肿瘤防治研究  2017, Vol. 44 Issue (1): 69-74
本刊由国家卫生和计划生育委员会主管,湖北省卫生厅、中国抗癌协会、湖北省肿瘤医院主办。
0

文章信息

左侧乳腺癌放疗相关心脏毒性的危险因素分析
Multi-factors Affect Cardiac Toxicity in Radiotherapy on Left-sided Breast Cancer
肿瘤防治研究, 2017, 44(1): 69-74
Cancer Research on Prevention and Treatment, 2017, 44(1): 69-74
http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2017.01.015
收稿日期: 2016-05-04
修回日期: 2016-10-25
左侧乳腺癌放疗相关心脏毒性的危险因素分析
李云芬, 常莉, 夏耀雄, 李文辉     
650118 昆明,昆明医科大学第三附属医院,云南省肿瘤医院放射治疗中心
摘要: 放射治疗是乳腺癌的重要治疗手段,由于左乳与心脏位置毗邻,设计照射野时常不能完全避开心脏。乳腺癌放射治疗增加了患缺血性心脏病、心包炎和瓣膜病的风险。年轻、高体重指数(body mass index, BMI)、肿瘤位于中央象限和胸骨旁区域与心脏受到高剂量辐射有关。放疗心脏毒性与放疗技术有很大关系,对于左乳切除术后放疗,多野调强适形放疗(IMRT)能够平衡靶区覆盖和正常组织受量,而左乳保乳术后放疗,采用双弧度容积旋转调强(VMAT)较多野IMRT更具优势。相比全乳照射,加速部分乳腺照射能够显著降低心脏剂量;而对于需要照射区域淋巴结的患者,采用容积旋转调强或螺旋断层放疗在减少心脏受量方面则显示出优势。相比自由呼吸,深吸气屏气放疗能够显著减少心脏和冠状动脉左前降支剂量;尤其是对于胸壁+区域淋巴结(包括内如淋巴结)放疗的患者采用深吸气屏气(deep inspiration breath hold, DIBH)放疗获益更多,而对于保乳术后仍为大乳腺的患者,采用俯卧位能减少心脏毒性。另外,左乳放疗期间同步曲妥珠单抗靶向治疗、芳香化酶抑制剂(aromatase inhibitors, AI)会影响心脏事件的发生。基于上述因素,在给左侧乳腺癌患者制定放疗计划时,应结合患者年龄、BMI、原发肿瘤位置、体型、术后乳腺大小、是否需要区域淋巴结照射,根据现有放疗设备,给予最优的放疗方案,同时减少增加心脏毒性的同步治疗,从而最大程度减少治疗导致的心脏不良反应。
关键词: 乳腺癌     放疗     心脏毒性    
Multi-factors Affect Cardiac Toxicity in Radiotherapy on Left-sided Breast Cancer
LI Yunfen, CHANG Li, XIA Yaoxiong, LI Wenhui     
Department of Radiotherapy, The Third Affiliated Hospital of Kunming Medical University/ Yunnan Tumor Hospital, Kunming 650118, China
Corresponding author: LI Wenhui, E-mail: wenhuili2014@163.com
Abstract: Radiotherapy (RT) is an important treatment for breast cancer. As the left breast is adjacent to heart, heart irradiation cannot be completely avoided. Radiotherapy on breast cancer increases the risk of ischemic heart disease, pericarditis and valvular disease. Tumor location and treatment choices influence cardiac dose with complex interactions. Radiation technology plays an important role in cardiac toxicity of radiotherapy. Multi-field IMRT may be the optimal one which can balance PTV coverage and organ at risk sparing for left-sided breast cancer after mastectomy; as to the patients after breast-conserving surgery irradiation, volumetric-modulated arc therapy (VMAT) offer certain dosimetric advantages over fixed-field IMRT plans. Compared with whole breast irradiation, partial breast irradiation shows a significant reduction in radiation dose for the heart. As to lymph node-positive left-sided breast cancer patients, VMAT or tomotherapy retains target homogeneity and coverage and allows maximum doses to organs at risk to be reduced; deep inspiration breath hold results in a significant reduction in radiation dose to the heart and left anterior descending coronary artery compared with an free breathing, especially for the patients who need to irradiate chest wall and regional lymph node; and for some patients with large breast after surgery, prone setup can significantly reduce the amount of heart volume. Moreover, left-sided radiotherapy concurrent with trastuzumab or AI increases the cardiac toxicity risk. In conclusion, left-sided breast radiotherapy plan needs to consider patients' age, BMI, primary tumor location, size, postoperative breast size, whether need regional lymph node radiation; giving the optimal radiotherapy plan according to the existing radiation therapy equipment, at the same time, reducing the synchronous cardiac toxicity increasing treatment, so as to minimize cardiac adverse event.
Key words: Breast cancer     Radiotherapy     Cardiac toxicity    
0 引言

我国肿瘤患者的发病率和死亡率逐年增高,据统计,2015年我国新增了429.2万肿瘤患者,女性患者前5位的肿瘤包括乳腺癌、支气管肺癌、胃癌、结直肠癌、食管癌,约占总数的60%[1]。乳腺癌放射治疗增加了患缺血性心脏病、心包炎和瓣膜病的风险,患缺血性心脏病的女性再患乳腺癌则产生比别人更高的风险[2]。20世纪70年代到80年代,乳腺癌放疗后10~20年后因放射性心脏损伤和放射诱导的肺癌提高了死亡率,但在80年代后期因为放疗技术的飞速发展,使得放射损伤逐渐减小[3]

乳腺癌放射治疗后,可以根据一些检验指标发现放射性心脏损伤的存在。对左乳腺癌术后患者放疗前后脑钠肽(brain natriuretic peptide, BNP)进行检测,放疗后BNP较放疗前明显升高,可以提示早期放射性心脏损伤的存在[4-6]。高敏肌钙蛋白T(high sensitivity troponin T, hscTnT)在乳腺癌放疗期间升高与心脏和左冠状动脉接受高剂量辐射可能相关[7]。据报道,心肌背向散射积分参数可无创、敏感、客观地评价左侧乳腺癌放疗对心脏的早期损伤[8]。治疗后心功能指标射血分数(ejection fraction, EF)、左心室短轴缩短率(fraction shorten, FS)高于治疗前,左室收缩末期容积(left ventricular end-systolic volume, ESV)则低于治疗前(均P < 0.05);提示左乳腺癌患者接受IMRT后部分心功能指标有改变,因此心脏彩超对左乳腺癌患者接受IMRT的心脏形态、血流动力学及心功能等方面的评估有一定的价值[9]

放射性心脏损伤的发生极大的影响了乳腺癌患者的生存质量,甚至缩短生存期,因此,减少治疗导致的不良反应尤为重要,本文主要结合近5年关于乳腺癌放射治疗心脏毒性的文献作一综述,分析左侧乳腺癌放疗影响心脏毒性的因素,为乳腺癌放射治疗最大程度保护心脏提供理论依据及个体化放疗,以提高乳腺癌患者生存质量及生存期。

1 心脏受照剂量与放射性心脏损伤风险的关系

放射性心脏损伤(radiation-induced heart disease, RIHD)的发生与心脏受辐射总剂量、分割剂量受照射部位及体积都有关系,放射性心脏损伤包括急慢性心包疾病、心肌病、瓣膜功能不全、冠状动脉疾病和传导异常[10]。心脏疾病的发生与心脏所受剂量呈线性关系,研究报道每增加1 Gy,疾病发生率增加7.4%[11]。心脏V60是影响急性放射性心脏损伤发生的独立因素[12]。研究报道,预防放射性心包炎重点要控制心脏受照射体积<60%,受照射剂量<50 Gy[13]

2 患者自身因素

一项纳入769例女性乳腺癌电子线放射治疗的回顾性分析显示,左乳放疗心脏的平均剂量跨度为(0.9~19.1)Gy,而右乳为(0.3~11.6)Gy,左乳放疗心脏中位剂量为4.6 Gy,右乳放疗为1.7 Gy,66%左乳放疗的患者有2 cm3心脏受到40 Gy剂量辐射;多因素分析显示,年轻、高BMI、肿瘤位于中央象限和胸骨旁区域与心脏受到高剂量辐射有关[14]。BMI≥25 kg/m2是左乳腺癌患者放疗心脏毒性增加的危险因素之一[15]。心脏与胸骨的解剖位置[16],尤其是最大心脏深度[17],能影响左乳放疗心脏毒性。心电图显示逆钟向转位的患者左前降支动脉接收的V20、V30、V40均较非逆钟向转位患者的高[18]

3 不同放疗技术对左乳腺放疗心脏剂量的影响

放疗心脏毒性与放疗技术也有很大关系,相比三维适形放射治疗(three-dimensional conformal radiotherapy, 3D-CRT),调强适形放射治疗(intensity-modulated radiotherapy, IMRT)有更好的剂量靶点和均一性,能够显著减少心脏和左心室的最大剂量,但不能减少心脏受辐射体积[19]。乳腺癌的切线半束“野中野”正向调强(field-in-field, FIF-IMRT)计划设计方案,最大限度保护了肺及心脏,使之免受高剂量的照射。使晚期心脏毒性的正常组织并发症发生概率显著降低,尤其是大幅度降低了左侧乳腺癌患者的心脏受照剂量体积,从而克服了发生放射性心脏损伤高风险的难题[20]。随着科技的发展,放疗技术日益精确,容积旋转调强放疗(volumetric-modulated arc therapy, VMAT)、断层螺旋放疗(tomotherapy helical, TH)逐渐进入各大肿瘤医院,对于左乳腺癌的放疗,各种先进放疗技术都各有优势,同时也与射线的角度有关。

对左乳癌左乳切除术后放疗,采用三维常规切线野(TFs)、切线IMRT(T-IMRT)、四野IMRT(4F-IMRT)、单弧容积调强(S-VMAT)制定放疗计划,四种治疗计划对肿瘤控制率、正常组织并发症概率没有差异,相比TFs、T-IMRT、S-VMAT心脏并发症可能分别减少0.07、0.03、0.05,提示4F-IMRT能够减少放射性心脏损伤[21]。对于局部晚期左乳腺癌行改良根治术后放疗、三维适形野中野放疗(3DCRT-FinF)、5野调强适形放疗(5F-IMRT)、2部分弧度容积调强(2P-VMAT),5F-IMRT和2P-VMAT计划的PTV覆盖(V95%)、热点(V110%)和一致性相似,5F-IMRT计划的心脏的接收剂量明显低于2P-VMAT,提示5F-IMRT能够最大限度覆盖PTV并减小心脏剂量[22]。提示对于左乳切除术后放疗患者,采用多野放疗更具优势。

对于左乳腺癌保乳术后,对比标准切线野中野(FinF)、切线调强适形(tIMRT)、50~60度双弧度切线容积调强(tVMAT)和连续240度单弧度容积调强(cVMAT)四种放疗计划,两种VMAT都能较好的保护心脏,平均剂量和剂量均匀性都优于FinF和tIMRT(P < 0.01),tVMAT相比于其他三种更适合左乳腺癌保乳术后放疗,保护心脏和同侧肺,靶区均匀性好,同时不增加对侧乳腺和肺的剂量[23]。对于淋巴结阳性的左乳癌保乳术患者,1段230度VMAT(1s-VMAT)和2段2个50度的VMAT(2s-VMAT),两者都能减少心脏受辐射剂量[24]。但另一研究显示,对左乳腺癌保乳术后患者,在5种放疗方式,即传统切线楔形野(TW)、野中野技术(FIF)、切线IMRT(T-IMRT)、多野IMRT(M-IMRT)和VMAT比较,T-IMRT减少了正常组织受量,并具有合理的靶区一致性[25]。该研究有可能是因VMAT设计角度未细化而导致不同的结论。例如,常规楔形切线和正向IMRT对比,正向IMRT剂量更均匀[26]。晚期左乳腺癌,需要照射淋巴结时,相比IMRT,采用VMAT和TH都能减少心脏照射剂量[27],VMAT具有更一致的靶区覆盖性[28],对于存在鸡胸的乳腺癌患者放疗时采用VMAT能够减少危机器官受量[29]。提示保乳术后,或需要区域淋巴结照射的患者,采用双弧VMAT优于其他放疗技术。

15例早期左乳癌患者在保乳术后,采用两套放疗计划评估心脏毒性,即全乳照射对比加速部分乳腺照射,全乳照射剂量为50 Gy/25 f,加速部分乳腺照射为34 Gy/10 f,结果发现加速部分乳腺照射心脏0.1 cc的最高剂量为16.3 Gy,全乳照射为50.6 Gy(P < 0.01);冠状动脉左前降支平均剂量为6.0 Gy vs.45.9 Gy;提示加速部分乳腺照射能够显著降低心脏剂量,从而最大程度保护心脏[30]

30例左乳腺癌患者接受IMRT放疗,CT扫描时采用自由呼吸(free breath, FB)对比深吸气屏气(deep inspiration breath hold, DIBH)时心脏受辐射剂量,结果显示放疗计划的心脏V30为(7.1 Gy vs.2.4%, P < 0.0001),心脏平均剂量为(6.9 Gy vs.3.9 Gy, P < 0.001),冠状动脉左前降支最大剂量为(51.6 Gy vs.45.6 Gy, P=0.0032), 冠状动脉左前降支平均剂量为(31.7 Gy vs.21.9 Gy, P < 0.001)[31];多个研究显示相比自由呼吸,深吸气屏气放疗能够显著减少心脏和冠状动脉左前降支剂量[31-40]。尤其是对于胸壁+区域淋巴结(包括内如淋巴结)放疗的患者采用深吸气屏气放疗获益更多[41]。研究显示至少有75%的左乳癌患者采用深吸气屏气放疗能够获益,若同时采用电磁波确认胸壁位置[42],或使用可视化呼吸量测定系统[43],则能够最小化胸壁位移误差。根据脊髓到胸骨的等中心点、胸廓形状等能够测量呼吸深度,以确保放疗计划和放疗过程中的一致性,减少心脏辐射剂量[44]。也有研究认为质子束放射比光子束IMRT联合DIBH更能降低心脏剂量[45]

4 不同放疗体位对心脏的影响

乳腺癌的放疗体位多采用仰卧位,但也有报道部分患者采用俯卧位能获益。一项回顾性研究分析了12名保乳术后患者,采用了HT仰卧位全乳放疗和俯卧位3D-CRT全乳放疗,结果显示肺最大剂量分别为23.41 Gy和6.65 Gy,肺V20分别为0.31%和0,心脏平均剂量分别为5.57 Gy和0.93 Gy(P < 0.05),提示俯卧位对于危机器官的剂量更低[46]。俯卧位fIMRT显著降低左肺和Ⅰ、Ⅱ区淋巴结剂量,但是心脏剂量和体位没有太大差异,但如果俯卧位乳腺深度 > 7 cm,或俯卧位和仰卧位乳腺深度相差 > 3 cm,则心脏剂量在俯卧位fIMRT更低[26]。对于保乳术后仍为大乳腺的患者,采用仰卧位和俯卧位进行3DCRT全乳照射,对心脏的剂量没有差异,但是俯卧位全乳照射对左冠状动脉剂量更高[47]。一项Meta分析显示,与仰卧位相比,乳腺癌保乳术后俯卧位放疗可明显降低心脏和患侧肺的受照剂量[48]。目前,我国多采用仰卧位放疗,但对于术后乳腺仍较丰满可采用俯卧位,但应将左冠状动脉勾画出来,观察放疗对心脏及左冠状动脉的剂量。

5 放疗期间同步其他治疗对心脏毒性的影响

64例左乳乳腺癌患者接受同步放疗和曲妥珠单抗靶向治疗,对比73例单纯放疗者,所有患者在化疗结束时左室射血分数(left ventricular ejection fraction, LVEF)均正常,结果中位随访时间为6.7月(3~60.9月)vs.26月(6.4~60.9月),1级LVEF功能失调为5(7.8%)vs.3(4.1%),多因素分析显示IMRT和放疗期间开始曲妥珠单抗靶向治疗时心脏事件的独立危险因素;研究提示在化疗后心功能基线情况正常时,接受左侧乳腺放疗与靶向治疗同步治疗其心脏毒性是可以耐受的,但值得注意的是,当心脏接受的平均照射剂量和低剂量体积增加时,那么发生急性左室射血分数失常的风险将会增高[49]。60例左乳癌患者在辅助放疗前后均接受了二维超声心动图、心电图、心脏生物标志物检查,依据是否同时服用AI分为两组,在同步AI组右心室三尖瓣收缩功能显著下降,下降程度为3 mm(95%CI: 1.9~4.1)vs.1.4 mm(95%CI: 0.3~2.4),同时同步AI组左心室舒张功能即二尖瓣流入E波下降5.8 cm/s(95%CI: 1.8~9.7),提示左乳放疗同步AI会影响右心室收缩功能和左心室舒张功能[50]。对于没有心血管疾病高风险的Ⅱ~Ⅲ期乳腺癌患者,常规放疗同步蒽环/紫杉/环磷酰胺,阿霉素,氟尿嘧啶(cyclophosphamide, adriamycin, fluorouracil, CMF),在中长期随访中未发现增加心脏毒性[51]。因此,放疗期间应减少增加心脏毒性药物的使用。

6 晚期心脏毒性对患者的影响

一项长达14.2年随访的早期左乳腺癌术后研究,485例接受传统分割方式全乳放疗,2 221例接受大分割全乳放疗,15年的心血管事件死亡率没有差异,大分割全乳放疗(high-dose fraction-whole breast irradiation, HF-WBI)为4.8%,传统分割全乳放疗(conventional fraction-whole breast irradiation, CF-WBI)为4.2%(P=0.74);在校准评分后,两组之间因乳腺癌死亡率或其他事件死亡率差异均无统计学意义[52]。另一项前瞻性研究在左乳腺癌患者接受做胸壁正切线放疗后随访6年发现,在放疗后3~6年的时间里,患者发生心脏灌注异常的比例很高,但这与局部室壁运动或射血分数异常并不相关[53]。一项以2 168例乳腺癌患者的病例对照研究,963例乳腺癌患者放疗时合并心脏疾病,1 205例不合并心脏疾病;总体来看,全心脏平均受量为4.9 Gy(0.03~27.72)Gy,心脏疾病的发生与心脏所受剂量呈线性关系,每增加1 Gy,疾病发生率增加7.4%,心脏疾病的发生率增加始于放疗后第5年,持续到放疗后30年;两组之间,放疗后心脏疾病的发生率没有差异;提示放疗期间心脏的受量与随后心脏疾病发生明显相关,其发生率与所受平均剂量呈正相关[11]。有更长的随访研究发现,辐射相关风险在放疗30年后将更高[54]

7 结论

随着乳腺癌发病的日益年轻化,综合治疗手段有效性的提高,患者的生存期逐渐延长,因此在给患者制定治疗计划时,应尽最大努力保护患者正常组织,提高生活质量。在给左侧乳腺癌患者制定放疗计划时,应结合患者年龄、BMI、原发肿瘤位置、体型、术后乳腺大小、是否需要区域淋巴结照射,根据现有放疗设备,给予最优的放疗方案,同时减少增加心脏毒性的同步治疗,从而最大程度减少治疗导致的心脏不良反应。

参考文献
[1] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66 (2) : 115–32. DOI:10.3322/caac.21338
[2] McGale P, Darby SC, Hall P, et al. Incidence of heart disease in 35, 000 women treated with radiotherapy for breast cancer in Denmark and Sweden[J]. Radiother Oncol, 2011, 100 (2) : 167–75. DOI:10.1016/j.radonc.2011.06.016
[3] Darby SC, McGale P, Taylor CW, et al. Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300, 000 women in US SEER cancer registries[J]. Lancet Oncol, 2005, 6 (8) : 557–65. DOI:10.1016/S1470-2045(05)70251-5
[4] Palumbo I, Palumbo B, Fravolini ML, et al. Brain natriuretic peptide as a cardiac marker of transient radiotherapy-related damage in left-sided breast cancer patients: A prospective study[J]. Breast, 2016, 25 : 45–50. DOI:10.1016/j.breast.2015.10.004
[5] D'Errico MP, Petruzzelli MF, Gianicolo EA, et al. Kinetics of B-type natriuretic peptide plasma levels in patients with left-sided breast cancer treated with radiation therapy: Results after one-year follow-up[J]. Int J Radiat Biol, 2015, 91 (10) : 804–9. DOI:10.3109/09553002.2015.1027421
[6] D'Errico MP, Grimaldi L, Petruzzelli MF, et al. N-terminal pro-B-type natriuretic peptide plasma levels as a potential biomarker for cardiac damage after radiotherapy in patients with left-sided breast cancer[J]. Int J Radiat Oncol Biol Phys, 2012, 82 (2) : e239–46. DOI:10.1016/j.ijrobp.2011.03.058
[7] Skyttä T, Tuohinen S, Boman E, et al. Troponin T-release associates with cardiac radiation doses during adjuvant left-sided breast cancer radiotherapy[J]. Radiat Oncol, 2015, 10 : 141. DOI:10.1186/s13014-015-0436-2
[8] Wang YA, Xia DZ. Integrated backscatter parameters in assessment of early myocardial damage induced by left breast cancer radiotherapy[J]. Zhongguo Yi Xue Ying Xiang Ji Shu, 2006, 22 (11) : 1682–4. [ 王月爱, 夏稻子. 心肌背向散射积分参数评价左乳腺癌放疗早期心脏损伤[J]. 中国医学影像技术, 2006, 22 (11) : 1682–4. ]
[9] Wan LK, Zhang Q, Zhang YL, et al. The self-control study of echocardiography on patients with left breast cancer received IMRT[J]. Zhongguo Lin Chuang Xin Yi Xue, 2015, 11 : 1022–4. [ 万里凯, 张琴, 张雅莉, 等. 左乳腺癌调强放射治疗前后彩色多普勒超声心动图的对比研究[J]. 中国临床新医学, 2015, 11 : 1022–4. ]
[10] Finch W, Shamsa K, Lee MS. Cardiovascular complications of radiation exposure[J]. Rev Cardiovasc Med, 2014, 15 (3) : 232–44.
[11] Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer[J]. N Engl J Med, 2013, 368 (11) : 987–98. DOI:10.1056/NEJMoa1209825
[12] He HT, Wang J, Liu Q, et al. Dose and volume factors to the acute radiation-induced heart diseas[J]. Zhonghua Zhong Liu Fang Zhi Za Zhi, 2014, 21 (10) : 767–70. [ 何宏涛, 王军, 刘青, 等. 急性放射性心脏损伤剂量体积因素分析[J]. 中华肿瘤防治杂志, 2014, 21 (10) : 767–70. ]
[13] Chen WY, Luo WG, Yang YC, et al. The prevention and treatment of radioactive pericarditis in thoracic cancer radiotherapy[J]. HainanYi Xue, 2006, 17 (8) : 85. [ 陈文奕, 罗文高, 杨玉成, 等. 胸部恶性肿瘤放射治疗致放射性心包炎的预防及治疗[J]. 海南医学, 2006, 17 (8) : 85. ]
[14] Wollschläger D, Karle H, Stockinger M, et al. Radiation dose distribution in functional heart regions from tangential breast cancer radiotherapy[J]. Radiother Oncol, 2016, 119 (1) : 65–70. DOI:10.1016/j.radonc.2016.01.020
[15] Evans ES, Prosnitz RG, Yu X, et al. Impact of patient-specific factors, irradiated left ventricular volume, and treatment set-up errors on the development of myocardial perfusion defects after radiation therapy for left-sided breast cancer[J]. Int J Radiat Oncol Biol Phys, 2006, 66 (4) : 1125–34. DOI:10.1016/j.ijrobp.2006.06.025
[16] Topolnjak R, Borst GR, Nijkamp J, et al. Image-guided radiotherapy for left-sided breast cancer patients: geometrical uncertainty of the heart[J]. Int J Radiat Oncol Biol Phys, 2012, 82 (4) : e647–55. DOI:10.1016/j.ijrobp.2011.08.024
[17] Guan H, Dong YL, Ding LJ, et al. Morphological factors and cardiac doses in whole breast radiation for left-sided breast cancer[J]. Asian Pac J Cancer Prev, 2015, 16 (7) : 2889–94. DOI:10.7314/APJCP.2015.16.7.2889
[18] Tanaka H, Hayashi S, Hoshi H. Cardiac counterclockwise rotation is a risk factor for high-dose irradiation to the left anterior descending coronary artery in patients with left-sided breast cancer who receiving adjuvant radiotherapy after breast-conserving surgery[J]. Nagoya J Med Sci, 2014, 76 (3-4) : 265–72.
[19] Zhang L, Mei X, Chen X, et al. Estimating cardiac substructures exposure from diverse radiotherapy techniques in treating left-sided breast cancer[J]. Medicine (Baltimore), 2015, 94 (18) : e847. DOI:10.1097/MD.0000000000000847
[20] Liu XH, Chen X, Li WH, et al. The application of half tangent " field in field" positive intensity-modulated radiotherapy in postoperative breast cancer[J]. Yi Liao Zhuang Bei, 2015, 4 : 17–8, 9. [ 刘旭红, 陈晓, 李文辉, 等. 切线半束"野中野"正向调强在乳腺癌保乳术后放射治疗中的应用[J]. 医疗装备, 2015, 4 : 17–8, 9. ]
[21] Wang J, Li X, Deng Q, et al. Postoperative radiotherapy following mastectomy for patients with left-sided breast cancer: A comparative dosimetric study[J]. Med Dosim, 2015, 40 (3) : 190–4. DOI:10.1016/j.meddos.2014.11.004
[22] Ma C, Zhang W, Lu J, et al. Dosimetric Comparison and Evaluation of Three Radiotherapy Techniques for Use after Modified Radical Mastectomy for Locally Advanced Left-sided Breast Cancer[J]. Sci Rep, 2015, 5 : 12274. DOI:10.1038/srep12274
[23] Virén T, Heikkilä J, Myllyoja K, et al. Tangential volumetric modulated arc therapy technique for left-sided breast cancer radiotherapy[J]. Radiat Oncol, 2015, 10 : 79. DOI:10.1186/s13014-015-0392-x
[24] Pasler M, Lutterbach J, Bjornsgard M, et al. VMAT techniques for lymph node-positive left sided breast cancer[J]. Z Med Phys, 2015, 25 (2) : 104–11. DOI:10.1016/j.zemedi.2014.03.008
[25] Jin GH, Chen LX, Deng XW, et al. A comparative dosimetric study for treating left-sided breast cancer for small breast size using five different radiotherapy techniques: conventional tangential field, filed-in-filed, tangential-IMRT, multi-beam IMRT and VMAT[J]. Radiat Oncol, 2013, 8 : 89. DOI:10.1186/1748-717X-8-89
[26] Chen JL, Cheng JC, Kuo SH, et al. Prone breast forward intensity-modulated radiotherapy for Asian women with early left breast cancer: factors for cardiac sparing and clinical outcomes[J]. J Radiat Res, 2013, 54 (5) : 899–908. DOI:10.1093/jrr/rrt019
[27] Qi XS, Liu TX, Liu AK, et al. Left-sided breast cancer irradiation using rotational and fixed-field radiotherapy[J]. Med Dosim, 2014, 39 (3) : 227–34. DOI:10.1016/j.meddos.2014.02.005
[28] Pasler M, Georg D, Bartelt S, et al. Node-positive left-sided breast cancer: does VMAT improve treatment plan quality with respect to IMRT?[J]. Strahlenther Onkol, 2013, 189 (5) : 380–6. DOI:10.1007/s00066-012-0281-2
[29] Haertl PM, Pohl F, Weidner K, et al. Treatment of left sided breast cancer for a patient with funnel chest: volumetric-modulated arc therapy vs.3D-CRT and intensity-modulated radiotherapy[J]. Med Dosim, 2013, 38 (1) : 1–4. DOI:10.1016/j.meddos.2012.04.003
[30] Chan TY, Tan PW, Tan CW, et al. Assessing radiation exposure of the left anterior descending artery, heart and lung in patients with left breast cancer: A dosimetric comparison between multicatheter accelerated partial breast irradiation and whole breast external beam radiotherapy[J]. Radiother Oncol, 2015, 117 (3) : 459–66. DOI:10.1016/j.radonc.2015.08.013
[31] Hayden AJ, Rains M, Tiver K. Deep inspiration breath hold technique reduces heart dose from radiotherapy for left-sided breast cancer[J]. J Med Imaging Radiat Oncol, 2012, 56 (4) : 464–72. DOI:10.1111/jmiro.2012.56.issue-4
[32] Tanguturi SK, Lyatskaya Y, Chen Y, et al. Prospective assessment of deep inspiration breath-hold using 3-dimensional surface tracking for irradiation of left-sided breast cancer[J]. Pract Radiat Oncol, 2015, 5 (6) : 358–65. DOI:10.1016/j.prro.2015.06.002
[33] Register S, Takita C, Reis I, et al. Deep inspiration breath-hold technique for left-sided breast cancer: An analysis of predictors for organ-at-risk sparing[J]. Med Dosim, 2015, 40 (1) : 89–95. DOI:10.1016/j.meddos.2014.10.005
[34] Hepp R, Ammerpohl M, Morgenstern C, et al. Deep inspiration breath-hold (DIBH) radiotherapy in left-sided breast cancer: Dosimetrical comparison and clinical feasibility in 20 patients[J]. Strahlenther Onkol, 2015, 191 (9) : 710–6. DOI:10.1007/s00066-015-0838-y
[35] Chi F, Wu S, Zhou J, et al. Dosimetric comparison of moderate deep inspiration breath-hold and free-breathing intensity-modulated radiotherapy for left-sided breast cancer[J]. Cancer radiother, 2015, 19 (3) : 180–6. DOI:10.1016/j.canrad.2015.01.003
[36] Swamy ST, Radha CA, Kathirvel M, et al. Feasibility study of deep inspiration breath-hold based volumetric modulated arc therapy for locally advanced left sided breast cancer patients[J]. Asian Pac J Cancer Prev, 2014, 15 (20) : 9033–8. DOI:10.7314/APJCP.2014.15.20.9033
[37] Bolukbasi Y, Saglam Y, Selek U, et al. Reproducible deep-inspiration breath-hold irradiation with forward intensity-modulated radiotherapy for left-sided breast cancer significantly reduces cardiac radiation exposure compared to inverse intensity-modulated radiotherapy[J]. Tumori, 2014, 100 (2) : 169–78.
[38] Reardon KA, Read PW, Morris MM, et al. A comparative analysis of 3D conformal deep inspiratory-breath hold and free-breathing intensity-modulated radiation therapy for left-sided breast cancer[J]. Med Dosim, 2013, 38 (2) : 190–5. DOI:10.1016/j.meddos.2013.01.002
[39] Mast ME, van Kempen-Harteveld L, Heijenbrok MW, et al. Left-sided breast cancer radiotherapy with and without breath-hold: does IMRT reduce the cardiac dose even further?[J]. Radiother Oncol, 2013, 108 (2) : 248–53. DOI:10.1016/j.radonc.2013.07.017
[40] Alderliesten T, Betgen A, Elkhuizen PH, et al. Estimation of heart-position variability in 3D-surface-image-guided deep-inspiration breath-hold radiation therapy for left-sided breast cancer[J]. Radiother Oncol, 2013, 109 (3) : 442–7. DOI:10.1016/j.radonc.2013.09.017
[41] Yeung R, Conroy L, Long K, et al. Cardiac dose reduction with deep inspiration breath hold for left-sided breast cancer radiotherapy patients with and without regional nodal irradiation[J]. Radiat Oncol, 2015, 10 : 200. DOI:10.1186/s13014-015-0511-8
[42] Kathpal M, Tinnel B, Sun K, et al. Deep inspiration breath hold with electromagnetic confirmation of chest wall position for adjuvant therapy of left-sided breast cancer: Technique and accuracy[J]. Pract Radiat Oncol, 2016, 6 (5) : e195–202. DOI:10.1016/j.prro.2015.12.008
[43] Yang W, McKenzie EM, Burnison M, et al. Clinical experience using a video-guided spirometry system for deep inhalation breath-hold radiotherapy of left-sided breast cancer[J]. J Appl Clin Med Phys, 2015, 16 (2) : 5218.
[44] McIntosh A, Shoushtari AN, Benedict SH, et al. Quantifying the reproducibility of heart position during treatment and corresponding delivered heart dose in voluntary deep inhalation breath hold for left breast cancer patients treated with external beam radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2011, 81 (4) : e569–76. DOI:10.1016/j.ijrobp.2011.01.044
[45] Lin LL, Vennarini S, Dimofte A, et al. Proton beam versus photon beam dose to the heart and left anterior descending artery for left-sided breast cancer[J]. Acta Oncol, 2015, 54 (7) : 1032–9. DOI:10.3109/0284186X.2015.1011756
[46] Cammarota F, Giugliano FM, Iadanza L, et al. Hypofractionated breast cancer radiotherapy.Helical tomotherapy in supine position or classic 3D-conformal radiotherapy in prone position: which is better?[J]. Anticancer Res, 2014, 34 (3) : 1233–8.
[47] Würschmidt F, Stoltenberg S, Kretschmer M, et al. Incidental dose to coronary arteries is higher in prone than in supine whole breast irradiation.A dosimetric comparison in adjuvant radiotherapy of early stage breast cancer[J]. Strahlenther Onkol, 2014, 190 (6) : 563–8. DOI:10.1007/s00066-014-0606-4
[48] Gao Y, Li XM, Zhong HL, et al. Dosimetric comparison between prone and supine positions in radiotherapy on organs at risk after breast-conserving surgery: a Meta-analysis[J]. Zhong Liu Fang Zhi Yan Jiu, 2015, 42 (9) : 905–10. [ 高艳, 李先明, 钟鹤立, 等. 乳腺癌保乳术后俯卧位与仰卧位放疗危及器官剂量比较的Meta分析[J]. 肿瘤防治研究, 2015, 42 (9) : 905–10. ]
[49] Cao L, Cai G, Chang C, et al. Early cardiac toxicity following adjuvant radiotherapy of left-sided breast cancer with or without concurrent trastuzumab[J]. Oncotarget, 2016, 7 (1) : 1042–54.
[50] Skyttä T, Tuohinen S, Virtanen V, et al. The concurrent use of aromatase inhibitors and radiotherapy induces echocardiographic changes in patients with breast cancer[J]. Anticancer Res, 2015, 35 (3) : 1559–66.
[51] Magné N, Castadot P, Chargari C, et al. Special focus on cardiac toxicity of different sequences of adjuvant doxorubicin/docetaxel/CMF regimens combined with radiotherapy in breast cancer patients[J]. Radiother Oncol, 2009, 90 (1) : 116–21. DOI:10.1016/j.radonc.2008.10.003
[52] Chan EK, Woods R, Virani S, et al. Long-term mortality from cardiac causes after adjuvant hypofractionated vs.conventional radiotherapy for localized left-sided breast cancer[J]. Radiother Oncol, 2015, 114 (1) : 73–8. DOI:10.1016/j.radonc.2014.08.021
[53] Prosnitz RG, Hubbs JL, Evans ES, et al. Prospective assessment of radiotherapy-associated cardiac toxicity in breast cancer patients: analysis of data 3 to 6 years after treatment[J]. Cancer, 2007, 110 (8) : 1840–50. DOI:10.1002/(ISSN)1097-0142
[54] Henson KE, McGale P, Taylor C, et al. Radiation-related mortality from heart disease and lung cancer more than 20 years after radiotherapy for breast cancer[J]. Br J Cancer, 2013, 108 (1) : 179–82. DOI:10.1038/bjc.2012.575