2. 浙江省中医药研究院基础实验所, 浙江 杭州 310007;
3. 浙江省立同德医院内分泌科, 浙江 杭州 310012
2. Basic Laboratory, Institute of Traditional Chinese Medicine of Zhejiang Province, Hangzhou 310007, China;
3. Department of Endocrinology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
胃肠道激素在餐后血糖调节中扮演着重要角色, 胃肠道L细胞分泌的胰高血糖素样肽-1(human glucose-lowering peptide-1, GLP-1)和K细胞分泌的葡萄糖依赖性促胰岛素释放肽(glucose-dependent insulinotropic polypeptide, GIP)是最重要的两种影响糖代谢的胃肠道激素, 被统称为肠降血糖素(incretin)。肠道全天持续分泌肠促胰岛素, 在进餐后的分泌量增多, 50%~70%的餐后胰岛素释放与之有关。有研究表明, 口服葡萄糖后的第二时相胰岛素分泌主要是通过GLP-1调节的[1]。肠促胰岛素由二肽基肽酶-Ⅳ(dipeptidylpeptidase-Ⅳ, DPP-Ⅳ)快速降解, DPP-Ⅳ灭活GLP-1的作用快速而不可逆。GLP-1的血浆半衰期很短, 约为2 min, 肠道分泌的GLP-1大约75%在进入门静脉前已经被肠壁的DPP-Ⅳ降解, 门静脉血的GLP-1约有一半流经肝脏时被降解, 仅有10%~15%肠道分泌的GLP-1能到达体循环[2]。糖尿病患者的GLP-l分泌减少, GIP的效应下降, 因而肠降血糖素在促餐后胰岛素释放的贡献率降至30%, 这是糖尿病患者餐后胰岛素分泌减少的原因之一[3]。但是GLP-1的促胰岛素分泌能力在2型糖尿病患者中保持完好, 可以利用GLP-1受体的兴奋效应来治疗糖尿病[4]。与此机制有关的药物有GLP-1类似物、GLP-1受体激动剂和DPP-Ⅳ抑制剂, 目前已广泛应用于2型糖尿病患者的治疗。DPP-Ⅳ抑制剂口服降糖的主要机制是提高血GLP-1水平[2], 继而增加餐后胰岛素分泌。
小檗碱为中药黄连中提取的一种生物碱, 动物实验及临床试验均证实小檗碱具有明确的降糖作用[5], 但其降糖机制尚未阐明。一般认为口服小檗碱后经肠道吸收较差, 血药浓度较低, 血液中的小檗碱也不能直接促进胰岛β细胞分泌胰岛素[6]。有体外实验发现, 小檗碱对DPP-Ⅳ有抑制作用[7-8]。本研究拟建立链脲佐菌素诱导的糖尿病大鼠模型, 通过短疗程小檗碱口服干预, 观察模型大鼠口服葡萄糖负荷后血糖、胰岛素、GLP-1、DPP-Ⅳ和肠道局部GLP-1、DPP-Ⅳ水平的变化, 旨在探索小檗碱在体内抑制DPP-Ⅳ的降糖机制。
1 材料与方法 1.1 材料健康雄性SD大鼠由浙江省医学科学院提供, 饲养于浙江省中医药研究院动物实验中心。实验动物均饲养于屏障实验室, 普通饲料, 自由进食进水, 适应性喂养1周。链脲佐菌素购自美国Sigma公司; 血糖测定仪及试纸购自美国强生公司; 大鼠GLP-l、DPP-ⅣELISA试验试剂盒购自美国Linco公司; 小檗碱黄色片购自青岛黄海制药有限责任公司; 磷酸西格列汀购自美国默沙东制药公司。
1.2 糖尿病大鼠建模及分组60只3月龄雄性SD大鼠, 体质量(220±20) g, 按70 mg/kg一次性腹腔注射链脲佐菌素(采用酸碱度值为4.5的柠檬酸PBS作为溶剂, 浓度1%)。1周后, 测空腹血糖(葡萄糖氧化酶法)。空腹血糖大于11.1 mmol/L的50只大鼠确定为糖尿病大鼠模型。
50只糖尿病大鼠采用随机数字表法随机分为五组:模型对照组(灌喂蒸馏水10 mL/kg, n=10)、西格列汀组(灌喂磷酸西格列汀10 mg/kg, n=10)、小檗碱小剂量组(盐酸小檗碱30 mg/kg, n=10)、小檗碱中剂量组(盐酸小檗碱60 mg/kg, n=10)、小檗碱大剂量组(盐酸小檗碱120 mg/kg, n=10), 所有药物均溶于相同体积溶剂(蒸馏水10 mL/kg)。大鼠的药物剂量按与人体体表面积折算的等效剂量换算。各组动物干预前平均体质量、空腹血糖差异无统计学意义(均P>0.05), 具有可比性。
1.3 干预措施、标本收集及观察指标各组动物予相应药物灌胃, 每日一次, 连续2 d, 普通饲料, 自由进食进水。第三天空腹予测体质量, 尾静脉采血1 mL用于测空腹血糖, 灌喂相应剂量药物半小时后, 灌喂50%葡萄糖水(2 g/kg), 灌喂葡萄糖水后1.5 h左右予50 mg/kg戊巴比妥钠腹腔注射麻醉, 在灌喂葡萄糖水2 h时采集下腔静脉血2 mL分成两管待检测; 采血后立即处死大鼠, 切下远端回肠和近端结肠(从回盲部以上4 cm至回盲部以下4 cm)用于检测, 剥离肠段黏膜组织, 称取质量, 加入一定量酸碱度值为7.4的PBS (记录组织质量及加入PBS量), 用组织匀浆器将标本匀浆充分, 6000×g离心10 min, 收集上清液分为两管待检测。其中一管血液和一管肠道组织上清液标本用于检测GLP-1, 这些试管中预先加入DPP-Ⅳ抑制剂磷酸西格列汀(2 mg/管), 以完全抑制血液及肠道局部组织中的DPP-Ⅳ, 防止标本中的GLP-1被降解, 其余的血液和肠道组织标本置于生化管。提取标本后将标本置于-20 ℃保存。观察各组的空腹及餐后2 h血糖、餐后2 h血胰岛素和血清GLP-1、DPP-Ⅳ水平及肠道局部组织GLP-1、DPP-Ⅳ含量。
1.4 全自动生化分析仪检测空腹及餐后2 h血糖水平离心生化管中的标本, 吸取血清, 采用全自动生化分析仪检测空腹及餐后2 h血糖水平。
1.5 ELISA法检测餐后2 h血胰岛素、GLP-1、DPP-Ⅳ水平及肠道局部组织GLP-1、DPP-Ⅳ含量分别取储存的SD大鼠血清或组织上清液按ELISA试剂盒说明书操作检测上述指标的质量浓度, 计算时以标准物的浓度为横坐标, 吸光度值为纵坐标, 绘出标准曲线, 根据样品的吸光度值从标准曲线推算出相应的质量浓度, 再乘以稀释倍数得到真实的浓度。
1.6 统计学方法应用SPSS 13.0软件包进行统计学分析。实验数据先进行正态性及方差齐性检验, 符合正态分布的计量资料用均数±标准差(x±s)表示, 非正态分布参数经自然对数转换后进行统计分析。多组比较采用重复测量设计的方差分析, P<0.05为差异有统计学意义。
2 结果 2.1 小檗碱干预对空腹血糖水平和餐后2 h血糖水平的影响各组干预前后空腹血糖差异均无统计学意义, 提示小檗碱短期口服干预糖尿病大鼠模型无降低空腹血糖作用。干预后西格列汀组和小檗碱各剂量组的餐后2 h血糖水平均比模型对照组下降, 差异均有统计学意义(均P<0.05)。提示小檗碱短期口服干预糖尿病大鼠模型有降低餐后血糖的作用。见表 1。2.2小檗碱干预对餐后2 h血胰岛素水平的影响西格列汀组及小檗碱中、大剂量组的餐后2 h血胰岛素水平比模型对照组均增加, 差异均有统计学意义(均P<0.05), 上述三组间差异无统计学意义(P>0.05)。提示中、大剂量小檗碱短期口服干预糖尿病大鼠模型有增加餐后血胰岛素水平作用。见表 1。
| (x±s) | ||||
| 组别 | n | 空腹血糖 (mmol/L) |
餐后2 h血糖 (mmol/L) |
餐后2 h血清 胰岛素(mU/L) |
| 模型对照组 | 10 | 12.7±1.2 | 20.2±5.3 | 24.9±4.3 |
| 西格列汀组 | 10 | 11.9±2.8 | 17.3±3.3* | 32.6±2.0* |
| 小檗碱小剂量组 | 10 | 12.8±1.7 | 17.3±3.6* | 29.8±3.8 |
| 中剂量组 | 10 | 12.5±2.4 | 15.2±3.9* | 36.2±6.3* |
| 大剂量组 | 10 | 12.4±2.5 | 15.3±4.0* | 35.9±3.1* |
| 与模型对照组比较, *P<0.05. | ||||
小檗碱中、大剂量组的餐后2 h血GLP-1水平均比模型对照组增加, 差异均有统计学意义(均P<0.05), 中、大剂量组间差异无统计学意义(P>0.05), 提示中、大剂量小檗碱短时口服干预糖尿病大鼠模型有升高餐后血GLP-1水平作用。而西格列汀组的餐后2 h血GLP-1水平与模型对照组差异无统计学意义(P>0.05)。西格列汀组及小檗碱各剂量组的餐后2 h肠道组织GLP-1含量均比模型对照组增加, 其中大剂量组的餐后2 h肠道组织GLP-1含量增高多于中、小剂量组和西格列汀组, 差异均有统计学意义(均P<0.05)。提示小檗碱短期口服干预糖尿病大鼠模型能增加肠道局部GLP-1含量, 且大剂量组增加更明显, 见表 2。
| (x±s) | |||||
| 组别 | n | 血GLP-1(pmol/L) | 血DPP-Ⅳ(ng/L) | 肠道GLP-1(pmol/L) | 肠道DPP-Ⅳ(ng/L) |
| 模型对照组 | 10 | 4.0±0.5 | 316.6±49.7 | 7.0±0.8 | 2035.5±516.5 |
| 西格列汀组 | 10 | 3.9±0.7 | 354.3±67.8 | 8.3±0.9* | 1338.4±270.9* |
| 小檗碱小剂量组 | 10 | 4.4±0.7 | 362.4±88.5 | 8.6±1.4* | 1196.6±335.8* |
| 中剂量组 | 10 | 5.8±1.6* | 372.0±74.5 | 8.8±1.1* | 1036.8±208.2* |
| 大剂量组 | 10 | 5.7±1.3* | 366.9±29.3 | 10.6±1.9*# | 1159.8±320.3* |
| GLP-1:胰高血糖素样肽-1;DPP-Ⅳ:二肽基肽酶-Ⅳ.与模型对照组比较, *P<0.05;与西格列汀组比较, #P<0.05. | |||||
模型对照组、西格列汀组、小檗碱各剂量组的餐后2 h血DPP-Ⅳ水平差异无统计学意义(均P>0.05), 说明小檗碱短期口服干预糖尿病大鼠模型对餐后2 h血DPP-Ⅳ水平无明显影响。西格列汀组及小檗碱各剂量组的餐后2 h肠道局部组织DPP-Ⅳ含量均比模型对照组下降, 差异均有统计学意义(均P<0.05), 而上述各组间差异无统计学意义(均P>0.05)。提示小檗碱短期口服干预糖尿病大鼠模型有抑制肠道局部组织DPP-Ⅳ作用, 见表 2。
3 讨论口服DPP-Ⅳ抑制剂降糖的主要机制是提高血GLP-1水平, 继而增加餐后胰岛素分泌。DPP-Ⅳ抑制剂治疗2型糖尿病患者能同时降低空腹和餐后血糖, 目前已经广泛使用。DPP-Ⅳ抑制剂对1型糖尿病及健康人的餐后血糖也有作用:有临床试验采用DPP-Ⅳ抑制剂西格列汀治疗1型糖尿病患者, 发现能减少血糖波动并减少餐后胰岛素的用量[9]; 采用DPP-Ⅳ抑制剂维格列汀治疗1型糖尿病患者, 能抑制餐后胰高血糖素的分泌, 改善血糖控制[10]。动物实验表明, DPP-Ⅳ抑制剂作用于健康大鼠也可以改变血清GLP-1和GIP水平, 对餐后血糖有调节作用[11]。由于GLP-1调节胰岛素分泌具有严格的血糖浓度依赖性, 只有在高血糖条件下, GLP-1才会提高胰岛素的分泌水平, 故口服DPP-Ⅳ抑制剂无引发低血糖的风险[12]。
为探索小檗碱对胃肠道激素的影响, 中国药科大学刘晓东教授等[13]采用小檗碱干预链脲佐菌素诱导的1型糖尿病大鼠模型, 发现口服小檗碱能促进肠道L细胞增生, 增加血和肠道GLP-1水平, 增加胰岛β细胞数量及血胰岛素水平。在正常大鼠也有类似的作用[14]。但是不能排除糖代谢改善导致的继发性胃肠道激素变化, 另外小檗碱有抑制α-糖苷酶[15]和胃肠运动的效果, 对胃肠道激素分泌也会产生影响。
1型糖尿病大鼠模型被广泛应用于验证DPP-Ⅳ抑制剂的次要降糖机制, 如促进β细胞增生、抑制β细胞凋亡、抗炎、抗氧化、调节免疫等方面。DPP-Ⅳ抑制剂治疗1型糖尿病大鼠能保护β细胞, 刺激胰岛细胞增生[16]。此外还能通过控制炎症和刺激胰岛细胞增殖, 逆转新发的糖尿病[17]。2型糖尿病大鼠模型主要应用于验证DPP-Ⅳ抑制剂改善胰岛素抵抗的各种机制[18]。
但是在利用啮齿类动物研究口服DPP-Ⅳ抑制剂的降糖作用时发现一些异常情况:虽然口服DPP-Ⅳ抑制剂有明确的降糖作用, 但是外周血DPP-Ⅳ活性无明显下降, 外周血GLP-1升高不明显或不升高, 所以有学者提出DPP-Ⅳ抑制剂的降糖作用可能不是通过GLP-1介导的[19]。直至Waget等[20]发现了口服DPP-Ⅳ抑制剂降糖的新机制才解答了这个疑问。Waget等[20]给小鼠灌喂小剂量的西格列汀(40 μg/只), 检测到小鼠门静脉血胰岛素水平升高, 血糖水平降低, 同时发现口服小剂量的西格列汀能抑制多个肠段如十二指肠、空肠和部分回肠的DPP-Ⅳ活性, 但是对外周血DPP-Ⅳ活性无影响, 经门静脉注射等剂量的西格列汀不能提高血GLP-1活性和降低血糖水平。因此他们认为DPP-Ⅳ抑制剂是通过抑制肠道局部而非外周血的DPP-Ⅳ活性, 从而提高肠道局部的GLP-1水平, 产生降糖作用。肠道局部或门静脉血的GLP-1升高可以通过多种神经内分泌机制产生降糖作用[21]。
西格列汀的药代动力学特征为口服后快速吸收, 血药浓度较高, 可能会出现回肠下段及结肠的药物浓度较低, 不能完全抑制相应肠段的DPP-Ⅳ活性。Waget等[20]发现小鼠只有口服超大剂量的西格列汀(40 mg/只)才会出现血DPP-Ⅳ活性抑制。大鼠比人具有更高的血浆DPP-Ⅳ活性[22], 糖尿病及肥胖大鼠的血DPP-Ⅳ水平更高[23]。所以导致糖尿病大鼠的血DPP-Ⅳ水平不易抑制。本研究同样发现西格列汀在大鼠体内实验中不能抑制外周血DPP-Ⅳ, 与上述研究结果一致。
小檗碱在体内具有双重动力学特征, 即血浆药动学和胃肠道内药动学特征。肠道小檗碱来源如下:①肠道中未被吸收的小檗碱。小檗碱口服后绝大部分呈原型从粪便排出, 利用同位素标记的方法对大鼠口服小檗碱后吸收、分布、排泄情况进行研究, 结果显示给药48 h的粪便中总放射性为86%, 说明小檗碱在胃肠道吸收不佳[24]。②小檗碱吸收后经过肠肝循环再进入肠道[25]。③血液中小檗碱也可逆向转运至小肠中[26]。
中、大剂量小檗碱组出现血GLP-1升高, 血胰岛素水平升高, 血糖水平下降, 但血DPP-Ⅳ水平未变化。其原因可能为小檗碱口服的吸收较差, 所以外周血中的小檗碱水平较低, 对大鼠外周血DPP-Ⅳ的抑制作用更弱。正因为小檗碱的吸收差, 肠道(尤其是下位肠道)局部组织的小檗碱浓度可能更高, 所以表现为小檗碱口服对肠道局部的DPP-Ⅳ抑制作用更强, 肠道局部的GLP-1升高更明显, 因而释放入外周血的GLP-1更多, 降糖作用更为明显。这与我们的实验结果相符。有报道采用西格列汀干预链脲佐菌素诱导的严重1型糖尿病大鼠无改善糖代谢的作用, 该模型的胰岛素分泌水平小于正常大鼠10%, 所以GLP-1促胰岛素释放的效应下降[27]。正常大鼠的空腹血胰岛素水平为(22.0±5.5) mmol/L, 本研究糖尿病大鼠模型显示餐后2 h血胰岛素水平的数据表明, 该模型还残留部分胰岛功能, 并非胰岛素绝对缺乏, 所以在GLP-1水平升高时仍有促进胰岛素分泌的作用。
综上所述, 短疗程中、大剂量的小檗碱干预糖尿病大鼠模型能降低餐后血糖; 小檗碱可能存在抑制肠道局部DPP-Ⅳ的降糖机制; 口服DPP-Ⅳ抑制剂的降糖疗效可能与该药的肠道药代动力学有关。本研究尚存在一些不足之处, 如未测量各肠段的药物浓度, 未测定口服葡萄糖耐量试验中各时段的血糖及胃肠道激素、DPP-Ⅳ水平的动态变化等, 有待后续实验进一步研究。
志谢 感谢浙江省立同德医院施新萍、陈宇和辛传伟在本文研究工作过程中给予的帮助| [1] | PREITNER F, IBBERSON M, FRANKLIN I, et al. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors[J]. J Clin Invest, 2004, 113 (4) :635–645. doi:10.1172/JCI200420518 |
| [2] | HOLST J J, DEACON C F. Glucagon-like peptide-1 mediates the therapeutic actions of DPP-Ⅳ inhibitors[J]. Diabetologia, 2005, 48 (4) :612–615. doi:10.1007/s00125-005-1705-7 |
| [3] | NAUCK M A. Unraveling the science of incretinbiology[J]. Eur J Intern Med, 2009, 20 (Suppl 2) :S303–S308. |
| [4] | NAUCK M A, HEIMESAAT M M, ORSKOV C, et al. Preserved incretin activity of glucagon-like peptide 1[J]. J Clin Invest, 1993, 91 (1) :301–307. doi:10.1172/JCI116186 |
| [5] | YIN J, YE J, JIA W. Effects and mechanisms of berberine in diabetes treatment[J]. Acta Pharmaceutica Sinica B, 2012, 2 (4) :327–334. doi:10.1016/j.apsb.2012.06.003 |
| [6] | YIN J, HU R, CHEN M, et al. Effects of berberine on glucose metabolism in vitro[J]. Metabolism, 2002, 51 (11) :1439–1443. doi:10.1053/meta.2002.34715 |
| [7] | CHEN Y, WANG Y, ZHANG J, et al. Berberine improves glucose homeostasis in streptozotocin-induced diabetic rats in association with multiple factors of insulin resistance[J]. ISRN Endocrinol, 2011, 2011 :519371. |
| [8] | AL-MASRI I M, MOHAMMAD M K, TAHAA M O. Inhibition of dipeptidyl peptidase Ⅳ(DPP Ⅳ) is one of the mechanisms explaining the hypoglycemic effect ofberberine[J]. J Enzyme Inhib Med Chem, 2009, 24 (5) :1061–1066. doi:10.1080/14756360802610761 |
| [9] | ELLIS S L, MOSER E G, SNELL-BERGEON J K, et al. Effect of sitagliptin on glucose control in adult patients with type 1 diabetes:a pilot, double-blind, randomized, crossover trial[J]. Diabet Med, 2011, 28 (10) :1176–1181. doi:10.1111/dme.2011.28.issue-10 |
| [10] | FOLEY J E, LIGUEROS-SAYLAN M, HE Y L, et al. Effect of vildagliptin on glucagon concentration during meals in patients with type 1 diabetes[J]. Horm Metab Res, 2008, 40 (10) :727–730. doi:10.1055/s-2008-1078754 |
| [11] | FREYSE E J, BERG S, KOHNERT K D, et al. DPP-4 inhibition increases GIP and decreases GLP-1 incretin effects during intravenous glucose tolerance test in Wistar rats[J]. Biol Chem, 2011, 392 (3) :209–215. |
| [12] | THORNBERRY N A, GALLWITZ B. Mechanism of action of inhibitors of dipeptidyl-peptidase-4(DPP-4)[J]. Best Pract Res Clin Endocrinol Metab, 2009, 23 (4) :479–486. doi:10.1016/j.beem.2009.03.004 |
| [13] | LU S S, YU Y L, ZHU H J, et al. Berberine promotes glucagon-like peptide-1(7-36) amide secretion in streptozotocin-induced diabetic rats[J]. J Endocrinol, 2009, 200 (2) :159–165. |
| [14] | YU Y, LIU L, WANG X, et al. Modulation of glucagon-like peptide-1 release by berberine:in vivo and in vitro studies[J]. Biochem Pharmacol, 2010, 79 (7) :1000–1006. doi:10.1016/j.bcp.2009.11.017 |
| [15] | 潘国宇, 王广基, 孙建国, 等. 小檗碱对葡萄糖吸收的抑制作用[J]. 药学学报, 2004, 38 (12) : 911–914. PAN Guoyu, WANG Guangji, SUN Jianguo, et al. Inhibitory action of berberine on glucoseabsorption[J]. Acta Pharmaceutica Sinica, 2004, 38 (12) :911–914. (in Chinese) |
| [16] | POSPISILIK J A, MARTIN J, DOTY T, et al. Dipeptidyl peptidase Ⅳ inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats[J]. Diabetes, 2003, 52 (3) :741–750. doi:10.2337/diabetes.52.3.741 |
| [17] | TIAN L, GAO J, HAO J, et al. Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase Ⅳ inhibitor[J]. Endocrinology, 2010, 151 (7) :81–84. |
| [18] | ZHOU L, YANG Y, WANG X, et al. Berberine stimulates glucose transport through a mechanism distinct from insulin[J]. Metabolism, 2007, 56 (3) :405–412. doi:10.1016/j.metabol.2006.10.025 |
| [19] | NAUCK M A, EL-OUAGHLIDI A. The therapeutic actions of DPP-Ⅳ inhibition are not mediated by glucagon-like peptide-1[J]. Diabetologia, 2005, 48 (4) :608–611. doi:10.1007/s00125-005-1704-8 |
| [20] | WAGET A, CABOU C, MASSEBOEUF M, et al. Physiological and pharmacological mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice[J]. Endocrinology, 2011, 152 (8) :3018–3029. doi:10.1210/en.2011-0286 |
| [21] | 王结胜. 二肽基肽酶-Ⅳ抑制剂的降糖机制研究进展[J]. 中国医学科学院学报, 2013, 35 (2) : 229–233. WANG Jiesheng. Research progress of mechanisms through which dipeptidyl peptidase-4 inhibitors regulate glycemia[J]. Acta Academiae Medicinae Sinicae, 2013, 35 (2) :229–233. (in Chinese) |
| [22] | HANSEN L, DEACON C F, ORSKOV C, et al. Glucagon-like peptide-1-(7-36) amide is transformed to glucagon-like peptide-1-(9-36) amide by dipeptidyl peptidase Ⅳ in the capillaries supplying the L cells of the porcine intestine[J]. Endocrinology, 1999, 140 (11) :5356–5363. |
| [23] | MANNUCCI E, PALA L, CIANI S, et al. Hyperglycaemia increases dipeptidyl peptidase Ⅳ activity in diabetes mellitus[J]. Diabetologia, 2005, 48 (6) :1168–1172. doi:10.1007/s00125-005-1749-8 |
| [24] | 吴宇娟, 李兰芳, 孟俊华. 小檗碱的药代动力学研究概况[J]. 数理医药学杂志, 2008, 21 (2) : 217–219. WU Yujuan, LI Lanfang, MENG Junhua. Overview of studies on pharmacokinetics of Berberine[J]. Journal of Mathematical Medicine, 2008, 21 (2) :217–219. (in Chinese) |
| [25] | ZUO F, NAKAMURA N, AKAO T, et al. Pharmacokinetics of berberine and its main metabolites in conventional and pseudo germ-free rats determined by liquid chromatography/ion trap mass spectrometry[J]. Drug Metab Dispos, 2006, 34 (12) :2064–2072. doi:10.1124/dmd.106.011361 |
| [26] | PAN G Y, WANG G J, LIU X D, et al. The Involvement of P-glycoprotein in Berberine Absorption[J]. Pharmacol Toxicol, 2002, 91 (4) :193–197. doi:10.1034/j.1600-0773.2002.t01-1-910403.x |
| [27] | TAHARA A, MATSUYAMA-YOKONO A, NAKANO R, et al. Hypoglycaemic effects of antidiabetic drugs in streptozotocin-nicotinamide-induced mildly diabetic and streptozotocin-induced severely diabetic rats[J]. Basic Clin Pharmacol Toxicol, 2008, 103 (6) :560–568. doi:10.1111/pto.2008.103.issue-6 |




