文章信息
- BRCA突变型乳腺癌的靶向治疗研究进展
- Review of Targeted Therapy for Breast Cancer with BRCA Genes Mutation
- 肿瘤防治研究, 2017, 44(1): 75-78
- Cancer Research on Prevention and Treatment, 2017, 44(1): 75-78
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2017.01.016
- 收稿日期: 2016-05-07
- 修回日期: 2016-07-04
近年来乳腺癌的发病率和死亡率呈逐年上升趋势,是女性癌症中最常见的死亡原因[1]。传统的治疗方式已经远远不能满足人们对于乳腺癌治疗后生活质量的要求,精准医疗时代的到来给癌症的治疗带来了希望。BRCA基因是目前发现的乳腺癌高外显率抑癌基因,与乳腺癌的发生发展密切相关。因此本综述主要探讨BRCA与乳腺癌发生发展的潜在机制,深入了解BRCA突变型乳腺癌的靶向治疗,从而为该类型的乳腺癌患者进行更有效的个体化治疗。
1 BRCA基因结构与功能BRCA1基因于1990年由Hall等[2]发现,定位于17q21,具有24个外显子,编码1 863个氨基酸,以常染色体显性方式遗传,在DNA损伤修复和转录调节中具有重要作用。BRCA1基因编码的蛋白主要包括以下特征性结构域:(1)N-端的锌指结构域;(2)中间段DNA修复蛋白Rad51结合区;(3)C端的BRCT基序(BRCA carboxyl terminus motifs)。BRCA2基因于1994年由Wooster等[3]发现,定位于13号染色体q12~q13,具有27个外显子,编码3 418个氨基酸。其基因序列与BRCA1无明显关系,主要特征性结构域是Rad51结合区。BRCA2基因主要通过同源重组和同源重组为基础的DNA断链修复,在细胞生长和DNA损伤监测点控制中起作用。BRCA1和BRCA2基因突变或缺陷可导致染色体不稳定,促进细胞增殖,阻止细胞正常分化,从而促进肿瘤的发生。
2 BRCA基因与乳腺癌国外研究显示,家族性乳腺癌中大约有15%~20%存在BRCA基因突变,在70岁时BRCA1和BRCA2基因携带者患乳腺癌的累积风险分别为57%~65%和45%~49%[4]。而国内数据表明,约10%~15%存在BRCA基因突变,70岁累积患病风险分别为37.9%和36.5%[5]。此外,BRCA基因突变型乳腺癌也能增加对侧的患癌风险[6]。其中BRCA1突变型乳腺癌多见于更激进的临床表型,如髓样、三阴性及基底样型,而BRCA2没有表现特殊的形态特征,相对于散发性乳腺癌,两者无病生存期(disease-free survival, DFS)并没有显著区别[7-8]。BRCA基因突变携带者癌症发生的高风险,也使得BRCA基因突变的筛查成为必要。美国国立综合癌症网络(national comprehensive cancer network,NCCN)指南建议对高风险的人群进行BRCA基因检测,包括早发乳腺癌(在45岁前诊断);双侧或同侧多发性原发性乳腺癌;具有家族史;男性乳腺癌;有卵巢癌的个人史或家族史;家族中证实有BRCA基因突变;三阴性乳腺癌(≤60岁)或者具有遗传性乳腺癌或卵巢癌的胰腺癌[9]。目前对BRCA1和BRCA2基因突变携带者主要采取以下预防措施:加强监测(乳房自检、X光检查和乳腺磁共振成像)、药物预防(选择性雌激素受体调节剂、芳香化酶抑制剂和激素避孕)及预防性手术[10],其中预防性手术能显著降低患癌风险和乳腺癌死亡率。研究显示:双侧乳腺切除术(bilateral prophylactic mastectomy,BPM)能降低90%乳腺癌患病风险,单侧患乳腺癌切除后对侧乳房预防性切除(contralateral prophylactic mastectomy,CPM)能降低93%的对侧乳腺癌患病风险,输卵管-卵巢切除术(prophylactic bilateral salpingo-oophorectomy,PBSO)能降低45%的乳腺癌患病风险及65%的全因死亡率[11]。NCCN指南建议BRCA1/2基因突变携带者在35~40岁或生育完成后进行输卵管卵巢切除术,在25岁以后进行双侧乳腺预防全切除术,可同时进行双侧乳房重建术,但目前国内开展相关手术仍需制定相关的准入标准[10]。此外,BRCA突变型乳腺癌应用辅助性他莫昔芬治疗,能降低50%的同侧乳腺癌复发风险,也能降低对侧乳腺癌的患癌风险[12],已被食品和药物管理局(food and drug administration,FDA)批准用于乳腺癌的预防。
3 BRCA基因突变型乳腺癌的靶向治疗 3.1 聚腺苷酸二磷酸核糖转移酶[poly(ADP-ribose)polymerase,PARP]抑制剂研究表明,在BRCA1/2突变型乳腺癌和卵巢癌,联合应用PARP抑制剂能达到“化学合成致死”的疗效[13]。这个概念首次由1946年遗传学家Theodosius Dobzhansky提出,当两个非致死基因突变单独发生时,细胞并不发生损伤或死亡;而两个非致死基因突变同时发生时,就可以引起细胞死亡,即存在杀死效应。Helleday又提出了PARP抑制剂在BRCA基因突变细胞的“合成致死”模型,主要通过DNA损伤修复通路发挥作用[14]。DNA损伤主要包括双链损伤和单链损伤,前者主要包括同源重组(homologous recombination,HR)和非同源重组末端连接(non-homologous end-joining, NHEJ)修复两种方式,后者主要有碱基切除修复(base excision repair, BER)和单链断裂修复(single strand break repair, SSBR)两种。BRCA1/2基因在细胞DNA双链损伤后HR中发挥关键作用,而PARP-1主要介导DNA单链损伤后BER和SSBR通路,PARP-1抑制剂致使PARP-1功能缺失,单链损伤无法及时修复,从而在DNA复制叉处积累成双链损伤,但NHEJ不能修复此类只有一个断端的双链损伤过程,需启动HR修复,而BRCA1/2基因突变介导的HR过程是缺陷的,从而致使DNA双链损伤无法有效修复,最终促使细胞死亡。奥拉帕尼(Olaparib, AZD2281)是首次应用于临床的口服PARP1抑制剂,临床试验发现Olaparib在BRCA突变的患者内表现出持久的抗肿瘤活性。一项开放性Ⅱ期临床试验研究中,选取了137例至少3次化疗失败的BRCA胚系突变晚期卵巢癌患者接受Olaparib药物治疗,结果显示:Olaparib获得了34%的总缓解率(objective response rate, ORR),中位缓解持续时间为7.9月[15]。与安慰剂相比,前者无进展生存期(progression-free survival, PFS)11.2月,后者4.3月,PFS显著延长(P < 0.0001)[16]。在2014年由FDA和欧盟药监局(european medicines agency, EMA)批准上市,作为单药维持治疗铂类敏感复发性BRCA突变型卵巢癌。Rucaparib(AG-14699),PARP抑制剂,在BRCA突变型乳腺癌和卵巢癌中疗效明显,生存期延长[17],于2015年由FDA授予突破性药物认证,即将进入临床试验Ⅲ期。其他PARP抑制剂ABT-888[18]、MK-4827[19]、BMN-673[20]等在研发中。
3.2 磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)抑制剂BRCA基因能与共济失调毛细血管扩张症突变基因(ataxiatelangiectasia mutatecl gene, ATM)和PTEN基因相互作用,可直接或间接通过PI3K/AKT信号通路参与增殖、分化、凋亡及迁移等细胞功能的调节。ATM是一种抑癌基因,属于磷脂酰肌醇酶(PI3K)相关蛋白家族的成员,DNA损伤后,ATM受刺激而活化,催化BRCA1基因的磷酸化,作用于BRCA1的丝/苏氨酸区域,实现对BRCA1的调控,磷酸化后的BRCA1进一步激活下游通路,引起一系列的级联反应。BRCA1基因突变导致这些磷酸化位点缺乏,不能与ATM相互作用,丧失修复损伤细胞的能力。研究发现,ATM抑制剂KU55933对BRCA1缺陷的细胞通过累积的DNA双链断裂能产生合成致死性[21]。PTEN也是一种抑癌基因,能负向调节PI3K/AKT信号通路,如果基因突变,则激活PI3K/AKT通路导致细胞增殖及分化的紊乱,最终促进肿瘤的发生[22]。研究显示,BRCA1突变型乳腺癌通常具有PTEN突变,联合应用PARP抑制剂和PI3K抑制剂相对于单用PARP抑制剂,能有效抑制肿瘤细胞的增长[23-24]。此外,ATM[25]或PTEN[26]基因缺陷的细胞,由于HR通路受损,对PARP抑制剂敏感度增加,具有合成致死性,联合治疗策略可能成为靶向治疗的新策略。
3.3 抗血管生成剂血管内皮细胞生长因子(vascular endothelial growth factor, VEGF)是促进血管内皮细胞分裂增殖的生长因子,能促进肿瘤新生血管形成,为肿瘤的生长、浸润及转移创造条件。BRCA1通过调节血管因子的转录,促进新生血管的形成。研究发现,BRCA1可与雌激素受体(estrogen receptor α, ER-α)结合抑制VEGF的表达,也可通过与羧基末端结合反应蛋白(CtBP-interacting protein, CtIP)及转录抑制因子ZBRK1形成的复合体负向调控血管生成素(angiopoietin 1, ANG1)的表达。如果BRCA1基因突变,将导致VEGF和ANG1水平表达增加,促进血管生成,加速肿瘤增长[27-28]。BRCA突变型乳腺癌与野生型相比,血管生成素ANG-1(P=0.05)、ANG-2(P=0.02)和VEGF(P=0.04)表达增高[29]。而VEGFR3的抑制能够下调BRCA1和BRCA2基因表达水平[30],提示BRCA基因与新生血管生成调节剂相互作用,共同参与了乳腺癌的发生、发展过程,血管内皮细胞生长因子受体(vascular endothelial growth factor receptor, VEGFR)抑制剂在此类型患者中更能抑制肿瘤生长。西地尼布(Cediranib, AZD2171)是一种泛血管内皮生长因子(pan-VEGF)受体酪氨酸激酶抑制剂,主要抑制VEGFR,比较单药Olaparib及联合应用Cediranib在BRCA野生型和突变组的疗效,前者单药和联合用药PFS分别为5.7月和16.5月(P=0.008),后者分别为16.5月和19.4月(P=0.16)[31]。贝伐单抗(Bevacizumab),另一种VEGFR抑制剂,能导致HR缺陷,与Olaparib联合用药,并没有发现严重的不良反应,即将进入Ⅱ期临床试验[32]。
3.4 其他靶向药BRCA1/2基因涉及多种基因如FA家族,BARD1(BRCA1-associated RING domain protein 1),RAD51,MRN(由MRE11、RAD50和NBS1组成,为DNA修复前DNA末端切除所必需)等的相互作用机制,为我们提供了一个靶向药物研究的新思路。研究发现,Triapine,一种小分子核酸还原酶抑制剂,破坏了Olaparib诱导的BRCA1和RAD51聚集,干扰了BRCA1与MRN复合物的相互作用,促进了DNA双链损伤,增加BRCA野生型卵巢癌对PARP抑制剂的敏感度[33]。细胞周期依赖性蛋白酶(cyclin-dependent kinase 1, CDK1)不仅能调控BRCA1介导的S期检测点的激活,而且在HR修复过程中起重要作用。CDK1抑制剂能导致肿瘤细胞HR过程缺陷,也能增加对PARP抑制剂的敏感度[34]。
4 总结乳腺癌作为女性癌症最常见恶性肿瘤,BRCA1和BRCA2基因的出现使乳腺癌治疗不再局限于传统的治疗方式,靶向药物的使用为BRCA突变型乳腺癌带来了新的治疗手段,而“合成致死”的理论也为靶向药物的联合应用提供了新的思路,但BRCA突变型乳腺癌的具体发生机制仍需要进一步研究。未来我们需要探讨其他引起HR缺陷的分子,研制相应的靶向药物,从而为遗传性乳腺癌提供更加有效的个体化治疗。
| [1] | Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66 (2) : 115–32. DOI:10.3322/caac.21338 |
| [2] | Hall JM, Lee MK, Newman B, et al. Linkage of early-onset familial breast cancer to chromosome 17q21[J]. Science, 1990, 250 (4988) : 1684–9. DOI:10.1126/science.2270482 |
| [3] | Wooster R, Neuhausen SL, Mangion J, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13[J]. Science, 1994, 265 (5181) : 2088–90. DOI:10.1126/science.8091231 |
| [4] | Bougie O, Weberpals JI. Clinical Considerations of BRCA1-and BRCA2-Mutation Carriers: A Review[J]. Int J Surg Oncol, 2011, 2011 : 374012. |
| [5] | Yao L, Sun J, Zhang J, et al. Breast cancer risk in Chinese women with BRCA1 or BRCA2 mutations[J]. Breast Cancer Res Treat, 2016, 156 (3) : 441–5. DOI:10.1007/s10549-016-3766-3 |
| [6] | Molina-Montes E, Perez-Nevot B, Pollan M, et al. Cumulative risk of second primary contralateral breast cancer in BRCA1/BRCA2 mutation carriers with a first breast cancer: A systematic review and meta-analysis[J]. Breast, 2014, 23 (6) : 721–42. DOI:10.1016/j.breast.2014.10.005 |
| [7] | Begg CB, Haile RW, Borg A, et al. Variation of breast cancer risk among BRCA1/2 carriers[J]. JAMA, 2008, 299 (2) : 194–201. |
| [8] | Shao J, Yang J, Wang JN, et al. Effect of BRCA2 mutation on familial breast cancer survival: A systematic review and meta-analysis[J]. J Huazhong Univ Sci Technolog Med Sci, 2015, 35 (5) : 629–34. DOI:10.1007/s11596-015-1481-7 |
| [9] | Daly MB, Pilarski R, Axilbund JE, et al. Genetic/Familial High-Risk Assessment: Breast and Ovarian, Version 2.2015[J]. J Natl Compr Canc Netw, 2016, 14 (2) : 153–62. |
| [10] | Bougie O, Weberpals JI. Clinical Considerations of BRCA1-and BRCA2-Mutation Carriers: A Review[J]. Int J Surg Oncol, 2011, 2011 : 374012. |
| [11] | Li X, You R, Wang X, et al. Effectiveness of prophylactic surgeries in BRCA1 or BRCA2 mutation carriers: a meta-analysis and systematic review[J]. Clin Cancer Res, 2016, 22 (15) : 3971–81. DOI:10.1158/1078-0432.CCR-15-1465 |
| [12] | Xu L, Zhao Y, Chen Z, et al. Tamoxifen and risk of contralateral breast cancer among women with inherited mutations in BRCA1 and BRCA2: a meta-analysis[J]. Breast Cancer, 2015, 22 (4) : 327–34. DOI:10.1007/s12282-015-0619-6 |
| [13] | Kaufman B, Shapira-Frommer R, Schmutzler RK, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation[J]. J Clin Oncol, 2015, 33 (3) : 244–50. DOI:10.1200/JCO.2014.56.2728 |
| [14] | Helleday T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings[J]. Mol Oncol, 2011, 5 (4) : 387–93. DOI:10.1016/j.molonc.2011.07.001 |
| [15] | Kaufman B, Shapira-Frommer R, Schmutzler RK, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation[J]. J Clin Oncol, 2015, 33 (3) : 244–50. DOI:10.1200/JCO.2014.56.2728 |
| [16] | Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial[J]. Lancet Oncol, 2014, 15 (8) : 852–61. DOI:10.1016/S1470-2045(14)70228-1 |
| [17] | Drew Y, Ledermann J, Hall G, et al. Phase 2 multicentre trial investigating intermittent and continuous dosing schedules of the poly (ADP-ribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer[J]. Br J Cancer, 2016, 114 (7) : 723–30. DOI:10.1038/bjc.2016.41 |
| [18] | Coleman RL, Sill MW, Bell-Mcguinn K, et al. A phase II evaluation of the potent, highly selective PARP inhibitor veliparib in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer in patients who carry a germline BRCA1 or BRCA2 mutation-An NRG Oncology/Gynecologic Oncology Group study[J]. Gynecol Oncol, 2015, 137 (3) : 386–91. DOI:10.1016/j.ygyno.2015.03.042 |
| [19] | Sandhu SK, Schelman WR, Wilding G, et al. The poly (ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial[J]. Lancet Oncol, 2013, 14 (9) : 882–92. DOI:10.1016/S1470-2045(13)70240-7 |
| [20] | Wang B, Chu D, Feng Y, et al. Discovery and Characterization of (8S, 9R)-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1, 2, 4-triazol-5-yl)-2, 7, 8, 9-tetrahydro-3H-pyrido[4, 3, 2-de]phthalazin-3-one (BMN 673, Talazoparib), a Novel, Highly Potent, and Orally Efficacious Poly (ADP-ribose) Polymerase-1/2 Inhibitor, as an Anticancer Agent[J]. J Med Chem, 2016, 59 (1) : 335–57. DOI:10.1021/acs.jmedchem.5b01498 |
| [21] | Albarakati N, Abdel-Fatah TM, Doherty R, et al. Targeting BRCA1-BER deficient breast cancer by ATM or DNA-PKcs blockade either alone or in combination with cisplatin for personalized therapy[J]. Mol Oncol, 2015, 9 (1) : 204–17. DOI:10.1016/j.molonc.2014.08.001 |
| [22] | Hawkins PT, Stephens LR. Emerging evidence of signalling roles for PI (3, 4) P2 in Class I and II PI3K-regulated pathways[J]. Biochem Soc Trans, 2016, 44 (1) : 307–14. DOI:10.1042/BST20150248 |
| [23] | Kimbung S, Biskup E, Johansson I, et al. Co-targeting of the PI3K pathway improves the response of BRCA1 deficient breast cancer cells to PARP1 inhibition[J]. Cancer Lett, 2012, 319 (2) : 232–41. DOI:10.1016/j.canlet.2012.01.015 |
| [24] | De P, Sun Y, Carlson JH, et al. Doubling down on the PI3K-AKT-mTOR pathway enhances the antitumor efficacy of PARP inhibitor in triple negative breast cancer model beyond BRCA-ness[J]. Neoplasia, 2014, 16 (1) : 43–72. DOI:10.1593/neo.131694 |
| [25] | Gilardini Montani MS, Prodosmo A, Stagni V, et al. ATM-depletion in breast cancer cells confers sensitivity to PARP inhibition[J]. J Exp Clin Cancer Res, 2013, 32 : 95. DOI:10.1186/1756-9966-32-95 |
| [26] | Mendes-Pereira AM, Martin SA, Brough R, et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors[J]. EMBO Mol Med, 2009, 1 (6-7) : 315–22. DOI:10.1002/emmm.200900041 |
| [27] | Kawai H, Li H, Chun P, et al. Direct interaction between BRCA1 and the estrogen receptor regulates vascular endothelial growth factor (VEGF) transcription and secretion in breast cancer cells[J]. Oncogene, 2002, 21 (50) : 7730–9. DOI:10.1038/sj.onc.1205971 |
| [28] | Furuta S, Wang JM, Wei S, et al. Removal of BRCA1/CtIP/ZBRK1 repressor complex on ANG1 promoter leads to accelerated mammary tumor growth contributed by prominent vasculature[J]. Cancer Cell, 2006, 10 (1) : 13–24. DOI:10.1016/j.ccr.2006.05.022 |
| [29] | Danza K, Pilato B, Lacalamita R, et al. Angiogenetic axis angiopoietins/Tie2 and VEGF in familial breast cancer[J]. Eur J Hum Genet, 2013, 21 (8) : 824–30. DOI:10.1038/ejhg.2012.273 |
| [30] | Lim JJ, Yang K, Taylor-Harding B, et al. VEGFR3 inhibition chemosensitizes ovarian cancer stemlike cells through down-regulation of BRCA1 and BRCA2[J]. Neoplasia, 2014, 16 (4) : 343–53. DOI:10.1016/j.neo.2014.04.003 |
| [31] | Liu JF, Barry WT, Birrer M, et al. Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised phase 2 study[J]. Lancet Oncol, 2014, 15 (11) : 1207–14. DOI:10.1016/S1470-2045(14)70391-2 |
| [32] | Roux R, Zweifel M, Rustin GJ. Biologicals in the upfront treatment of ovarian cancer: focus on bevacizumab and poly (adp-ribose) polymerase inhibitors[J]. Am Soc Clin Oncol Educ Book, 2012 : 340–4. |
| [33] | Lin ZP, Ratner ES, Whicker ME, et al. Triapine disrupts CtIP-mediated homologous recombination repair and sensitizes ovarian cancer cells to PARP and topoisomerase inhibitors[J]. Mol Cancer Res, 2014, 12 (3) : 381–93. DOI:10.1158/1541-7786.MCR-13-0480 |
| [34] | Xia Q, Cai Y, Peng R, et al. The CDK1 inhibitor RO3306 improves the response of BRCA-pro ficient breast cancer cells to PARP inhibition[J]. Int J Oncol, 2014, 44 (3) : 735–44. |
2017, Vol. 44


