G, Feng Z, Zhu F, et al. A Phase I Trial of High-dose SBRT Followed by the Gastrointestinal Shunt Procedure for Local Pancreatic Head and Neck Carcinoma: to Approach a New Mode of Cooperation of Radiotherapy and Surgery[J]. Int J Radiat Oncol Biol Phys, 2018, 102(3Suppl): E78. |
| [26] |
Auclin E, Marthey L, Abdallah R, et al. Role of FOLFIRINOX and chemoradiotherapy in locally advanced and borderline resectable pancreatic adenocarcinoma: update of the AGEO cohort[J]. Br J Cancer, 2021, 124(12): 1941-1948. DOI:10.1038/s41416-021-01341-w |
| [27] |
Ye J, Mills BN, Zhao T, et al. Assessing the Magnitude of Immunogenic Cell Death Following Chemotherapy and Irradiation Reveals a New Strategy to Treat Pancreatic Cancer[J]. Cancer Immunol Res, 2020, 8(1): 94-107. DOI:10.1158/2326-6066.CIR-19-0373 |
| [28] |
Lohse I, Kumareswaran R, Cao P, et al. Effects of Combined Treatment with Ionizing Radiation and the PARP Inhibitor Olaparib in BRCA Mutant and Wild Type Patient-Derived Pancreatic Cancer Xenografts[J]. PLoS One, 2016, 11(12): e0167272. DOI:10.1371/journal.pone.0167272 |
| [29] |
Pereira PMR, Edwards KJ, Mandleywala K, et al. iNOS Regulates the Therapeutic Response of Pancreatic Cancer Cells to Radiotherapy[J]. Cancer Res, 2020, 80(8): 1681-1692. DOI:10.1158/0008-5472.CAN-19-2991 |
| [30] |
金鑫, 吴河水. 胰腺癌免疫治疗的现状及前景[J]. 肿瘤防治研究, 2020, 47(3): 154-158. [Jin X, Wu HS. Immunotherapy on Pancreatic Cancer: Current Status and Future Perspectives[J]. Zhong Liu Fang Zhi Yan Jiu, 2020, 47(3): 154-158.] |
| [31] |
Lee YH, Yu CF, Yang YC, et al. Ablative Radiotherapy Reprograms the Tumor Microenvironment of a Pancreatic Tumor in Favoring the Immune Checkpoint Blockade Therapy[J]. Int J Mol Sci, 2021, 22(4): 2091. DOI:10.3390/ijms22042091 |
| [32] |
Xie C, Duffy AG, Brar G, et al. Immune Checkpoint Blockade in Combination with Stereotactic Body Radiotherapy in Patients with Metastatic Pancreatic Ductal Adenocarcinoma[J]. Clin Cancer Res, 2020, 26(10): 2318-2326. DOI:10.1158/1078-0432.CCR-19-3624 |
| [33] |
Wu L, Zhou Y, Fan Y, et al. Consolidative Chemoradiotherapy After Induced Chemotherapy Is an Optimal Regimen for Locally Advanced Pancreatic Cancer[J]. Front Oncol, 2020, 9: 1543. DOI:10.3389/fonc.2019.01543 |
| [34] |
Raturi VP, Hojo H, Hotta K, et al. Radiobiological model-based approach to determine the potential of dose-escalated robust intensity-modulated proton radiotherapy in reducing gastrointestinal toxicity in the treatment of locally advanced unresectable pancreatic cancer of the head[J]. Radiat Oncol, 2020, 15(1): 157. DOI:10.1186/s13014-020-01592-6 |
| [35] |
Liermann J, Naumann P, Weykamp F, et al. Effectiveness of Carbon Ion Radiation in Locally Advanced Pancreatic Cancer[J]. Front Oncol, 2021, 11: 708884. DOI:10.3389/fonc.2021.708884 |
| [36] |
Liermann J, Naumann P, Hommertgen A, et al. Carbon ion radiotherapy as definitive treatment in non-metastasized pancreatic cancer: study protocol of the prospective phase Ⅱ PACK-study[J]. BMC Cancer, 2020, 20(1): 947. DOI:10.1186/s12885-020-07434-8 |
2021, Vol. 48


