白细胞介素(interleukin,IL)-27是由美国DNAX研究所的Pflanz等[1]于2002年发现并命名的一种新型细胞因子,随后展开的各项研究逐渐揭示了IL-27对免疫系统多方面的调节作用。IL-27主要来源于活化的抗原提呈细胞,其受体在免疫系统中分布广泛,表达于各种淋巴细胞及髓系细胞表面。现有研究表明,IL-27参与并调节了炎症、抗病毒免疫、抗寄生虫免疫、过敏反应、自身免疫病等诸多免疫学过程,近年来IL-27在抗肿瘤免疫中的作用也逐渐进入人们的视野。IL-27能够通过多种机制调控抗肿瘤免疫,也能以非免疫学相关的机制对肿瘤的发生发展产生影响,本文主要就IL-27对肿瘤生物学调控作用的研究进展加以综述。
1 IL-27及其免疫学功能IL-27是一种异二聚体细胞因子,由p28和EBI3两个亚基通过二硫键连接而构成[1],属于IL-6/IL-12细胞因子超家族。IL-27主要由活化的抗原提呈细胞产生,例如:巨噬细胞在聚肌苷酸胞苷酸poly(I∶C)、脂多糖和咪唑喹啉R848等Toll样受体配体诱导下表达EBI3和p28[2],进而产生IL-27;树突细胞在Ⅰ型或Ⅱ型干扰素、肿瘤坏死因子相关激活蛋白、Toll样受体配体以及凋亡的肿瘤细胞诱导下分泌IL-27[3,4,5,6]。IL-27的受体同样为异二聚体,由WSX-1和GP130两个亚基构成。GP130是IL-6、IL-11、白血病抑制因子、CLC(cardiotrophin like cytokine)等细胞因子所共用的受体亚基,广泛分布于各种免疫细胞及非免疫细胞表面;而WSX-1主要分布于免疫细胞表面[7]。
IL-27对T细胞的分化过程具有重要的调节作用。IL-27促进信号转导及转录激活子 (signal transducer and activator of transcription,STAT)-1和T-bet(T-box expressed in T cells)的活化,诱导辅助性T细胞(Th)0细胞向Th1细胞分化[8],促进Th1分泌γ干扰素和IL-10,起到抵抗疟原虫感染的作用[9]。IL-27抑制了GATA结合蛋白3(GATA-binding protein3,GATA3)的表达和Th2细胞的分化,下调了Th2细胞介导的抗寄生虫免疫作用[10,11]。IL-27下调转录因子RORγt的表达,进而抑制IL-17的产生和Th17细胞的分化[12,13]。此外还有文献报道,树突细胞产生的IL-27能够活化STAT1和T-bet,抑制Th9细胞的产生,降低了实验性变态反应性脑脊髓炎的发病程度[14]。IL-27对调节性T细胞分化的影响目前存在争议,既可以负向调控调节性T细胞的分化,又能够促进调节性T细胞的发育并完善其功能[15,16,17]。
IL-27也可以作用于单核巨噬细胞、树突细胞、中性粒细胞等髓系细胞,调节固有免疫。巨噬细胞在受到脂多糖刺激后产生的IL-27可以诱导巨噬细胞本身分泌抗炎细胞因子IL-10[18]。淋巴结内巨噬细胞分泌的IL-27作为趋化因子招募树突细胞进入淋巴结,并下调树突细胞的抗原提呈能力[19]。同样,IL-27能上调肝脏中浆细胞样树突细胞表面程序性死亡分子受体的表达,并下调CD86的表达。经IL-27预处理的浆细胞样树突细胞在混合淋巴细胞反应中刺激T细胞增殖的能力减弱,并且可以诱导调节性T细胞的生成[20]。IL-27刺激中性粒细胞上调炎性细胞因子IL-1β和肿瘤坏死因子-α的表达,同时降低呼吸爆发和活性氧自由基的产生,加重脓毒症[21]。此外,IL-27对B淋巴细胞、自然杀伤细胞、自然杀伤T细胞也有调控。IL-27调控炎症的双向性取决于炎症的类型和参与炎症的细胞的类型[22]。
2 IL-27与肿瘤免疫IL-27可以通过促进细胞毒性T细胞的产生和活化来增强抗肿瘤免疫。IL-27活化STAT1-STAT5的信号通路,不仅可以增加转录因子T-bet和IL-12受体β2的表达,还可以使CD8+T细胞分泌颗粒酶B和穿孔素等效应分子增多,促进细胞毒性T细胞产生γ干扰素,从而增强特异性抗肿瘤免疫[23];在肿瘤P1细胞毒性 T细胞受体转基因模型(能特异性识别肿瘤抗原P1A的CD8+T细胞)中[24],IL-27上调B淋巴细胞瘤-2基因(Bcl-2)等的抗凋亡分子表达水平,从而抑制半胱氨酸天冬氨酸蛋白酶3(caspase-3)的活性,增加抗肿瘤的细胞毒性T细胞的活性[25];进一步研究发现IL-27抑制了肿瘤微环境中调节性T细胞和Th17细胞的增殖,促进了肿瘤特异性细胞毒性T细胞对肿瘤细胞的杀伤[26];在小鼠结肠癌细胞CT26和乳腺癌4T1的移植肿瘤模型中,IL-27和IL-12基因联用的治疗方案通过诱导细胞毒性T细胞的活性,增加T细胞在肿瘤中的浸润,发挥清除肿瘤的作用[27]。此外,IL-27还能抑制由甲基胆蒽诱导的纤维肉瘤以及MMTV-PyMT小鼠自发性乳腺肿瘤的生长,主要机制是增强CD4+T细胞和CD8+T细胞中γ干扰素的产生,同时减少调节性T细胞向肿瘤局部和肿瘤引流淋巴结的浸润[28]。
IL-27通过调节T细胞亚群的分化而影响宿主的抗肿瘤免疫。Th1细胞以及Th1型细胞因子γ干扰素和IL-12可以有效地活化细胞毒性T细胞和自然杀伤细胞介导的抗肿瘤免疫;而Th2细胞及Th2型细胞因子精氨酸酶-1、IL-4、IL-10等在大多数情况下具有免疫抑制效应。Tassi 等[29]发现IL-27与IL-12联用可抑制肿瘤特异性Th2细胞的分化,同时促进Th1细胞的分化和γ干扰素的产生。小鼠Lewis肺癌细胞过表达IL-27增加了细胞毒性T细胞的活化和Th1型细胞因子γ干扰素以及IL-12的产生,而Th2型细胞因子IL-10表达下调,同时下调的还有免疫抑制性分子如环氧酶、前列腺素E2和转化生长因子β1。体外过表达IL-27的Lewis肺癌细胞迁移和侵袭能力都有所下调,且其在小鼠体内的成瘤能力弱于对照的肺癌细胞[30]。Th17细胞及IL-17通过多种机制促进免疫抑制微环境的形成并刺激肿瘤血管生成,而IL-27对Th17细胞的分化以及IL-17的产生具有抑制作用[12,13],然而IL-17在某些肿瘤模型中可以活化细胞毒性T细胞,抑制肿瘤生长[31],因此IL-27对肿瘤免疫产生的影响还需针对具体肿瘤模型深入研究。
IL-27除了可以影响细胞毒性T细胞和调节T细胞亚群发挥抗肿瘤作用以外,也能够增强自然杀伤细胞介导的抗肿瘤免疫。在树突细胞中特异性敲除p28可加快甲基胆蒽诱导的纤维肉瘤和小鼠黑色素瘤B16的生长。进一步研究发现树突细胞来源的IL-27能够诱导髓系抑制性细胞分泌CXC趋化因子配体[chemokine(C-X-C motif)ligand,CXCL]10,进而招募自然杀伤细胞和自然杀伤T细胞至肿瘤局部起到杀伤肿瘤细胞的作用[32];另一方面,IL-27通过诱导树突细胞表达IL-12,促进了肿瘤微环境中自然杀伤细胞和自然杀伤T细胞的活化。Matsui 等[33]发现IL-27能够促进STAT1、STAT3的磷酸化并促进自然杀伤细胞表达颗粒酶B,活化的自然杀伤细胞杀伤肿瘤细胞的能力更强。此外,IL-27可以通过增加肿瘤坏死因子相关的凋亡诱导配体(TRAIL)和Toll样受体3直接抑制人黑色素瘤的生长[34]。有文献报道IL-27可以直接作用于过表达WSX-1的小鼠黑色素瘤细胞B16F10,活化STAT1信号通路并且抑制肿瘤细胞的增殖[35]。IL-27基因的多态性与上皮性卵巢癌发生的敏感性也密切相关[36]。
尽管诸多研究表明了IL-27可以活化自然杀伤细胞,增强对肿瘤的杀伤能力,进而增强抗肿瘤免疫的效应,也有文献得出相反的结论。Sekar 等[6]发现凋亡的肿瘤细胞可以诱导树突细胞分泌IL-27,进而活化调节性T细胞并抑制效应T细胞对乳腺癌细胞MCF-7的杀伤作用。Gonin 等[37]发现恶性黑色素瘤细胞表达的IL-27上调了其自身以及CD4+T细胞、CD8+T细胞和自然杀伤细胞表面免疫抑制性分子——程序性死亡分子受体-1的表达,IL-27预处理后的肿瘤细胞能够降低活化的T细胞分泌IL-2的能力,同时黑色素瘤患者肿瘤组织切片中IL-27的表达与程序性死亡分子受体-1的表达相关,提示IL-27在一定程度上发挥了免疫抑制效应。虽然大多数研究都表明IL-27具有增强抗肿瘤免疫的功能,但是在某些情况下其也可能促进了免疫抑制微环境的形成和肿瘤的免疫逃逸,这可能与不同的肿瘤类型以及肿瘤微环境有关。
3 IL-27与肿瘤的血管生成肿瘤细胞的快速生长需要新生血管的形成来提供所需要的氧气和养分,同时肿瘤内部的新生血管也是肿瘤细胞散播和转移最重要的途径。Kachroo等[38]报道在非小细胞肺癌中,IL-27促进了肿瘤细胞内转录因子STAT1和STAT3的活化,抑制促血管生成因子的生成,并抑制肿瘤细胞的上皮—间质转化,下调肿瘤细胞的迁移能力。肺癌细胞A549受到IL-27刺激后,E-钙黏蛋白(E-cadherin)和 γ联蛋白(γ-catenin)等上皮细胞标志物表达上调,N-钙黏蛋白(N-cadherin)和波形蛋白(vimentin)等间充质细胞标志物表达下调。Cocco 等[39]也发现IL-27可以上调多发性黑色素瘤细胞中干扰素诱导蛋白10(IP-10)和CXCL9的表达,同时抑制促血管生成细胞因子如血管内皮生长因子、转化生长因子β和基质金属蛋白酶9等的表达。接种人骨髓瘤细胞NCI-H929和U266的SCID小鼠在经腹腔注射人IL-27后,肿瘤组织内血管生成素样蛋白3、血管生成素样蛋白4、CCL2[chemokine(C-C motif)ligand 2]、血管内皮生长因子C、血管内皮生长因子D等促血管生成因子表达下调,肿瘤内部微血管密度降低,肿瘤生长速度比空白对照组减慢。Di Carlo等[40]利用前列腺癌为模型,发现IL-27能在体外抑制人前列腺癌细胞系PC3和DU145的增殖,抑制促血管生成细胞因子血管内皮细胞生长因子受体1、环氧化酶1和成纤维细胞生长因子受体3的表达,并上调抗血管生成细胞因子CXCL10和金属蛋白酶组织抑制物3的表达。荷瘤裸鼠皮下注射IL-27显著减缓了肿瘤的生长和肿瘤内微血管的形成。IL-27同样可以抑制血液系统恶性肿瘤中新生血管的生成,Cocco 等[41]发现IL-27可以抑制人滤泡性淋巴瘤细胞和弥漫性大B细胞淋巴瘤细胞微血管的形成。在急性髓系白血病和儿童B系急性淋巴细胞白血病中,IL-27 能诱导B细胞淋巴瘤细胞的凋亡,还可以通过降低肿瘤血管生成来抑制肿瘤的生长和转移[41,42,43]。
4 IL-27与肿瘤诊断IL-27在有些研究中也被纳入肿瘤临床诊断的参考指标。多发性骨髓瘤患者骨髓和外周血IL-27的水平显著低于健康人群,且骨髓中IL-27/IL-17浓度比值与肿瘤患者的无进展生存期呈正相关[44]。而乳腺癌患者外周血细胞中IL-27的mRNA水平显著高于健康人群[45]。另有研究报道,雌激素受体阳性和孕酮受体阳性的乳腺癌患者,血清中IL-27蛋白水平异常升高,且血清IL-27与血管内皮生长因子的水平及乳腺癌的临床分期有关联[46]。胃食管癌患者的血清IL-27水平也高于健康人群并且与肿瘤的淋巴结转移程度呈正相关,食管鳞状细胞癌患者在经手术切除肿瘤后,血清IL-27浓度依然维持较高水平,提示患者免疫细胞可能是IL-27的主要来源[47]。在皮肤T细胞淋巴瘤中,虽然早期患者血清IL-27的水平与健康人群无差异,但是晚期患者血清IL-27的水平要显著高于早期患者和健康人群[48]。
5 结 语近年来,诸多文献表明IL-27能够促进Th1细胞、细胞毒性T细胞、自然杀伤细胞的发育和功能,起到增强抗肿瘤免疫的效应。此外,IL-27还具有抑制肿瘤血管生成、抑制上皮—间质转化过程,以及直接诱导肿瘤细胞凋亡等功能,以非免疫相关机制拮抗肿瘤的生长和转移。然而,T细胞亚群的分化对抗肿瘤免疫的影响并非一成不变,虽然IL-27可以抑制Th17细胞的分化,Th17细胞本身与肿瘤免疫的关系目前还不甚明朗;而IL-27对调节性T细胞分化的调控目前尚存在争议。另一方面,IL-27能够下调树突细胞的抗原提呈能力,促进免疫抑制分子程序性死亡分子受体-1及IL-10的表达,提示IL-27对抗肿瘤免疫具有双向调节作用。对临床样本的统计分析结果也表明,对于不同类型的肿瘤,IL-27与肿瘤分期、转移程度和预后的相关性也是不一样的。今后的理论研究需要结合更多的肿瘤模型以及临床数据,全面分析IL-27在不同类型肿瘤中的调控机制;在临床治疗方面,如何利用IL-27有效地活化抗肿瘤免疫,同时降低IL-27的免疫抑制效应,也将是十分必要且充满挑战性的课题。
| [1] | PFLANZ S, TIMANS J C, CHEUNG J, et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells [J]. Immunity, 2002,16(6): 779-790. |
| [2] | PIRHONEN J, SIRÉN J, JULKUNEN I, et al. IFN-alpha regulates Toll-like receptor-mediated IL-27 gene expression in human macrophages [J]. J Leukoc Biol, 2007, 82(5): 1185-1192. |
| [3] | MURUGAIYAN G, MITTAL A, WEINER H L. Identification of an IL-27/osteopontin axis in dendritic cells and its modulation by IFN-gamma limits IL-17-mediated autoimmune inflammation [J]. Proc Natl Acad Sci U S A, 2010, 107(25): 11495-11500. |
| [4] | SHINOHARA M L, KIM J H, GARCIA V A, et al. Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin [J]. Immunity, 2008, 29(1): 68-78. |
| [5] | REMOLI M E, GAFA V, GIACOMINI E, et al. IFN-beta modulates the response to TLR stimulation in human DC: involvement of IFN regulatory factor-1 (IRF-1) in IL-27 gene expression [J]. Eur J Immunol, 2007, 37(12): 3499-3508. |
| [6] | SEKAR D, HAHN C, BRUNE B, et al. Apoptotic tumor cells induce IL-27 release from human DCs to activate Treg cells that express CD69 and attenuate cytotoxicity [J]. Eur J Immunol, 2012, 42(6): 1585-1598. |
| [7] | VILLARINO A V, LARKIN J 3RD, SARIS C J, et al. Positive and negative regulation of the IL-27 receptor during lymphoid cell activation [J]. J Immunol, 2005, 174(12): 7684-7691. |
| [8] | TAKEDA A, HAMANO S, YAMANAKA A, et al. Cutting edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment [J]. J Immunol, 2003, 170(10): 4886-4890. |
| [9] | FREITAS DO ROSÁRIO A P, LAMB T, SPENCE P, et al. IL-27 promotes IL-10 production by effector Th1 CD4+ T cells: a critical mechanism for protection from severe immunopathology during malaria infection[J]. J Immunol, 2012, 188(3): 1178-1190. |
| [10] | ARTIS D, VILLARINO A, SILVERMAN M, et al. The IL-27 receptor (WSX-1) is an inhibitor of innate and adaptive elements of type 2 immunity [J]. J Immunol,2004, 173(9): 5626-5634. |
| [11] | YOSHIMOTO T, YOSHIMOTO T, YASUDA K, et al. IL-27 suppresses Th2 cell development and Th2 cytokines production from polarized Th2 cells: a novel therapeutic way for Th2-mediated allergic inflammation [J]. J Immunol, 2007, 179(7): 4415-4423. |
| [12] | MURUGAIYAN G,MITTAL A,LOPEZ-DIEGO R, et al. IL-27 is a key regulator of IL-10 and IL-17 production by human CD4+T cells [J]. J Immunol, 2009, 183(4): 2435-2443. |
| [13] | DIVEU C,MCGEACHY M J,BONIFACE K, et al. IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells [J]. J Immunol, 2009, 182(9): 5748-5756. |
| [14] | MURUGAIYAN G,BEYNON V,PIRES DA CUNHA A, et al. IFN-gamma limits Th9-mediated autoimmune inflammation through dendritic cell modulation of IL-27 [J]. J Immunol, 2012, 189(11): 5277-5283. |
| [15] | HUBER M, STEINWALD V, GURALNIK A, et al. IL-27 inhibits the development of regulatory T cells via STAT3 [J]. Int Immunol, 2008, 20(2): 223-234. |
| [16] | WOJNO E D, HOSKEN N, STUMHOFER J S, et al. A role for IL-27 in limiting T regulatory cell populations [J]. J Immunol,2011, 187(1): 266-273. |
| [17] | HALL A O, BEITING D P, TATO C, et al. The cytokines interleukin 27 and interferon-gamma promote distinct Treg cell populations required to limit infection-induced pathology [J]. Immunity, 2012, 37(3): 511-523. |
| [18] | IYER S S, GHAFFARI A A, CHENG G. Lipopolysaccharide-mediated IL-10 transcriptional regulation requires sequential induction of type I IFNs and IL-27 in macrophages [J]. J Immunol, 2010, 185(11): 6599-6607. |
| [19] | MORANDI F, DI CARLO E, FERRONE S, et al. IL-27 in human secondary lymphoid organs attracts myeloid dendritic cells and impairs HLA class I-restricted antigen presentation [J]. J Immunol, 2014, 192(6): 2634-2642. |
| [20] | MATTA B M, RAIMONDI G, ROSBOROUGH B R, et al. IL-27 production and STAT3-dependent upregulation of B7-H1 mediate immune regulatory functions of liver plasmacytoid dendritic cells [J]. J Immunol, 2012, 188(11): 5227-5237. |
| [21] | RINCHAI D, KHAENAM P, KEWCHAROENWONG C, et al. Production of interleukin-27 by human neutrophils regulates their function during bacterial infection [J]. Eur J Immunol, 2012, 42(12): 3280-3290. |
| [22] | BOSMANN M, WARD P A. Modulation of inflammation by interleukin-27 [J]. J Leukoc Biol, 2013, 94(6): 1159-1165. |
| [23] | MORISHIMA N, MIZOGUCHI I, OKUMURA M, et al. A pivotal role for interleukin-27 in CD8+ T cell functions and generation of cytotoxic T lymphocytes [J]. J Biomed Biotechnol, 2010, 2010: 605483. |
| [24] | LIU J Q, BAI X F. Overcoming immune evasion in T cell therapy of cancer: lessons from animal models [J]. Curr Mol Med, 2008, 8(1): 68-75. |
| [25] | LIU Z, YU J, CARSON WE 3RD, et al. The role of IL-27 in the induction of anti-tumor cytotoxic T lymphocyte response [J]. Am J Transl Res, 2013, 5(5):470-480. |
| [26] | SALCEDO R, HIXON J A, STAUFFER J K, et al. Immunologic and therapeutic synergy of IL-27 and IL-2: enhancement of T cell sensitization, tumor-specific CTL reactivity and complete regression of disseminated neuroblastoma metastases in the liver and bone marrow [J]. J Immunol, 2009, 182(7): 4328-4338. |
| [27] | ZHU S, LEE D A, LI S. IL-12 and IL-27 sequential gene therapy via intramuscular electroporation delivery for eliminating distal aggressive tumors [J]. J Immunol, 2010, 184(5): 2348-2354. |
| [28] | NATIVIDAD K D, JUNANKAR S R, MOHD REDZWAN N, et al. Interleukin-27 signaling promotes immunity against endogenously arising murine tumors [J]. PLoS One, 2013, 8(3): e57469. |
| [29] | TASSI E, BRAGA M, LONGHI R, et al. Non-redundant role for IL-12 and IL-27 in modulating Th2 polarization of carcinoembryonic antigen specific CD4 T cells from pancreatic cancer patients [J]. PLoS One, 2009, 4(10): e7234. |
| [30] | HO M Y, LEU S J, SUN G H, et al. IL-27 directly restrains lung tumorigenicity by suppressing cyclooxygenase-2-mediated activities [J]. J Immunol, 2009, 183(10): 6217-6226. |
| [31] | JI Y, ZHANG W. Th17 cells: positive or negative role in tumor [J]. Cancer Immunol Immunother, 2010, 59(7): 979-987. |
| [32] | WEI J, XIA S, SUN H, et al. Critical role of dendritic cell-derived IL-27 in antitumor immunity through regulating the recruitment and activation of NK and NKT cells [J]. J Immunol, 2013, 191(1): 500-508. |
| [33] | MATSUI M, KISHIDA T, NAKANO H, et al. Interleukin-27 activates natural killer cells and suppresses NK-resistant head and neck squamous cell carcinoma through inducing antibody-dependent cellular cytotoxicity [J]. Cancer Res, 2009, 69(6): 2523-2230. |
| [34] | CHIBA Y, MIZOGUCHI I, MITOBE K, et al. IL-27 enhances the expression of TRAIL and TLR3 in human melanomas and inhibits their tumor growth in cooperation with a TLR3 agonist poly(I∶C) partly in a TRAIL-dependent manner [J]. PLoS One, 2013, 8(10): e76159. |
| [35] | YOSHIMOTO T, MORISHIMA N, MIZOGUCHI I, et al. Antiproliferative activity of IL-27 on melanoma [J]. J Immunol, 2008, 180(10): 6527-6535. |
| [36] | ZHANG Z, ZHOU B, WU Y, et al. Prognostic value of IL-27 polymorphisms and the susceptibility to epithelial ovarian cancer in a Chinese population [J]. Immunogenetics, 2014, 66(2): 85-92. |
| [37] | GONIN J, CARLOTTI A, DIETRICH C, et al. Correction: expression of IL-27 by tumor cells in invascutaneous and metastatic melanomas [J]. PLoS One, 2013, 8(11): e75694. |
| [38] | KACHROO P, LEE M H, ZHANG L, et al. IL-27 inhibits epithelial-mesenchymal transition and angiogenic factor production in a STAT1-dominant pathway in human non-small cell lung cancer [J]. J Exp Clin Cancer Res, 2013, 32: 97. |
| [39] | COCCO C, GIULIANI N, DI CARLO E, et al. Interleukin-27 acts as multifunctional antitumor agent in multiple myeloma [J]. Clin Cancer Res, 2010, 16(16): 4188-4197. |
| [40] | DI CARLO E, SORRENTINO C, ZORZOLI A, et al. The antitumor potential of interleukin-27 in prostate cancer [J]. Oncotarget, 2014, 5(21): 10332-10341. |
| [41] | COCCO C, DI CARLO E, ZUPO S, et al. Complementary IL-23 and IL-27 anti-tumor activities cause strong inhibition of human follicular and diffuse large B-cell lymphoma growth in vivo [J]. Leukemia, 2012, 26(6): 1365-1374. |
| [42] | CANALE S, COCCO C, FRASSON C, et al. Interleukin-27 inhibits pediatric B-acute lymphoblastic leukemia cell spreading in a preclinical model [J]. Leukemia, 2011, 25(12): 1815-1824. |
| [43] | ZORZOLI A, DI CARLO E, COCCO C, et al. Interleukin-27 inhibits the growth of pediatric acute myeloid leukemia in NOD/SCID/Il2rg-/-mice [J]. Clin Cancer Res, 2012, 18(6): 1630-1640. |
| [44] | SONG X N, YANG J Z, SUN L X, et al. Expression levels of IL-27 and IL-17 in multiple myeloma patients: a higher ratio of IL-27∶IL-17 in bone marrow was associated with a superior progression-free survival [J]. Leuk Res, 2013, 37(9): 1094-1099. |
| [45] | KHODADADI A, RAZMKHAH M, ESKANDARI A R, et al. IL-23/IL-27 ratio in peripheral blood of patients with breast cancer [J]. Iran J Med Sci, 2014, 39(4): 350-356. |
| [46] | LU D, ZHOU X, YAO L, et al. Clinical implications of the interleukin 27 serum level in breast cancer [J]. J Investig Med, 2014, 62(3): 627-631. |
| [47] | DIAKOWSKA D, LEWANDOWSKI A, MARKOCKA-MACZKA K, et al. Concentration of serum interleukin-27 increase in patients with lymph node metastatic gastroesophageal cancer [J]. Adv Clin Exp Med, 2013, 22(5): 683-691. |
| [48] | MIYAGAKI T, SUGAYA M, SHIBATA S, et al. Serum interleukin-27 levels in patients with cutaneous T-cell lymphoma [J]. Clin Exp Dermat, 2010, 35(4): e143-144. |


