肿瘤防治研究  2019, Vol. 46 Issue (8): 750-753
本刊由国家卫生和计划生育委员会主管,湖北省卫生厅、中国抗癌协会、湖北省肿瘤医院主办。
0

文章信息

碱基切除修复因子SmuG1与肿瘤的研究进展
Research Advances on Base Excision Repair Factor SmuG1 and Tumor
肿瘤防治研究, 2019, 46(8): 750-753
Cancer Research on Prevention and Treatment, 2019, 46(8): 750-753
http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2019.19.0236
收稿日期: 2019-02-27
修回日期: 2019-06-13
碱基切除修复因子SmuG1与肿瘤的研究进展
郑丽娇 ,    彭冬先 ,    王观凤 ,    黄洁     
510220 广州,南方医科大学珠江医院妇产科
摘要: 肿瘤是严重威胁人类健康的疾病之一。随着研究的不断深入,人们发现DNA损伤在肿瘤发生发展中的作用不可忽视。DNA损伤发生后,机体识别损伤类型并启动相应的修复机制以维持机体的正常状态,其中DNA糖基化酶SmuG1作为碱基切除修复途径的关键启动蛋白,在保持真核生物的基因稳定性和遗传完整性中发挥重要作用。近年研究发现SmuG1在肿瘤组织中的异常表达,与肿瘤的病理类型、肿瘤细胞的侵袭转移以及患者生存率、药物耐药性均相关。SmuG1有望成为新的肿瘤标志物和潜在治疗靶点。
关键词: 肿瘤     碱基切除修复     SmuG1    
Research Advances on Base Excision Repair Factor SmuG1 and Tumor
ZHENG Lijiao , PENG Dongxian , WANG Guanfeng , HUANG Jie     
Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510220, China
Abstract: Tumor is one of the diseases that seriously threaten human health. With the deepening of research, it is found that the role of DNA damage in the occurrence and development of tumors is more and more important. After DNA damage occurs, the body recognizes the type of injury and initiates a corresponding repair mechanism to maintain the normal state of the body. The DNA glycosylation enzyme SmuG1 acts as a key promoter of the base excision repair pathway, maintaining the gene stability of eukaryotes and playing an important role in genetic integrity. In recent years, it has been found that the abnormal expression of SmuG1 in tumor tissues is related to the pathological type of tumor, the invasion and metastasis of cancer cells, and the survival rate and drug resistance of patients. SmuG1 is expected to be a new tumor marker and potential therapeutic target.
Key words: Tumor     Base excision repair     SmuG1    
0 引言

机体细胞中的DNA会不断受到体内外多种因素的影响,有害化学物品、紫外线、放射线、有害的细胞代谢产物、机体的自发突变等均能导致DNA的损伤[1]。而人体在受到各种内外因素的影响下仍能保持遗传信息的稳定性,与机体的DNA损伤修复功能密切相关[1-2]。DNA修复效率存在个体差异,不同个体或细胞具有不同DNA修复效率,与恶性肿瘤发生发展、预后、治疗效果密切相关。在过去几年中,研究表明通过调控肿瘤中DNA修复基因是改善或预测癌症疗法功效的有效策略[3]。DNA损伤修复通路包括直接修复、碱基切除修复(base excision repair, BER)、错配修复、核苷酸切除修复和双链断裂修复等基本形式。碱基切除修复是解决自发性、烷化和氧化性DNA损伤的主要途径,至少20个蛋白质参与NER修复过程, 包括ERCC1、XRCC1、XRCC3等。BER途径基因的表达异常或缺陷与多种实体肿瘤有关[4]。单链选择性单功能尿嘧啶DNA糖基化酶(single-strand selective monofunctional uracil DNA glycosylase, SmuG1)是人类中由SmuG1基因编码的酶。SmuG1是BER途径重要的一种糖基化酶,可从核染色质中的单链和双链DNA中去除尿嘧啶(Uracil, U),从而有助于BER。SmuG1被证实与结直肠癌、乳腺癌、宫颈癌、胃食管癌等多种肿瘤的遗传易感性、化疗敏感度、生存率以及侵袭转移等相关[5-8]。本文主要对SmuG1的结构表达、生物学特性、参与的信号通路、与肿瘤发生发展及耐药的关系等作以下综述。

1 SmuG1的基本结构和表达方式

人类总共有四种糖基化酶负责去除U病变:尿嘧啶DNA糖基化酶(UNG/UDG),单链选择性单功能尿嘧啶DNA糖基化酶(SmuG1),胸腺嘧啶DNA糖基化酶(TDG)和甲基结合域4(MBD4)[9]。除MBD4外,其他三种糖基化酶都属于UDG超家族。虽然UDG超家族的三个成员都删除了U,但它们扮演的角色却显著不同[10]。BER识别并切割尿嘧啶的糖苷键,产生脱碱基位点,随后由脱嘌呤/脱嘧啶核酸内切酶1(APE1)切割,然后由聚合酶β(polβ)去除脱氧核糖磷酸(dRP)并插入与未配对的鸟嘌呤(G)相对的胞嘧啶(C),最后由连接酶连接切口[11-12]。SmuG1是蛋白质编码基因,参与BER的相关途径包括端粒C-链合成和脱嘧啶化。SmuG1具有增加的底物耐受性,能够从ssDNA、U相对的A或G以及卤化和氧化的尿嘧啶衍生物中切除U。与超家族的其他两个成员不同,SmuG1不经历细胞周期调节,而是以恒定的低水平表达。有趣的是,SmuG1倾向于在核仁中积累,其中包含活性转录和浓缩染色质的区域[13],即使在UNG存在的情况下,SmuG1也能有效地防止基因组尿嘧啶积累。因此,SmuG1在非复制染色质中修复脱氨基胞嘧啶(U:G)可能更为重要。

2 SmuG1的生物学特性及相关信号通路

细胞DNA暴露于多种外源性和内源性损伤剂,损伤可使细胞发生诱变、凋亡,甚至获得转化的潜力。核碱基损伤,例如C至U的脱氨基,通过BER途径修复。BER可以在体外核小体核心颗粒中进行,但修复效率受到尿嘧啶-DNA糖基化酶和DNA聚合酶b在核小体核心上的活性降低的限制。UNG2和SmuG1都能够从U:A以及U:G碱基对中去除尿嘧啶,最后由AP位点通过短补丁BER途径修复。SmuG1和UNG2通过不同的机制协调BER的初始步骤[6]。SmuG1以前被认为是尿嘧啶-DNA糖基化酶的备用酶,最近已被证明可以切除5-羟基尿嘧啶、5-羟甲基尿嘧啶、5-甲酰尿嘧啶、带有氧化的基团环C5以及尿嘧啶[14]。同时,SmuG1被证实不受细胞周期调节并且均匀分布在核质中,具有更广泛的底物特异性[15]。SmuG1识别基因组中的基础病变并通过从单链和双链DNA中去除尿嘧啶来启动碱基切除修复系统,但作为尿嘧啶残基特异性的单功能DNA糖基化酶,SmuG1首选单链DNA作为底物。该基因存在许多可变剪接的转录物变体,仍有不少变体的全长性质尚不清楚[16-17]

尿嘧啶-DNA修复对于防止突变至关重要[18],目前有证据表明SmuG1从U:A以及U:G碱基对中去除尿嘧啶,得到的AP位点通过BER途径修复。尿嘧啶也被引入DNA作为抗体基因多样化的一部分,其去除对抗体多样化同样至关重要[6]。已知UNG是尿嘧啶去除的主要参与者,但当耗尽时,SmuG1可以为抗体多样化过程中的UNG提供支持。除尿嘧啶外,SmuG1还除去了几种嘧啶氧化产物[19]。并具有从DNA中去除胸腺嘧啶氧化产物5-羟甲基尿嘧啶的特定功能。

SmuG1具有广泛的核定位,核仁有一定的富集。研究表明SmuG1与交互假尿苷合成酶Dyskerin(DKC1)共定位在核仁和Cajal体内。SmuG1切除了RNA中的修饰碱基,并证明SmuG1含有5-羟甲基脱氧尿苷的单链RNA,但不是假尿苷,核苷由DKC1的尿苷异构化产生。SmuG1的消耗,特别是SmuG1和DKC1的组合损失,导致成熟的28S和18S rRNA种类中5-hm(Urd)的积累。SmuG1在rRNA质量控制中起作用,部分是通过调节rRNA中的5-hm(Urd)水平。此外,DKC1参与SmuG1与47S rRNA结合。所以,BER酶SmuG1是DKC1互动合作伙伴。该SmuG1/DKC1的互动目标是复杂的核仁,它通过调节5-hm(Urd)的水平有助于它rRNA质量控制[20]。Korourian等研究还发现Wnt信号通路E2F6和RhoA和SmuG1之间存在显著相关性,揭示Wnt信号通路与BER途径之间存在某种联系[6]

3 SmuG1与肿瘤的关系

对BER基因表达的精细调节,例如微小RNA(miRNA)所施加的转录后调节,可能影响该修复系统的效率。靶基因30个非翻译区(UTR)内单核苷酸多态性(SNP)的存在可以改变与特异性miRNA的结合,调节基因表达,并最终影响癌症易感性、预后和治疗结果[21-22]

SmuG1是蛋白质编码基因。SmuG1的异常表达与乳腺癌、直肠乙状结肠肿瘤、骨淋巴瘤、宫颈癌等癌症的发生发展密切相关[5]。其相关途径是端粒C链(Lagging Strand)合成和识别以及DNA糖基化酶与含有受影响的嘧啶的位点的关联。与该基因相关的基因本体论(GO)注释包括DNA N-糖基化酶活性和氧化的嘧啶核碱基损伤DNA N-糖基化酶活性[22]

低SmuG1转录物可损害DNA修复,从而增加突变率,增强染色体不稳定性并促进更多具有攻击行为的恶性克隆的选择。低SmuG1表达也与BRCA1、ATM和XRCC1相关,暗示低SmuG1肿瘤中的基因组不稳定。在小鼠研究中,SmuG1的丢失被证明可以增加癌症的易感性[23]。此外,低SmuG1转录物可能与较差的存活率相关[7],并与乳腺癌中的侵袭性表型相关[24];与正常脑组织相比,星形细胞瘤中SmuG1表达显著下降;SmuG1被确定为预测结肠癌患者存活率低的独立预后因素[17];宫颈癌患者SmuG1低表达与不良临床病理类型相关[25]。SmuG1单核苷酸多态性(SNPs)与食管癌和胃癌患病风险相关[26]

然而,胃癌中的低SmuG1显示出相反的结果[27],SmuG1表达与患者的不良生存率相关。一种可能的解释是,在胃癌中,炎性反应是致癌作用的驱动因素,并且低浓度的SmuG1可有益于修复氧化性碱基损伤(通常见于炎性环境中),在这种情况下,与耗尽相反,SmuG1的表达升高可以作为存活的潜在生物标志物。因此,SmuG1在肿瘤发生发展中具有复杂的作用,可能基于癌症的类型及其性质而扮演不同的角色[8]

4 SmuG1与化疗耐药的关系

铂是多种肿瘤的一线化疗药物,其细胞毒性作用主要通过进入细胞与DNA结合并激活凋亡途径。SmuG1编码参与BER途径的DNA去甲基化和DNA修复的蛋白。其上调表明对铂类诱导的DNA损伤的反应增强,并在联合治疗中靶向SmuG1可能通过增加细胞对DNA损伤的易感性来增加铂类活性。据报道,SmuG1表达的变化与铂类化学敏感度呈负相关。

5-氟尿嘧啶(Fu)已被广泛用于治疗一系列常见癌症超过四十年[5]。氟取代的尿嘧啶类似物转化为几种活性代谢物,但细胞毒性的机制仍不清楚。在广泛引用但未经证实的模型中,Fu被认为通过抑制胸苷酸合酶来杀死细胞,并且在DNA复制期间增加使用dUTP代替TTP,随后切除高水平的尿嘧啶导致新合成的DNA的片段化[19]。UNG和SmuG1最有可能在复制过程中解决尿嘧啶和5-Fu的基因组掺入问题。体外研究表明UNG对Fu:A与U:A碱基对的活性大大降低,这可以解释为什么UNG对体内Fu修复没有贡献,因为相比UNG,SmuG1在体内对5-Fu敏感度明显增加[10]。有人提出,SmuG1可作为预测药物反应生物标志物,并可解释某些类型肿瘤的获得性耐药机制[10, 28]

5 小结

综上, SmuG1是UDG超家族三大糖基化酶之一,与UNG、TDG共同参与BER,在DNA损伤修复中发挥着不可替代的作用,对于维持机体基因稳定性至关重要。研究发现SmuG1在多种实体肿瘤细胞中存在异常表达, 且与肿瘤临床病理类型、癌细胞的侵袭转移以及患者生存率均相关,且由于它的DNA损伤修复能力, 促使化疗药物引起的癌细胞凋亡受到抑制, 从而产生化疗耐药。所以,研究SmuG1作为新型抗肿瘤药物的治疗靶点具有重大意义。虽然研究发现SmuG1和Wnt信号通路E2F6和RhoA以及DKC1相关,但目前关于SmuG1与肿瘤关系的具体分子机制尚不清楚,仍需进一步研究。

作者贡献

郑丽娇:文献整理,文章撰写

彭冬先:思路指导,文章修改

王观凤、黄洁:文献查阅

参考文献
[1] Samstein RM, Riaz N. The DNA damage response in immunotherapy and radiation[J]. Adv Radiat Oncol, 2018, 3(4): 527–533.
[2] Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis[J]. Environ Mol Mutagen, 2017, 58(5): 235–263. DOI:10.1002/em.22087
[3] Foksinski M, Zarakowska E, Gackowski D, et al. Profiles of a broad spectrum of epigenetic DNA modifications in normal and malignant human cell lines: Proliferation rate is not the major factor responsible for the 5-hydroxymethyl-2'-deoxycytidine level in cultured cancerous cell lines[J]. PLoS One, 2017, 12(11): e0188856. DOI:10.1371/journal.pone.0188856
[4] Shinmura K, Kato H, Goto M, et al. Mutation Spectrum Induced by 8-Bromoguanine, a Base Damaged by Reactive Brominating Species, in Human Cells[J]. Oxid Med Cell Longev, 2017, 2017: 7308501.
[5] Oliveira DM, Laudanna C, Migliozzi S, et al. Identification of different mutational profiles in cancers arising in specific colon segments by next generation sequencing[J]. Oncotarget, 2018, 9(35): 23960–23974.
[6] Korourian A, Roudi R, Shariftabrizi A, et al. Differential role of Wnt signaling and base excision repair pathways in gastric adenocarcinoma aggressiveness[J]. Clin Exp Med, 2017, 17(4): 505–517.
[7] Abdel-Fatah TM, Arora A, Alsubhi N, et al. Clinicopathological Significance of ATM-Chk2 Expression in Sporadic Breast Cancers: a Comprehensive Analysis in Large Cohorts[J]. Neoplasia, 2014, 16(11): 982–991. DOI:10.1016/j.neo.2014.09.009
[8] Kuznetsova AA, Iakovlev DA, Misovets IV, et al. Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1[J]. Mol Biosyst, 2017, 13(12): 2638–2649. DOI:10.1039/C7MB00457E
[9] Antoniali G, Malfatti MC, Tell G. Unveiling the non-repair face of the Base Excision Repair pathway in RNA processing: A missing link between DNA repair and gene expression?[J]. DNA Repair(Amst), 2017, 56: 65–74. DOI:10.1016/j.dnarep.2017.06.008
[10] Pang P, Yang Y, Li J, et al. SMUG2 DNA glycosylase from Pedobacter heparinus as a new subfamily of the UDG superfamily[J]. Biochem J, 2017, 474(6): 923–938. DOI:10.1042/BCJ20160934
[11] Juul M, Bertl J, Guo Q, et al. Non-coding cancer driver candidates identified with a sample- and position-specific model of the somatic mutation rate[J]. Elife, 2017, 6: pii: e21778. DOI:10.7554/eLife.21778
[12] Ye F, Wang H, Liu J, et al. Association of SMUG1 SNPs in Intron Region and Linkage Disequilibrium with Occurrence of Cervical Carcinoma and HPV Infection in Chinese Population[J]. J Cancer, 2019, 10(1): 238–248. DOI:10.7150/jca.27103
[13] Bonyadia M, Mehdizadeh F, Jabbarpoor Bonyadi MH, et al. Association of the DNA repair SMUG1 rs3087404 polymorphism and its interaction with high sensitivity C-reactive protein for age-related macular degeneration in Iranian patients[J]. Ophthalmic Genet, 2017, 38(5): 422–427. DOI:10.1080/13816810.2016.1251947
[14] Tarantino ME, Dow BJ, Drohat AC, et al. Nucleosomes and the three glycosylases: High, medium, and low levels of excision by the uracil DNA glycosylase superfamily[J]. DNA Repair(Amst), 2018, 72: 56–63. DOI:10.1016/j.dnarep.2018.09.008
[15] Zhang Z, Shen J, Yang Y, et al. Structural Basis of Substrate Specificity in Geobacter metallireducens SMUG1[J]. ACS Chem Biol, 2016, 11(6): 1729–1736. DOI:10.1021/acschembio.6b00164
[16] Shinmura K, Kato H, Kawanishi Y, et al. Defective repair capacity of variant proteins of the DNA glycosylase NTHL1for 5-hydroxyuracil, an oxidation product of cytosine[J]. Free Radic Biol Med, 2019, 131: 264–273. DOI:10.1016/j.freeradbiomed.2018.12.010
[17] Oliveira DM, Laudanna C, Migliozzi S, et al. Identification of different mutational profiles in cancers arising in specific colon segments by next generation sequencing[J]. Oncotarget, 2018, 9(35): 23960–23974.
[18] Korourian A, Madjd Z, Roudi R, et al. Induction of miR-31 causes increased sensitivity to 5-FU and decreased migration and cell invasion in gastric adenocarcinoma[J]. Bratisl Lek Listy, 2019, 120(1): 35–39.
[19] Alsøe L, Sarno A, Carracedo S, et al. Uracil Accumulation and Mutagenesis Dominated by Cytosine Deamination in CpG Dinucleotides in Mice Lacking UNG and SMUG1[J]. Sci Rep, 2017, 7(1): 7199.
[20] Jobert L, Skjeldam HK, Dalhus B, et al. The human base excision repair enzyme SMUG1 directly interacts with DKC1 and contributes to RNA quality control[J]. Mol Cell, 2013, 49(2): 339–345. DOI:10.1016/j.molcel.2012.11.010
[21] Foksinski M, Zarakowska E, Gackowski D, et al. Profiles of a broad spectrum of epigenetic DNA modifications in normal and malignant human cell lines: Proliferation rate is not the major factor responsible for the 5-hydroxymethyl-2'-deoxycytidine level in cultured cancerous cell lines[J]. PLoS One, 2018, 13(4): e0195819. DOI:10.1371/journal.pone.0195819
[22] Shinmura K, Kato H, Goto M, et al. Mutation Spectrum Induced by 8-Bromoguanine, a Base Damaged by Reactive Brominating Species, in Human Cells[J]. Oxid Med Cell Longev, 2017, 2017: 7308501.
[23] Kemmerich K, Dingler FA, Rada C, et al. Germline ablation of SMUG1 DNA glycosylase causes loss of 5-hydroxymethyluracil- and UNG-backup uracil-excision activities and increases cancer predisposition of Ung-/-Msh2-/- mice[J]. Nucleic Acids Res, 2012, 40(13): 6016–6025. DOI:10.1093/nar/gks259
[24] Abdel-Fatah TM, Albarakati N, Bowell L, et al. Single-strand selective monofunctional uracil-DNA glycosylase (SMUG1) deficiency is linked to aggressive breast cancer and predicts response to adjuvant therapy[J]. Breast Cancer Res Treat, 2013, 142(3): 515–527.
[25] An JS, Huang MN, Song YM, et al. A preliminary study of genes related to concomitant chemoradiotherapy resistance in advanced uterine cervical squamous cell carcinoma[J]. Chin Med J(Engl), 2013, 126(21): 4109–4115.
[26] Xie H, Gong Y, Dai J, et al. Genetic variations in base excision repair pathway and risk of bladder cancer: A case-control study in the United States[J]. Mol Carcinog, 2015, 54(1): 50–57. DOI:10.1002/mc.22073
[27] Abdel-Fatah T, Arora A, Gorguc I, et al. Are DNA Repair Factors Promising Biomarkers for Personalized Therapy in Gastric Cancer?[J]. Antioxid Redox Signal, 2013, 18(18): 2392–2398. DOI:10.1089/ars.2012.4873
[28] Czarny P, Wigner P, Strycharz J, et al. Single-nucleotide polymorphisms of uracil-processing genes affect the occurrence and the onset of recurrent depressive disorder[J]. Peer J, 2018, 6: e5116. DOI:10.7717/peerj.5116