文章信息
- 晚期肺腺癌个体化疗疗效预测因子分析
- Predictive Factors for Customizing Chemotherapy on Advanced Lung Adenocarcinoma
- 肿瘤防治研究, 2016, 43(7): 633-637
- Cancer Research on Prevention and Treatment, 2016, 43(7): 633-637
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2016.07.018
- 收稿日期: 2016-02-24
- 修回日期: 2016-03-16
在晚期肺腺癌领域中,近年最重要的进步是肿瘤驱动基因及分子靶向治疗的研究,驱动基因的改变能够使肺腺癌细胞对分子靶向药物产生特异敏感度。我们最熟悉的是表皮生长因子受体(epidermal growth factor receptor,EGFR)基因突变,表皮生长因子受体酪氨酸激酶抑制剂(epidermal growth factor receptor tyrosine kinase inhibitors,EGFR-TKIs)能够显著提高该组人群的生存期和生活质量[1-3]。同样,携带间变性淋巴瘤激酶(anaplastic lymphoma kinase,ALK)基因重排的患者能够从克唑替尼靶向治疗中明显获益[4-5]。诸如此类,研究者已经在肺腺癌中发现一系列可以导致信号通路调节异常的分子靶点(如MET、ROS1、KRAS等)[6-7]。然而,由于个体差异性或经济因素等原因,目前大多数晚期肺腺癌患者未能接受分子靶向治疗,只能选择规范化一线化疗,化疗方案主要是以铂类为基础的两药联合化疗。此外,铂类为基础的化疗方案也是EGFR突变患者TKI靶向治疗失败后的常规选择。本文将就晚期肺腺癌个体化疗疗效的预测因子及其分子机制作一概述,为晚期肺腺癌患者化疗疗效的预测提供进一步理论依据。
1 化疗相关基因与化疗疗效 1.1 核苷酸切除修复交叉互补基因1(ERCC1)、乳腺癌易感基因1(BRCA1)与铂类耐药及预后的关系顺铂与卡铂都是通过诱导DNA损伤产生细胞毒作用,其耐药机制也基本相似。DNA损伤修复作用缺陷,铂类更容易发挥细胞毒性效应,反之,DNA修复系统正常,有利于维持基因稳定性,可能是铂类出现耐药的重要机制[8]。
铂类细胞毒效应的主要机制是铂类与DNA形成加合物,限制DNA的解螺旋,从而抑制DNA的复制。其作用过程为:铂类与DNA的两个鸟嘌呤碱基N7位络合形成一个封闭的五元环螯合物,阻碍两条核苷酸链的嘌呤和嘧啶配对,破坏DNA正常螺旋结构,影响DNA聚合酶的推进,从而抑制DNA的复制和转录[8]。铂类诱导的DNA结构扭曲损伤能够被DNA修复系统所识别,进而被核苷酸切除修复(nucleotide excision repair,NER)系统所修复。NER系统主要针对铂类或紫外线诱导的DNA螺旋扭曲损伤起作用,其主要作用步骤为:DNA损伤识别、DNA损伤局部解螺旋、局部损伤切除与间隙填充。NER系统由两条亚通路组成,即全基因NER(global genome nucleotide excision repair,GG-NER)和转录链NER(transcription-coupled nucleotide excision repair,TC-NER),两条亚通路修复的作用机制基本相同,但DNA损伤的识别方式和修复的靶序列不同,TC-NER特异性识别转录活跃的DNA序列[9]。
核苷酸切除修复交叉互补基因1(excision repair cross-complementing1,ERCC1)定位于染色体19q13.2,基因全长约150 kb,含10个外显子,编码含297个氨基酸的蛋白质。ERCC1基因的表达产物在GG-NER通路中起关键作用,其介导的DNA损伤切除是该通路的限速步骤。ERCC1基因与DNA修复基因着色性干皮病基因(Xeroderma pigmentosum group F,XPF)的表达产物形成复合体,在DNA螺旋扭曲损伤的5’端参与切除受损的DNA链。此外,ERCC1/XPF复合体也参与铂类诱导的DNA损伤同源重组(homologous recombination,HR)修复[10]。
乳腺癌易感基因1(breast cancer susceptibility gene 1,BRCA1)定位于染色体17q21,基因全长约100 kb,含24个外显子,编码含1 863个氨基酸的蛋白质。铂类诱导的DNA复制障碍可诱导HR通路激活,产生所谓的“延迟复制叉”,HR通路以非损伤链为模板,参与DNA双链断裂修复,由此被称为“零误差”修复系统。HR与NER通路协同参与铂类诱导的DNA损伤修复[11-12]。BRCA1基因的表达产物是HR通路的主要成员,能够通过受体相关蛋白80(receptor-associated protein,RAP80)靶向定位到DNA断裂位点,在HR修复过程中发挥重要作用[13-15]。
综合分析,DNA修复系统涉及非常复杂的分子间作用过程,选择能代表DNA修复作用,尤其是铂类诱导的DNA损伤修复的分子标志物,能够使研究方向更加明确。ERCC1蛋白介导的DNA损伤切除是GG-NER通路的限速步骤,且ERCC1/XPF复合体参与铂类诱导的HR修复[10]。BRCA1蛋白是HR通路的主要成员,在HR修复过程中起重要作用[13-15]。由此推断,ERCC1与BRCA1可作为参与铂类诱导的DNA损伤修复反应的分子标志物,且可能参与铂类介导的耐药。
多项临床研究证实,ERCC1或BRCA1低表达的患者更容易从以铂类为基础的化疗中获益。Wang等在以铂类为基础的方案一线治疗晚期细胞肺癌的回顾性研究中指出,外周血淋巴细胞DNA修复基因低表达的患者更容易取得生存期的获益[16]。Chen等在包含12项临床试验的Meta分析中证实,ERCC1 mRNA或蛋白低表达的患者在以铂类为基础的化疗中能获得更高的有效率和更长的生存期[17]。 Taron等研究发现,化疗前的非小细胞肺癌组织中BRCA1表达水平最低者在吉西他滨联合顺铂化疗中获益最大[18]。同样,Papadaki等在对晚期非小细胞肺癌患者二线化疗的回顾性分析中发现,肺癌细胞中ERCC1或BRCA1 mRNA低表达,患者的化疗有效率(response rate,RR)增高,且无进展生存期(progression free survival,PFS)及总生存期(overall survival,OS)均有所延长[19]。
值得注意的是,以铂类为基础的方案中,与铂类联合应用的化疗药物也可能影响化疗疗效。有研究表明,由DNA修复反应介导的耐药方面,吉西他滨耐药的机制可能与铂类相似[8],而紫杉类耐药的机制可能与铂类不同,Quinn等[20]和Stordal等[21]发现,BRCA1高表达往往提示对铂类耐药,而对紫杉类更敏感。另外,培美曲塞耐药也是临床关注的问题[22],然而其与顺铂耐药之间的关联性尚未见报道。
1.2 β-微管蛋白Ⅲ(TUBB3)基因与紫杉类耐药及预后的关系晚期肺腺癌一线化疗方案中,紫杉类联合铂类是目前最常用的治疗药物。近年发现,紫杉类的原发或继发耐药现象并不罕见,寻找紫杉类药物敏感度分子标志物逐渐成为临床关注的重要问题。紫杉类的主要作用机制为促进微管聚合,阻断微管解聚,抑制细胞有丝分裂过程。微管结构是人体细胞的骨架,是由α,β微管蛋白二聚体组成的长管状细胞器结构。微管参与维持细胞形态,辅助细胞内运输,并与其他蛋白共同装配成纺锤体、中心粒等结构,参与细胞有丝分裂[23]。紫杉类作用的主要靶点是β-微管蛋白,由此推断,β-微管蛋白及其相关蛋白表达异常能够影响人体对紫杉类药物的敏感度。人体细胞至少表达8种β-微管蛋白(Ⅰ~Ⅷ型),其中Ⅰ型在人体细胞中恒定表达,Ⅱ~Ⅷ型主要表达于神经细胞,8种微管蛋白在肿瘤细胞中的表达水平差异明显。研究发现,Ⅲ型微管蛋白的刚性构形可能导致微管蛋白不稳定性,其表达水平与紫杉类药物敏感度相关[23-24]。
Ⅲ型微管蛋白由β-微管蛋白Ⅲ(class Ⅲ beta-tubulin,TUBB3)基因编码,TUBB3基因定位于染色体16q24.3,含4个外显子,编码含450个氨基酸的蛋白质。多项研究表明,TUBB3基因表达水平与非小细胞肺癌紫杉醇化疗疗效及预后呈负相关的关系[25-27]。Zhang等在一项关于非小细胞肺癌化疗疗效的Meta分析中得出,TUBB3阴性或低表达的患者在紫杉醇联合铂类化疗中的有效率更高[28]。Okuda等对50例接受紫杉醇联合铂类化疗的非小细胞肺癌患者研究发现,肺癌组织TUBB3表达水平与年龄、性别、是否吸烟、病理类型及临床分期等因素无关,而与患者的生存期相关,TUBB3表达阴性者的生存期明显延长[29]。Ohashi等在53例非小细胞肺癌组织对紫杉醇敏感度分析中发现,TUBB3基因高表达者对紫杉醇敏感度偏低,其相关性具有统计学意义[30]。Yang等在一项包含28个临床研究的Meta分析中指出,在含紫杉类或长春碱类化疗方案治疗非小细胞肺癌患者中,TUBB3低表达者不能从化疗的客观有效率(objective response rate,ORR)、无事件生存期(event-free survival,EFS)及总生存期中获益[31]。Seve等[26]在一项Ⅲ期临床试验中发现,对于从未接受抗肿瘤治疗的非小细胞肺癌患者,TUBB3基因表达水平也与患者的临床预后呈负相关。
此外,TUBB3基因参与紫杉类耐药的机制,可能与微管相关蛋白tau(microtubule associated protein-tau,MAPT)相关联。MAPT蛋白是一种微管相关蛋白,其编码基因定位于染色体17q21,含16个外显子,最早在中枢神经元中被发现。MAPT蛋白与紫杉类存在相同的分子结构域,能够干扰紫杉类与微管相结合,从而介导紫杉类耐药[32]。He等[33]和Yu等[34]研究发现,TUBB3与MAPT mRNA表达水平呈正相关,两者在紫杉类耐药中的调节作用可能存在某种关联。
2 EGFR基因与化疗疗效人表皮生长因子受体(epidermal growth factor receptor,EGFR)基因,又称ErbB-1或HER1基因,与ErbB-2(HER2/NEU)、ErbB-3(HER3)及ErbB-4(HER4)共同组成ErbB(HER)家族。EGFR是一种相对分子质量约170 kDa的跨膜糖蛋白,属于蛋白酪氨酸激酶型受体,其胞内结构具有酪氨酸激酶活性,胞外结构可与多种配体结合,主要配体为表皮生长因子(epidermal growth factor,EGF)和转化生长因子α(transforming growth factor α,TGFα)。EGFR与EGF或TGFα结合形成二聚体,激活胞内的激酶通路,诱导胞内激酶区多个位点发生自身磷酸化,进一步激活下游的信号通路,由此介导细胞的信号转导,将有丝分裂信号由胞外转导至胞内,有效调节细胞对外界刺激的反应,并参与调节细胞的增殖、分化、黏附及迁移等过程,最后EGFR与配体复合物通过胞饮作用进入细胞,在细胞内降解或再次回到细胞表面,完成信号转导过程[35]。此外,EGFR也可能与ErbB家族的其他成员(如ErbB2)聚合来激活胞内通路,参与信号转导[36]。研究表明,EGFR过度表达或异常表达,可能参与阻断肿瘤细胞凋亡,导致肿瘤细胞的增殖、侵袭、血管生成及转移[35]。
近年来,随着对肿瘤信号转导通路研究的深入和基因检测技术的开展,以基因检测为基础的个体化治疗已成为恶性肿瘤诊疗的热点问题。在肺腺癌研究领域中,EGFR是肺腺癌的经典驱动基因,其基因突变是表皮生长因子受体酪氨酸激酶抑制剂(epidermal growth factor receptor tyrosine kinase inhibitors,EGFR-TKIs)疗效的主要预测因子,对于晚期或不可手术切除的肺腺癌,EGFR基因检测已成为临床治疗方案选择的重要依据。同时,有研究表明,EGFR基因突变不仅是TKI靶向治疗的主要依据,还可能影响肺腺癌患者的化疗疗效。IPASS研究亚组分析显示,在亚裔、不吸烟的肺腺癌群体中,应用紫杉醇联合卡铂方案化疗,EGFR突变组较野生组患者更能从化疗有效率中获益[37]。Yang等[38]和Hotta等[39]报道了EGFR突变组患者在生存期方面的获益。尹延涛等认为EGFR突变组肺腺癌患者一线化疗DCR明显高于野生组[40]。同样,Fang等在266例非小细胞肺癌患者一线化疗中发现,EGFR突变组的有效率明显高于野生型组,其PFS和OS也明显延长[41]。值得注意的是,有学者发现,非小细胞肺癌患者的EGFR基因突变与ERCC1基因表达水平呈负相关,而EGFR基因突变的患者更容易从化疗中获益,ERCC1是参与DNA修复反应的重要基因,由此推断,EGFR基因突变可能与DNA修复反应存在某种关联[42],其具体机制尚需进一步研究探讨。
尽管多项研究显示EGFR是化疗疗效的有利因素,然而也有学者观察到不同的结果。Okamoto等在培美曲塞联合卡铂一线治疗肺腺癌中发现,EGFR野生型和突变型患者的ORR并无明显差异[43],秦娜等报道的研究结论与其一致[44]。朱军等在含铂两药方案一线治疗非小细胞肺癌的回顾性研究中发现,EGFR突变组与野生组患者DCR并无明显差异[45]。Zhang等在一项晚期非小细胞肺癌化疗的Meta分析中得出,EGFR突变并没有给患者带来PFS及OS的获益[46]。由此看来,EGFR基因突变是否能给患者带来化疗疗效的获益,研究结论尚不统一。然而,有些研究为回顾性分析,入组病例难免存在选择偏倚,同时,EGFR基因检测技术及化疗方案也不完全统一,化疗药物作用期间可能存在EGFR突变状态的改变[47],地域性、种族性等因素的差异也可能会对研究结果产生一定的影响。我们正在期待更多的前瞻性临床试验及循证医学证据。
3 小结与展望晚期肺腺癌患者的一线化疗主要采用以铂类为基础的联合化疗方案,此外,以铂类为基础的化疗方案也是EGFR基因突变患者靶向治疗失败后的常规治疗选择。患者的个体性决定化疗疗效的差异,因此,为了选择疗效最优的化疗药物,明确对化疗受益或耐受的分子标志物是必要的。研究显示,几种参与DNA修复反应的分子可能是潜在的化疗疗效预测因子,其中ERCC1 mRNA或蛋白高表达与铂类耐药有关[17, 19],BRCA1基因能够诱导铂类耐药或增加抗微管类药物的敏感度[20-21],TUBB3基因高表达提示对紫杉类耐药[28-31],其ERCC1、BRCA1或TUBB3基因高表达均与肺腺癌患者预后呈负相关[19, 31]。EGFR基因不仅是晚期肺腺癌患者分子靶向治疗的重要依据,还可能是患者化疗疗效的影响因素,然而其与化疗疗效的关联性尚待进一步探讨研究。在循证医学基础上,联合检测及分析多种分子标志物能够提供更多的化疗疗效预测信息,并为规范化临床治疗提供新的思路。
| [1] | Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive nonsmall-cell lung cancer (EURTAC): a multicentre, openlabel, randomised phase 3 trial[J]. Lancet Oncol, 2012, 13 (3) : 239–46. DOI:10.1016/S1470-2045(11)70393-X |
| [2] | Yang JC, Shih JY, Su WC, et al. Afatinib for patients with lung adenocarcinoma and epidermal growth factor receptor mutations (LUX-Lung 2): a phase 2 trial[J]. Lancet Oncol, 2012, 13 (5) : 539–48. DOI:10.1016/S1470-2045(12)70086-4 |
| [3] | Fiala O, Pesek M, Finek J, et al. Pemetrexed versus erlotinib in the second-line treatment of patients with advanced-stage non-squamous NSCLC harboring wild-type EGFR gene[J]. Anticancer Res, 2016, 36 (1) : 447–53. |
| [4] | Camidge DR, Bang YJ, Kwak EL, et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study[J]. Lancet Oncol, 2012, 13 (10) : 1011–9. DOI:10.1016/S1470-2045(12)70344-3 |
| [5] | Chuang JC, Neal JW. Crizotinib as first line therapy for advanced ALK-positive non-small cell lung cancers[J]. Transl Lung Cancer Res, 2015, 4 (5) : 639–41. |
| [6] | Jorge SE, Schulman S, Freed JA, et al. Responses to the multitargeted MET/ALK/ROS1 inhibitor crizotinib and co-occurring mutations in lung adenocarcinomas with MET amplification or MET exon 14 skipping mutation[J]. Lung Cancer, 2015, 90 (3) : 369–74. DOI:10.1016/j.lungcan.2015.10.028 |
| [7] | Wang ZD, Wei SQ, Wang QY, et al. Targeting oncogenic KRAS in non-small cell lung cancer cells by phenformin inhibits growth and angiogenesis[J]. Am J Cancer Res, 2015, 5 (11) : 3339–49. |
| [8] | Bonanno L. Predictive models for customizing chemotherapy in advanced non-small cell lung cancer (NSCLC)[J]. Transl Lung Cancer Res, 2013, 2 (3) : 160–71. |
| [9] | Choi JY, Park JM, Yi JM, et al. Enhanced nucleotide excision repair capacity in lung cancer cells by preconditioning with DNA-damaging agents[J]. Oncotarget, 2015, 6 (26) : 22575–86. DOI:10.18632/oncotarget |
| [10] | Huang SJ, Wang YF, Jin ZY, et al. Role of ERCC1 variants in response to chemotherapy and clinical outcome of advanced non-small cell lung cancer[J]. Tumor Biol, 2014, 35 (5) : 4023–9. DOI:10.1007/s13277-013-1526-0 |
| [11] | Miyagawa K. Clinical relevance of the homologous recombination machinery in cancer therapy[J]. Cancer Sci, 2008, 99 (2) : 187–94. DOI:10.1111/cas.2008.99.issue-2 |
| [12] | Williams RS, Williams JS, Tainer JA. Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template[J]. Biochem Cell Biol, 2007, 85 (4) : 509–20. DOI:10.1139/O07-069 |
| [13] | Sobhian B, Shao G, Lilli DR, et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites[J]. Science, 2007, 316 (5828) : 1198–202. DOI:10.1126/science.1139516 |
| [14] | Yan J, Kim YS, Yang XP, et al. The ubiquitin-interacting motif containing protein RAP80 interacts with BRCA1 and functions in DNA damage repair response[J]. Cancer Res, 2007, 67 (14) : 6647–56. DOI:10.1158/0008-5472.CAN-07-0924 |
| [15] | Wu J, Liu C, Chen J, et al. RAP80 protein is important for genomic stability and is required for stabilizing BRCA1-A complex at DNA damage sites in vivo[J]. J Biol Chem, 2012, 287 (27) : 22919–26. DOI:10.1074/jbc.M112.351007 |
| [16] | Wang LE, Yin M, Dong Q, et al. DNA repair capacity in peripheral lymphocytes predicts survival of patients with non-small-cell lung cancer treated with first-line platinumbased chemotherapy[J]. J Clin Oncol, 2011, 29 (31) : 4121–8. DOI:10.1200/JCO.2010.34.3616 |
| [17] | Chen S, Zhang J, Wang R, et al. The platinum-based reatments for advanced non-small cell lung cancer, is low/negative ERCC1 expression better than high/positive ERCC1 expression? A Meta-analysis[J]. Lung Cancer, 2010, 70 (1) : 63–70. DOI:10.1016/j.lungcan.2010.05.010 |
| [18] | Taron M, Rosell R, Felip E, et al. BRCA1 mRNA expression levels as an indicator of chemoresistance in lung cancer[J]. Hum Mol Genet, 2004, 13 (20) : 2443–9. DOI:10.1093/hmg/ddh260 |
| [19] | Papadaki C, Sfakianaki M, Ioannidis G, et al. ERCC1 and BRAC1 mRNA expression levels in the primary tumor could predict the effectiveness of the second-line cisplatinbased chemotherapy in pretreated patients with metastatic non-small cell lung cancer[J]. J Thorac Oncol, 2012, 7 (4) : 663–71. DOI:10.1097/JTO.0b013e318244bdd4 |
| [20] | Quinn JE, Kennedy RD, Mullan PB, et al. BRCA1 functions as a differential modulator of chemotherapyinduced apoptosis[J]. Cancer Res, 2003, 63 (19) : 6221–8. |
| [21] | Stordal B, Davey R. A systematic review of genes involved in the inverse resistance relationship between cisplatin and paclitaxel chemotherapy: role of BRCA1[J]. Curr Cancer Drug Targets, 2009, 9 (3) : 354–65. DOI:10.2174/156800909788166592 |
| [22] | Wu MF, Hsiao YM, Huang CF, et al. Genetic determinants of pemetrexed responsiveness and nonresponsiveness in non-small cell lung cancer cells[J]. J Thorac Oncol, 2010, 5 (8) : 1143–51. DOI:10.1097/JTO.0b013e3181e0b954 |
| [23] | Vindya NG, Sharma N, Yadav M, et al. Tubulins-the target for anticancer therapy[J]. Curr Top Med Chem, 2015, 15 (1) : 73–82. DOI:10.2174/1568026615666150112115805 |
| [24] | Takuya O, Tatsuya Y, Sho O, et al. Class Ⅲ beta-tubulin expression in non-small cell lung cancer: a predictive factor for paclitaxel response[J]. Anticancer Res, 2015, 35 (5) : 2669–74. |
| [25] | Bernard-Marty C, Treilleux I, Dumontet C, et al. Microtubule-associated parameters as predictive markers of docetaxel activity in advanced breast cancer patients: results of a pilot study[J]. Clin Breast Cancer, 2002, 3 (5) : 341–5. DOI:10.3816/CBC.2002.n.037 |
| [26] | Seve P, Mackey J, Isaac S, et al. Class Ⅲ beta-tubulin expression in tumor cells predicts response and outcome in patients with non-small cell lung cancer receiving paclitaxel[J]. Mol Cancer Ther, 2005, 4 (12) : 2001–7. DOI:10.1158/1535-7163.MCT-05-0244 |
| [27] | Sun S, Shi W, Wu Z, et al. Prognostic significance of the mRNA expression of ERCC1, RRM1, TUBB3 and TYMS genes in patients with non-small cell lung cancer[J]. Exp Ther Med, 2015, 10 (3) : 937–41. |
| [28] | Zhang HL, Ruan L, Zheng LM, et al. Association between class Ⅲ β-tubulin expression and response to paclitaxel/vinorebine-based chemotherapy for nonsmall cell lung cancer: a Meta-analysis[J]. Lung Cancer, 2012, 77 (1) : 9–15. DOI:10.1016/j.lungcan.2012.01.005 |
| [29] | Okuda K, Sasaki H, Dumontet C, et al. Expression of excision repair cross-complementation groupⅠand calssⅢβ-tubulin predict survival after chemotherapy for completely resected non-small cell lung cancer[J]. Lung Cancer, 2008, 62 (1) : 105–112. DOI:10.1016/j.lungcan.2008.02.021 |
| [30] | Ohashi T, Yoshimasu T, Oura S, et al. Class Ⅲ beta-tubulin expression in non-small cell lung cancer: a predictive factor for paclitaxel response[J]. Anticancer Res, 2015, 35 (5) : 2669–74. |
| [31] | Yang YL, Luo XP, Xian L, et al. The prognostic role of the class Ⅲ β-tubulin in non-small cell lung cancer (NSCLC) patients receiving the taxane/vinorebine-based chemotherapy: a Meta-analysis[J]. PLoS One, 2014, 9 (4) : e93997. DOI:10.1371/journal.pone.0093997 |
| [32] | Smoter M, Bodnar L, Grala B, et al. Tau protein as a potential predictive marker in epithelial ovarian cancer patients treated with paclitaxel/platinum first-line chemotherapy[J]. J Exp Clin Cancer Res, 2013, 32 : 25. DOI:10.1186/1756-9966-32-25 |
| [33] | He W, Zhang D, Jiang J, et al. The relationships between the chemosensitivity of human gastric cancer to paclitaxel and the expressions of class Ⅲ β-tubulin, MAPT, and survivin[J]. Med Oncol, 2014, 31 (5) : 950. DOI:10.1007/s12032-014-0950-3 |
| [34] | Yu JW, Gao J, Lu ZH, et al. Combination of microtubule associated protein-tau and β-tubulin Ⅲ predicts chemosensitivity of paclitaxel in patients with advanced gastric cancer[J]. Eur J Cancer, 2014, 50 (13) : 2328–35. DOI:10.1016/j.ejca.2014.06.017 |
| [35] | Wakeling AE, Guy SP, Woodbum JR, et al. ZDl839(iressa): an orally active inhibitor of EGF signaling with potential for cancer therapy[J]. Cancer Res, 2002, 62 (20) : 5749–64. |
| [36] | Engelmen JA, Zejnullahu K, Gale CM, et al. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib[J]. Caner Res, 2007, 67 (24) : 11924–32. DOI:10.1158/0008-5472.CAN-07-1885 |
| [37] | Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma[J]. N Engl J Med, 2009, 361 (10) : 947–57. DOI:10.1056/NEJMoa0810699 |
| [38] | Yang JC, Srimuninnimit V, Ahn MJ, et al. First-line pemetrexed plus cisplatin followed by gefitinib maintenance therapy versus gefitinib monotherapy in East Asian never-smoker patients with locally advanced or metastatic nonsquamous non-small cell lung cancer: final overall survival results from a randomized phase 3 study[J]. J Thorac Oncol, 2016, 11 (3) : 370–9. DOI:10.1016/j.jtho.2015.11.008 |
| [39] | Hotta K, Kiura K, Toyooka S, et al. Clinical significance of epiderreal growth factor receptor gene mutations on treatment outcome after first-line cytotoxic chemotherapy in Japanese patients with non-small cell lung cancer[J]. J Thorac Oncol, 2007, 2 (7) : 632–7. DOI:10.1097/JTO.0b013e318074bc0d |
| [40] | Yin YT, Wang HJ, Zhang GW, et al. Prognostic significance of EGFR mutation status in first-line chemotherapy for advanced lung adenocarcinoma[J]. Zhongguo Shi Yong Yi Kan, 2013, 40 (18) : 6–9. [尹延涛, 王慧娟, 张国伟, 等. EGFR基因突变状态对于晚期肺腺癌一线化疗的疗效预测意义[J]. 中国实用医刊,2013, 40 (18) : 6–9. ] |
| [41] | Fang S, Wang ZH, Guo J, et al. Correlation between EGFR mutation status and response to first-line platinum-based chemotherapy in patients with advanced non-small cell lung cancer[J]. Onco Targets Ther, 2014, 7 : 1185–93. |
| [42] | Gandara DR, Grimminger P, Mack PC, et al. Association of epidermal growth factor receptor activating mutations with low ERCC1 gene expression in non-small lung cancer[J]. J Thorac Oncol, 2010, 5 (12) : 1933–8. DOI:10.1097/JTO.0b013e3181fd418d |
| [43] | Okamoto I, Aoe K, Kato T, et al. Pemetrexed and carboplatin followed by pemetrexed maintenance therapy in chemo-naïve patients with advanced nonsquamous non-small-cell lung cancer[J]. Invest New Drugs, 2013, 31 (5) : 1295–6. |
| [44] | Qin N, Zhang Q, Wang JH, et al. Association between the epidermal growth receptor status and the efficacy of first-line chemotherapy in patients with advanced non-small cell lung cancer[J]. Zhongguo Fei Ai Za Zhi, 2015, 18 (3) : 131–7. [秦娜, 张权, 王敬慧, 等. EGFR基因状态与晚期非小细胞肺癌患者一线化疗疗效的关系[J]. 中国肺癌杂志,2015, 18 (3) : 131–7. ] |
| [45] | Zhu J, Zhang J, Chen M, et al. Outcomes of chemotherapy in patients with EGFR mutation-negative non-small cell lung cancer[J]. Zhonghua Zhong Liu Za Zhi, 2013, 35 (5) : 386–8. [朱军, 张洁, 陈默, 等. 非小细胞肺癌表皮生长因子受体突变阴性患者化疗疗效分析[J]. 中华肿瘤杂志,2013, 35 (5) : 386–8. ] |
| [46] | Zhang Q, Dai HH, Dong HY, et al. EGFR mutations and clinical outcomes of chemotherapy for advanced non-small cell lung cancer: A Meta-analysis[J]. Lung Cancer, 2014, 85 (3) : 339–45. DOI:10.1016/j.lungcan.2014.06.011 |
| [47] | Bai H, Wang Z, Chen K, et al. Influence of chemotherapy on EGFR mutation status among patients with non-small-cell lung cancer[J]. J Clin Oncol, 2012, 30 (25) : 3077–83. DOI:10.1200/JCO.2011.39.3744 |
2016, Vol. 43

