[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI:10.3322/caac.21492 |
|
[2] |
Torre LA, Siegel RL, Ward EM, et al. Global cancer incidence and mortality rates and trends-an update[J]. Cancer Epidemiol Biomarkers Prev, 2016, 25(1): 16-27. |
|
[3] |
Gengenbacher N, Singhal M, Augustin HG. Preclinical mouse solid tumour models: status quo, challenges and perspectives[J]. Nat Rev Cancer, 2017, 17(12): 751-765. DOI:10.1038/nrc.2017.92 |
|
[4] |
Sausville EA, Burger AM. Contributions of human tumor xenografts to anticancer drug development[J]. Cancer Res, 2006, 66(7): 3351-3354. DOI:10.1158/0008-5472.CAN-05-3627 |
|
[5] | |
|
[6] |
Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression[J]. Nature, 2004, 432(7015): 332-337. DOI:10.1038/nature03096 |
|
[7] | |
|
[8] |
Tsumura R, Koga Y, Hamada A, et al. Report of the use of patient-derived xenograft models in the development of anticancer drugs in Japan[J]. Cancer Sci, 2020, Online ahead of print.
|
|
[9] |
Jin K, Teng L, Shen Y, et al. Patient-derived human tumour tissue xenografts in immunodefi cient mice: a systematic review[J]. Clin Transl Oncol, 2010, 12(7): 473-480. DOI:10.1007/s12094-010-0540-6 |
|
[10] |
Zhu Y, Tian T, Li Z, et al. Establishment and characterization of patient-derived tumor xenograft using gastroscopic biopsiesingas-triccancer[J]. Sci Rep, 2015, 5: 8542. DOI:10.1038/srep08542 |
|
[11] |
Fichtner I, Rolff J, Soong R, et al. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers[J]. Clin Cancer Res, 2008, 14(20): 6456-6468. DOI:10.1158/1078-0432.CCR-08-0138 |
|
[12] |
Chijiwa T, Kawai K, Noguchi A, et al. Establishment of patient-derived cancer xenografts in immunodeficient NOG mice[J]. Int J Oncol, 2015, 47(1): 61-70. DOI:10.3892/ijo.2015.2997 |
|
[13] |
Merk J, Rolff J, Becker M, et al. Patient-derived xenografts of non-small-cell lung cancer: a pre-clinical model to evaluate adjuvant chemotherapy?[J]. Eur J Cardiothorac Surg, 2009, 36(3): 454-459. DOI:10.1016/j.ejcts.2009.03.054 |
|
[14] |
Gu Q, Zhang B, Sun H, et al. Genomic characterization of a large panel of patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development[J]. Oncotarget, 2015, 6(24): 20160-20176. DOI:10.18632/oncotarget.3969 |
|
[15] |
Morton CL, Houghton PJ. Establishment of human tumor xenografts in immunodeficient mice[J]. Nat Protoc, 2007, 2(2): 247-250. DOI:10.1038/nprot.2007.25 |
|
[16] |
Lee CH, Xue H, Sutcliffe M, et al. Establishment of subrenal capsule xenografts of primary human ovarian tumors in SCID mice: potential models[J]. Gynecol Oncol, 2005, 96(1): 48-55. |
|
[17] |
Pearson T, Greiner DL, Shultz LD. Creation of "humanized" mice to study human immunity[J]. Curr Protoc Immunol, 2008, Chapter 15: Unit 15.21.
|
|
[18] |
Zhou Q, Facciponte J, Jin M, et al. Humanized NOD-SCID IL-2rg-/- mice as a preclinical model for cancer research and its potential use for individualized cancer therapies[J]. Cancer Lett, 2014, 344(1): 13-19. DOI:10.1016/j.canlet.2013.10.015 |
|
[19] |
Harris AL, Joseph RW, Copland JA. Patient-derived tumor xenograft models for melanoma drug discovery[J]. Expert Opin Drug Discov, 2016, 11(9): 895-906. DOI:10.1080/17460441.2016.1216968 |
|
[20] |
Shultz LD, Lyons BL, Burzenski LM, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells[J]. J Immunol, 2005, 174(10): 6477-6489. DOI:10.4049/jimmunol.174.10.6477 |
|
[21] | |
|
[22] |
Ito M, Hiramatsu H, Kobayashi K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells[J]. Blood, 2002, 100(9): 3175-3182. DOI:10.1182/blood-2001-12-0207 |
|
[23] |
Foreman O, Kavirayani AM, Griffey SM, et al. Opportunistic bacterial infections in breeding colonies of the NSG mouse strain[J]. Vet Pathol, 2011, 48(2): 495-499. DOI:10.1177/0300985810378282 |
|
[24] |
Brehm MA, Cuthbert A, Yang C, et al. Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rgamma(null) mutation[J]. Clin Immunol, 2010, 135(1): 84-98. DOI:10.1016/j.clim.2009.12.008 |
|
[25] |
Hiroshima Y, Zhang Y, Zhang N, et al. Patient-derived orthotopic xenograft (PDOX)nude mouse model of soft-tissue sarcoma more closely mimics the patient behavior in contrast to the subcutaneous ectopic model[J]. Anticancer Res, 2015, 35(2): 697-701. |
|
[26] |
田树红, 王日超, 肖 敏., 等. 裸小鼠胃癌原位移植模型的建立[J]. 中国比较医学杂志, 2017, 27(2): 21-24. [Tian SH, Wang RC, Xiao M, et al. Establishment of an orthotopic gastric cancer model in nude mice[J]. Zhongguo Bi Jiao Yi Xue Za Zhi, 2017, 27(2): 21-24.] |
|
[27] |
Read M, Bernardi MP, Liu D, et al. Mo1933 Development of esophageal and anal cancer patient derived tumor xenograft(PDTX) models using a novel implantation technique[J]. Gastroenterology, 2014, 146(5 Suppl1): S695. |
|
[28] |
杨丽华, 沈星凯, 符丹, 等. 小动物活体成像技术在肿瘤研究中的应用[J]. 宁波大学学报(理工版), 2013, 26(4): 115-118. [Yang LH, Shen XK, Fu D, et al. In vivo imaging technology of small animals applied in cancer study[J]. Ningbo Da Xue Xue Bao(Li Gong Ban), 2013, 26(4): 115-118.] |
|
[29] |
Dufort S, Sancey L, Wenk C, et al. Optical small animal imaging in the drug discovery process[J]. Biochim Biophys Acta, 2010, 1798(12): 2266-2273. DOI:10.1016/j.bbamem.2010.03.016 |
|
[30] |
Zhang XC, Zhang J, Li M, et al. Establishment of patient-derived non-small cell lung cancer xenograft models with genetic aberrations within EGFR, KRAS and FGFR1: useful tools for preclinical studies of targeted therapies[J]. J Transl Med, 2013, 11: 168. DOI:10.1186/1479-5876-11-168 |
|
[31] |
Anderson WC, Boyd MB, Aguilar J, et al. Initiation and characterization of small cell lung cancer patient-derived xenografts fromultrasound-guided transbronchial needle aspirates[J]. PLoS One, 2015, 10(5): e0125255. DOI:10.1371/journal.pone.0125255 |
|
[32] | |
|
[33] | |
|
[34] |
Janjigian YY, Braghiroli MI. Current progress in human epidermal growth factor receptor 2 targeted therapies in esophagogastric cancer[J]. Surg Oncol Clin N Am, 2017, 26(2): 313-324. |
|
[35] |
刘希敏, 胡守友, 陈玉根. PDTX模型在消化系统肿瘤研究中的应用进展[J]. 临床肿瘤学杂志, 2018, 23(1): 84-88. [Liu XM, Hu SY, Chen YG. Application of patient-derived tumor xenograft models in the study of common gastrointestinal system tumors[J]. Lin Chuang Zhong Liu Xue Za Zhi, 2018, 23(1): 84-88.] |
|
[36] |
Dong X, Guan J, English JC, et al. Patient-derived first generation xenografts of non-small cell lung cancers: promising tools for predicting drug responses for personalized chemotherapy[J]. Clin Cancer Res, 2010, 16(5): 1442-1451. DOI:10.1158/1078-0432.CCR-09-2878 |
|
[37] |
Furukawa T, Kubota T, Watanabe M, et al. Orthotopic transplantation of histologically intact clinical specimens of stomach cancer to nude mice: correlation of metastatic sites in mouse and individual patient donors[J]. Int J Cancer, 1993, 53(4): 608-612. |
|
[38] |
Hiroshima Y, Zhang Y, Zhang N, et al. Establishment of a patient-derived orthotopic xenograft(PDOX) model of HER-2-positive cervical cancer expressing the clinical metastatic pattern[J]. PLoS One, 10(2): e0117417. DOI:10.1371/journal.pone.0117417 |
|
[39] |
Okada S, Vaeteewoottacharn K, Kariya R. Establishment of a Patient-Derived Tumor Xenograft Model and Application for Precision Cancer Medicine[J]. Chem Pharm Bull (Tokyo), 2018, 66(3): 225-230. DOI:10.1248/cpb.c17-00789 |
|
[40] |
Dancey JE, Bedard PL, Onetto N, et al. The genetic basis for cancer treatment decisions[J]. Cell, 2012, 148(3): 409-420. DOI:10.1016/j.cell.2012.01.014 |
|
[41] |
Villarroel MC, Rajeshkumar NV, Garrido-Laguna I, et al. Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer[J]. Mol Cancer Ther, 2011, 10(1): 3-8. |
|
[42] |
Bertotti A, Migliardi G, Galimi F, et al. A molecularly annotated platform of patient- derived xenografts ("xenopatients") identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer[J]. Cancer Discov, 2011, 1(6): 508-523. DOI:10.1158/2159-8290.CD-11-0109 |
|
[43] |
Kim J, Kim HY, Hong S, et al. A new herbal formula BP10A exerted an antitumor effect and enhanced anticancer effect of irinotecan and oxaliplatin in the colon cancer PDTX model[J]. Biomed Pharmacother, 2019, 116: 108987. DOI:10.1016/j.biopha.2019.108987 |
|
[44] |
Ho DWH, Chan LK, Chiu YT, et al. TSC1/2 mutations define a molecular subset of HCCwith aggressive behaviour and treatment implication[J]. Gut, 2017, 66(8): 1496-1506. DOI:10.1136/gutjnl-2016-312734 |
|
[45] |
Bulle A, Dekervel J, Libbrecht L, et al. Gemcitabine induces epithelial-to-mesenchymal transition in patient-derived pancreatic ductal adenocarcinoma xenografts[J]. Am J Transl Res, 2019, 11(2): 765-779. |
|
[46] |
Dang SC, Fan YY, Cui L, et al. PLK1 as a potential prognostic marker of gastric cancer through MEK-ERK pathway on PDTX models[J]. Onco Targets Ther, 2018, 11: 6239-6247. DOI:10.2147/OTT.S169880 |
|
[47] |
Yang HB, Li XB, Meng QT, et al. CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer[J]. Mol Cancer, 2020, 19(1): 13. |
|
[48] |
Whiteside TL, Demaria S, Rodriguez-Ruiz ME, et al. Emerging opportunities and challenges in cancer immunotherapy[J]. Clin Cancer Res, 2016, 22(8): 1845-1855. DOI:10.1158/1078-0432.CCR-16-0049 |
|
[49] | |
|
[50] |
Morton JJ, Bird G, Keysar SB, et al. XactMice: humanizing mouse bone marrow enables microenviron ment reconstitution in a patient-derived xenograft model of head and neck cancer[J]. Oncogene, 2016, 35(3): 290-300. DOI:10.1038/onc.2015.94 |
|
[51] |
Gunnarsdóttir FB, Kiessling R, de Coaña YP, et al. Establishment of melanoma tumor xenograft using single cell line suspension and co-injection of patient-derived T cells in immune-deficient NSG mice[J]. Methods Mol Biol, 2019, 1913: 207-215. |
|
[52] |
Sun RC, Fan TWM, Deng P, et al. Noninvasive liquid diet delivery of stable isotopes into mouse models for deep metabolic network tracing[J]. Nat Commun, 2017, 8(1): 1646. |
|