文章信息
- EGFR-TKIs治疗敏感突变肺癌脑转移的研究进展
- Research Progress on Brain Metastases to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in EGFR-mutated Non-small Cell Lung Cancer Patients
- 肿瘤防治研究, 2017, 44(10): 698-700
- Cancer Research on Prevention and Treatment, 2017, 44(10): 698-700
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2017.17.0240
- 收稿日期: 2017-03-09
- 修回日期: 2017-07-27
脑是晚期非小细胞肺癌(non-amall cell lung cancer, NSCLC)较常见的转移部位,初诊晚期肺癌患者中10%左右发生脑转移,所有NSCLC患者中约30%~50%有脑转移[1],尤其在腺癌患者中,严重影响患者的生活质量,预后非常差,缺乏非常有效的治疗方法,脑转移也被认为是影响肺癌患者总生存的不良预后因素,因为发生脑转移的患者,在不治疗的情况下中位生存期仅为4~7周[2]。
1 非小细胞肺癌脑转移治疗现状化疗在肺癌脑转移的治疗效果有限,首诊出现无症状脑转移的NSCLC,含铂化疗方案中位生存期为3~6月,颅内客观缓解率(objective response rate, ORR)为23%~50%,化疗药物颅内外ORR相似,提示与药物本身活性有关,而与血脑屏障通过率无关[3]。
肺癌脑转移的放射治疗仍不理想,全脑放疗(whole brain radiotiontherapy, WBRT)中位生存期为3~6月,WBRT+化疗的中位生存期为7.6~8月,WBRT曾是肺癌脑转移的标准治疗方案,ORR为50%~70%,1年生存率为10%~15%,不良反应为损伤大脑功能,发生率为25%,并可导致严重脱发[4]。立体定向放射外科(stereotactic radiosurgery, SRS)微创,对认知功能影响较小,但SRS治疗对潜在病灶无效,较WBRT,颅内转移率高[5]。
脑毛细血管内皮细胞无窗孔、内皮细胞间紧密连接,从而限制了许多药物进入神经组织,通常能溶于脂类、在正常pH值时不解离、分子量小的药物易通过血脑屏障,小分子TKIs脂溶性好,能一定比例透过血脑屏障[6],对于NSCLC脑转移灶有治疗作用,因此,目前临床研究的热点集中于EGFR-TKIs在非小细胞肺癌脑转移中的价值。
2 TKIs单药多数研究入组的患者为EGFR基因突变率较高的人群,如:东亚、女性、非吸烟、腺癌等,中位无进展生存时间(progress free survival, PFS)为6.6~23.2月,中位总生存期(overall survival, OS)在12.9~21.9月[7-10]。对于优势人群或EGFR基因突变阳性的NSCLC脑转移患者,近年来,TKIs单药治疗的地位在逐步确立[11]。
Zhao等[12]报道了一项回顾性对照临床研究,该研究入组396例晚期肺腺癌患者,埃克替尼组131例、标准含铂两药方案化疗组265例,埃克替尼组的大脑累积转移率低于化疗组,然而,两组OS并无显著差异,表明埃克替尼在EGFR基因突变的晚期肺腺癌患者的初始治疗中对脑转移有预防作用,可以有效地降低脑转移的发生率,因此改善预后。
Welsh等[13]入组40例非小细胞肺癌脑转移患者,其中基因状态明确17例,EGFR突变9例,EGFR阴性8例,进行EGFR-TKIs联合全脑放疗,EGFR突变阳性患者OS为19.1月,明显长于EGFR突变阴性患者的9.3月,这说明对于EGFR突变阳性患者,TKI联合全脑放疗,可延长脑转移患者OS。
基于以上循证医学证据,目前NCCN指南建议所有晚期腺癌患者均进行EGFR基因检测,所有有EGFR基因突变患者可EGFR-TKIs作为一线药物[14]。对于野生型患者,没有数据建议一线使用EGFR-TKIs。
3 伴脑转移NSCLC经EGFR-TKIs治疗进展的处理EGFR-TKIs治疗后颅内进展的耐药机制不明,进展后T790M突变的比例低于颅外病灶,可能与TKI药物CNS低浓度有关[15],也可能与颅内的“pharmacokinetic failure”现象有关[16]。
3.1 联合/换为放疗Wu等[17]团队的一项随机、开放、平行对照、多中心评价埃克替尼与全脑放疗治疗EGFR突变的晚期NSCLC脑转移患者的Ⅲ期临床试验(BRAIN研究)显示:中位颅内PFS分别为10.0月和4.8月(HR=0.56, P=0.014),6月颅内PFS率分别是72.0%和48.0%(P < 0.001),颅内ORR分别为67.1%和40.9%,总体ORR分别为66.07%和13.33%,疗效初步表明EGFR-TKIs可延缓放疗并提高疗效。
3.2 EGFR-TKIs药物剂量增加Jackman等[18]发现吉非替尼可加量用于肺癌脑膜转移的晚期患者,吉非替尼剂量由500 mg/d增至1 000 mg/d,吉非替尼脑脊液浓度增加,由18 nmol/L增至42 nmol/L,肝转氨酶ALT/AST由19/15 mg/dL上升至122/47 mg/dL,减量后转氨酶下降,患者临床症状改善,注意力和记忆力提高。
Grommes等[19]报道了Erlotinib“Pulse”给药模式,9例接受单药Erlotinib脉冲给药,平均剂量1500 mg/w(900~1500 mg),中枢神经系统进展的平均时间为2.7月(0.8~14.5月),中位总生存期为12.0月(2.9~25.4月)。
ICOME研究结果显示:WBRT联合埃克替尼(125~375 mg)治疗EGFR敏感突变阳性NSCLC患者耐受性良好,患者认知功能在治疗前后及随访过程中无明显降低,375~500 mg剂量组单药即对颅内有效,且起效时间短(7日内),375 mg可达到最佳的脑脊液药物浓度及脑脊液药物浓度/血药浓度,埃克替尼脑脊液平均渗透率为4.04%(1.23%~9.71%),WBRT未明显增加脑脊液药物浓度/血药浓度,此种治疗模式,颅外进展为7/9(肺内病灶),在加用局部治疗(联合埃克替尼)后患者继续获益,颅内外ORR均为73.3%,总体ORR为80%,疾病控制率(disease control rate, DCR)为100%[20]。
3.3 换用新一代EGFR-TKIAZD9291是第三代EGFR-TKIs,为不可逆EGFR基因敏感突变和T790M突变阳性抑制剂,AZD9291对野生型细胞株EGFR磷酸化的抑制作用较轻,而第一代和第二代EGFR-TKIs则对于野生型和突变型均有抑制作用,这可能是第三代药物可以在临床有效浓度下抑制T790M突变的原因所在[21]。Ballard等[22]在2015年世界肺癌大会(WCLC)上报道了一项动物实验显示:AZD9291在小鼠脑组织中浓度远远大于吉非替尼、CO-1686和阿法替尼,药峰浓度(maximum concentration, Cmax)脑内/血浆比率(brain/plasma Cmax rate)在AZD9291、吉非替尼、CO-1686和阿法替尼分别是3.4、0.21、< 0.36和 < 0.36,EGFR突变脑转移小鼠移植瘤模型使用AZD9291较使用CO-1686可导致肿瘤明显退化。Goss等[23]在2016年WCLC上汇集来自两个Ⅱ期临床试验的数据,汇报了T790M突变阳性的晚期NSCLC脑转移患者服用AZD9291,中枢神经系统在6周内ORR可达54%、DCR为92%。近年多报道AZD9291有较好的安全性和耐受性,对颅内病灶有良好的控制,除了克服T790M突变耐药,其一线治疗ECFR突变阳性的晚期肺癌患者的前景广阔[24]。
AZD3759是针对L858R突变和19del作用的EGFR-TKIs,专门设计用于穿透血脑屏障而达到治疗NSCLC脑转移的目的。Chen等[25]在2015年WCLC上汇报AZD3759治疗脑转移Ⅰ期临床试验,结果表明AZD3759具有非常高的血脑屏障被动渗透率(29.5×10-6 cm/s),在EGFR阳性的脑转移动物模型中,AZD3759可明显使肿瘤减小。Ahn等[26]报道的Ⅰ期临床试验,入组了至少经过一代EGFR-TKIs或一线化疗的NSCLC脑转移患者,取得足够的脑脊液浓度,在剂量升级阶段有较好的抗癌活性,在颅内肿瘤可测量的20例患者中,8例患者肿瘤缩小,6例部分缓解,最常见的不良事件是皮疹和腹泻。
4 结语综上所述,非小细胞脑转移发生率高,预后差,传统疗法效果不理想;第一代EGFR-TKIs可以延缓脑转移发生,对于脑转移患者可以提高疗效,可以联合放疗或者替代早期放疗;治疗失败后增加剂量仍有可能使脑转移获得缓解;新一代EGFR-TKIs很好地解决了脑转移的治疗难题。
| [1] | Ettinger DS, Akerley W, Borghaei H, et al. Non-small cell lung cancer, version 2.2013[J]. J Natl Compr Canc Netw, 2013, 11(6): 645–53. DOI:10.6004/jnccn.2013.0084 |
| [2] | Zeng YD, Zhang L, Liao H, et al. Gefitinib alone or with concomitant whole brain radiotherapy for patients with brain metastasis from non-small-cell lung cancer:A retrospective study[J]. Asian Pac J Cancer Prev, 2012, 13(3): 909–14. DOI:10.7314/APJCP.2012.13.3.909 |
| [3] | Zimmermann S, Dziadziuszko R, Peters S. Indications and limitations of chemotherapy and targeted agents in non-small cell lung cancer brain metastases[J]. Cancer Treat Rev, 2014, 40(6): 716–22. DOI:10.1016/j.ctrv.2014.03.005 |
| [4] | Mahmood U, Kwok Y, Regine WF, et al. Whole-brain irradiation for patients with brain metastases:Still the standard of care[J]. Lancet Oncol, 2010, 11(3): 221–2. DOI:10.1016/S1470-2045(09)70389-4 |
| [5] | Kondziolka D, Kalkanis SN, Mehta MP, et al. It is time to reevaluate the management of patients with brain metastases[J]. Neurosurgery, 2014, 75(1): 1–9. DOI:10.1227/NEU.0000000000000354 |
| [6] | Heimberger AB, Learn CA, Archer GE, et al. Brain tumors in mice are susceptible to blockade of epidermal growth factor receptor (egfr) with the oral, specific, egfr-tyrosine kinase inhibitor zd1839(iressa)[J]. Clin Cancer Res, 2002, 8(11): 3496–502. |
| [7] | Wu YL, Zhou C, Cheng Y, et al. Erlotinib as second-line treatment in patients with advanced non-small-cell lung cancer and asymptomatic brain metastases:A phase ii study (ctong-0803)[J]. Ann Oncol, 2013, 24(4): 993–9. DOI:10.1093/annonc/mds529 |
| [8] | Porta R, Sánchez-Torres JM, Paz-Ares L, et al. Brain metastases from lung cancer responding to erlotinib:The importance of egfr mutation[J]. Eur Respir J, 2011, 37(3): 624–31. DOI:10.1183/09031936.00195609 |
| [9] | Iuchi T, Shingyoji M, Sakaida T, et al. Phase ii trial of gefitinib alone without radiation therapy for japanese patients with brain metastases from egfr-mutant lung adenocarcinoma[J]. Lung Cancer, 2013, 82(2): 282–7. DOI:10.1016/j.lungcan.2013.08.016 |
| [10] | Heon S, Yeap BY, Britt GJ, et al. Development of central nervous system metastases in patients with advanced non-small cell lung cancer and somatic egfr mutations treated with gefitinib or erlotinib[J]. Clin Cancer Res, 2010, 16(23): 5873–82. DOI:10.1158/1078-0432.CCR-10-1588 |
| [11] | Jamal-Hanjani M, Spicer J. Epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of epidermal growth factor receptor-mutant non-small cell lung cancer metastatic to the brain[J]. Clin Cancer Res, 2012, 18(4): 938–44. DOI:10.1158/1078-0432.CCR-11-2529 |
| [12] | Zhao X, Zhu G, Chen H, et al. Efficacy of icotinib versus traditional chemotherapy as first-line treatment for preventing brain metastasis from advanced lung adenocarcinoma in patients with epidermal growth factor receptor-sensitive mutation[J]. J Cancer Res Ther, 2014, 10(Suppl): C155–9. |
| [13] | Welsh JW, Komaki R, Amini A, et al. Phase Ⅱ trial of erlotinib plus concurrent whole-brain radiation therapy for patients with brain metastases from non-small-cell lung cancer[J]. J Clin Oncol, 2013, 31(7): 895–902. DOI:10.1200/JCO.2011.40.1174 |
| [14] | Ettinger DS, Wood DE, Akerley W, et al. NCCN Guidelines Insights:Non-small Cell Lung Cancer, Version 4.2016[J]. J Natl Compr Canc Netw, 2016, 14(3): 255–64. DOI:10.6004/jnccn.2016.0031 |
| [15] | Metro G, Chiari R, Ricciuti B, et al. Pharmacotherapeutic options for treating brain metastases in non-small cell lung cancer[J]. Expert Opin Pharmacother, 2015, 16(17): 2601–13. DOI:10.1517/14656566.2015.1094056 |
| [16] | Hata A, Katakami N, Yoshioka H, et al. Spatiotemporal t790m heterogeneity in individual patients with egfr-mutant non-small-cell lung cancer after acquired resistance to egfr-tki[J]. J Thorac Oncol, 2015, 10(11): 1553–9. DOI:10.1097/JTO.0000000000000647 |
| [17] | Wu YL, Yang JJ, Zhou CC, et al. BRAIN:A phase Ⅲ trial comparing WBI and chemotherapy with icotinib in NSCLC with brain metastases harboring EGFR nutations (CTONG 1201)[J]. WCLC, 2016: PL03.05. |
| [18] | Jackman DM, Holmes AJ, Lindeman N, et al. Response and resistance in a non-small-cell lung cancer patient with an epidermal growth factor receptor mutation and leptomeningeal metastases treated with high-dose gefitini[J]. J Clin Oncol, 2006, 24(27): 4517–20. DOI:10.1200/JCO.2006.06.6126 |
| [19] | Grommes C, Oxnard GR, Kris MG, et al. "Pulsatile" high-dose weekly erlotinib for cns metastases from egfr mutant non-small cell lung cancer[J]. Neuro Oncol, 2011, 13(12): 1364–9. DOI:10.1093/neuonc/nor121 |
| [20] | Zhou L, He J, Xiong W, et al. Impact of whole brain radiation therapy on csf penetration ability of icotinib in egfr-mutated non-small cell lung cancer patients with brain metastases:Results of phase i dose-escalation study[J]. Lung Cancer, 2016, 96: 93–100. DOI:10.1016/j.lungcan.2016.04.003 |
| [21] | Cross DA, Ashton SE, Ghiorghiu S, et al. Azd9291, an irreversible egfr tki, overcomes t790m-mediated resistance to egfr inhibitors in lung cancer[J]. Cancer Discov, 2014, 4(9): 1046–61. DOI:10.1158/2159-8290.CD-14-0337 |
| [22] | Ballard P, Yates JW, Yang Z, et al. Preclinical comparison of osimertinib with other egfr-tkis in egfr-mutant nsclc brain metastases models, and early evidence of clinical brain metastases activity[J]. Clin Cancer Res, 2016, 22(20): 5130–40. DOI:10.1158/1078-0432.CCR-16-0399 |
| [23] | Yang J, Ramalingam SS, Jänne PA, et al. LBA2_PR:Osimertinib (azd9291) in pre-treated pts with t790m-positive advanced nsclc:Updated phase 1(p1) and pooled phase 2(p2) results[J]. J Thorac Oncol, 2016, 11(4 Suppl): S152–3. |
| [24] | Jiang T, Zhou C. Clinical activity of the mutantseleitive egfr inhibitor azd 9291 in patients with egfr inhibitor-rsistant non-small cell lung cancer[J]. Transl Lung Cancer Res, 2014, 3(6): 370–2. |
| [25] | Yang Z, Guo Q, Wang Y, et al. Azd3759, a bbb-penetrating egfr inhibitor for the treatment of egfr mutant nsclc with cns metastases[J]. Sci Transl Med, 2016, 8(368): 368ra172. DOI:10.1126/scitranslmed.aag0976 |
| [26] | Ahn MJ, Kim DW, Kim TM, et al. Phase I study of AZD3759, a CNS penetrable EGFR inhibitor, for the treatment of non-small-cell lung cancer (NSCLC) with brain metastasis(BM) and leptomeningeal metastasis (LM)[J]. J Clin Oncol, 2016, 34: abstr 9003. |
2017, Vol. 44


