| 128层双源CT心电门控序列扫描与大螺距扫描对先天性心脏病合并冠状动脉发育异常患儿的对比研究 |
2. 山东第一医科大学附属省立医院影像科, 山东 济南 250021
冠状动脉发育异常是指冠状动脉解剖的起源、分布和结构的异常,在先天性心脏病患儿中的发生率为7%~9%[1-3]。CTA是一种显示冠状动脉起源变异、先天性心脏病心内结构及心外大血管异常的准确且敏感的无创性检查方法[1, 4-9]。CTA有多种扫描模式,其中,前瞻性心电门控扫描模式不仅可提供满足诊断要求的图像质量,还可大幅降低辐射剂量[1, 3, 6, 10-12]。128层双源CT前瞻性心电门控扫描模式包括序列扫描及大螺距扫描2种,均可在降低辐射剂量情况下获得满足诊断要求的图像[6]。本文旨在比较2种扫描模式对先天性心脏病合并冠状动脉发育异常患儿冠状动脉显示情况、图像质量、辐射剂量及诊断准确率,以期指导临床检查。
1 资料与方法 1.1 一般资料回顾性分析2015年4月至2019年12月泰安市中心医院收治的临床怀疑先天性心脏病合并冠状动脉发育异常患儿82例,排除未经DSA证实及手术治疗的患儿26例,最终纳入56例。56例均行128层双源CT心电门控扫描,其中30例采用序列扫描模式(A组),其中男14例,女16例,平均年龄(20.53±23.28)个月,平均体质量(10.82±3.87)kg,平均心率(111.53±16.77)次/min;26例采用大螺距扫描模式(B组),其中男14例,女12例,平均年龄(20.27±21.96)个月,平均体质量(11.00±3.98)kg,平均心率(109.62±17.17)次/min。2组年龄、体质量及心率比较差异均无统计学意义(均P>0.05)。
1.2 仪器与方法 1.2.1 设备及参数采用Siemens Definition Flash 128层双源CT机。患儿于检查前口服水合氯醛(剂量0.5 mL/kg体质量),待熟睡后进行检查。采用固定触发扫描技术,触发位置定于胸廓部肌肉,延迟13 s开始监测,监测四腔心层面,以四腔心同时显影为标志[13],手动触发扫描。扫描参数:80 kV,管电流依据患儿体质量调节(体质量<5 kg时采用60 mAs;5~<10 kg采用60~79 mAs;≥10 kg时采用80~120 mAs),探测器准直2×64×0.6 mm,X线管旋转时间0.28 s/r。对比剂剂量1.2 mL/kg体质量,注射时间12 s,以相同流率追加10 mL的生理盐水。
1.2.2 方法A组预设采集时间窗为40%~40% R-R间期;B组,螺距3.4,预设前瞻性触发起始时相为10% R-R间期。记录2组容积CT剂量指数(volume CT dose index,CTDIvol)和剂量长度乘积(dose length product,DLP),将DLP值乘以2.3修正,再乘以特定的转换系数(k),得出有效剂量(effective dose,ED)。患儿年龄<4个月、4个月至1岁、> 1~6岁、> 6~15岁的k分别为0.039、0.026、0.018、0.013 mSv·mGy-1·cm-1[13]。
1.3 图像后处理重建层厚0.75 mm,间隔0.5 mm,卷积核B26f,行MPR、MIP和VR。测量升主动脉根部的CT值、噪声及SNR。由2名有5年以上心血管疾病影像诊断经验的放射科医师采用盲法分别对冠状动脉开口及近段、中段显示情况进行主观评分(由于冠状动脉远段的临床意义不显著,所以不进行评价)[14]。冠状动脉近、中、远段根据其相对位置确定,采用1~4分评分系统:4分,图像质量佳,无伪影;3分,轻度伪影;2分,中度伪影,可辨认冠状动脉起源及走行;1分,严重伪影,无法辨认冠状动脉起源及走行;评分≥2分为可满足诊断要求的图像[1, 14]。2名诊断医师评分不一致时经协商取得一致意见。
1.4 统计学方法使用SPSS 20.0软件进行统计学分析。连续变量之间的比较行两样本t检验;2组冠状动脉主观评分之间的差异行Mann-Whitney U秩和检验;以手术或DSA结果作为参考标准,分别计算2组冠状动脉发育异常的诊断准确率,组间比较行Fisher精确检验。以P < 0.05为差异有统计学意义。
2 结果 2.1 2组冠状动脉发育异常检出情况56例中,24例起源异常,17例走行异常,7例终止异常(冠状动脉瘘),8例发育不良或未发育。A组冠状动脉发育异常30例,诊断准确率100.0%;B组16例,诊断准确率61.5%,漏诊10例,分别为右冠状动脉-右室瘘1例,左冠状动脉主干起自肺动脉3例,右冠状动脉起自左冠窦2例,右冠状动脉高位起源2例,左右冠状动脉共同起自右冠窦1例,左冠状动脉回旋支起自无名窦1例;2组差异有统计学意义(χ2=14.05,P < 0.05)。
2.2 2组图像质量评价比较(表 1)| 表 1 2组图像质量评价比较(x±s) |
![]() |
2组升主动脉根部CT值、噪声及SNR差异均无统计学意义(均P>0.05)。冠状动脉开口及近段、中段评分组间差异均有统计学意义,A组均优于B组(均P < 0.05,图 1~4)。
![]() |
| 图 1 A组(采用序列扫描模式)患儿,男,2个月,降主动脉缩窄,肺动脉高压 图 1a MPR图像,左冠状动脉主干与右冠状动脉共同起自右冠窦(细箭),图像无搏动伪影,评分4分(AA,升主动脉;MPA,主肺动脉) 图 1b 心电图示数据采集时相为40%~40% R-R间期 |
![]() |
| 图 2 B组(采用大螺距扫描模式)患儿,男,21个月,法洛四联症 图 2a MPR图像,左冠状动脉开口显示不清,术后证实为起自无名窦(细箭),左冠状动脉开口及近段显示存在搏动伪影,评分2分 图 2b 心电图,数据采集至主动脉根部时为第75层左右,位于20%~30% R-R间期 |
![]() |
| 图 3 B组患儿,男,3岁,室间隔缺损,动脉导管未闭,肺动脉高压 图 3a MPR图像,左冠状动脉可疑起自右冠状窦(细箭),冠状动脉伪影重(粗箭),术后证实左冠状动脉起自肺动脉主干 图 3b 心电图,数据采集至主动脉根部时为第103层左右,落在QRS波 |
![]() |
| 图 4 B组患儿,女,2个月 图 4a MPR图像,右冠状动脉高位起源(细箭),图像无运动伪影,评分4分 图 4b 心电图,数据采集至右冠状动脉开口处时为108层左右,位于50%~50% R-R间期 |
2.3 2组辐射剂量比较(表 2)
| 表 2 2组辐射剂量比较(x±s) |
![]() |
B组的CTDIvol、DLP和ED均低于A组,差异均有统计学意义(均P < 0.05)。
3 讨论冠状动脉发育异常分为起源异常、走行异常、终止异常(冠状动脉瘘)、发育不良或未发育[15]。冠状动脉解剖结构的变异会影响先天性心脏病患儿的治疗,增加矫正术中并发症的发生率和死亡率,影响术后临床管理[3, 16-17],故术前正确评估冠状动脉发育情况非常重要[18]。在这类患儿中,应重点分析其主要冠状动脉是否存在及开口、近段的走行路径,而不是评价其是否存在狭窄[19]。本研究证实了在先天性心脏病合并冠状动脉发育异常患儿的CTA中,前瞻性心电门控序列扫描模式的图像质量、诊断冠状动脉发育异常的准确率均优于大螺距扫描模式。
Yamasaki等[14]证实,在先天性心脏病患儿的CTA中,冠状动脉的评分结果与患儿体质量及升主动脉根部CT值呈正相关。而本研究2组患儿体质量及升主动脉根部CT值差异均无统计学意义。
序列扫描模式采用步进-点射触发扫描技术,数据采集在R-R间期的固定时相进行。先天性心脏病患儿心率较快,冠状动脉最佳采集时相为收缩末期,扫描时将采集时相预设在40%~40% R-R间期[6, 20],使冠状动脉的数据采集时间固定在收缩末期,最终获得的冠状动脉图像搏动伪影少、图像质量高、冠状动脉显示清晰。本研究中序列扫描时冠状动脉评分均在3分以上,所有冠状动脉发育异常均被检出,诊断准确率为100.0%。
大螺距扫描模式数据采集时期是根据前3个R-R间期时间计算,由于患儿心律不稳定,计算得出的R-R间期时相并不准确,数据采集窗也无法准确落在R-R间期的某一个时间窗内。当机器曝光采集至主动脉根部时,若落在收缩末期,冠状动脉搏动伪影较小,图像质量高;若落在QRS波或P波附近,即收缩早期或舒张晚期,则会产生较大的搏动伪影,图像质量下降。本组6例采集至主动脉根部时落在QRS波,4例落在P波附近,搏动伪影较大,评分1~2分,冠状动脉显示不清,无法辨认其开口及走行,以致漏诊;10例曝光采集时间落在R-R间期的收缩末期或舒张早期,冠状动脉开口及近中段显示尚可,搏动伪影较少,图像质量可满足诊断要求。故大螺距扫描模式数据采集时相落在R-R间期的时相随机性较强,无法准确预判,获得的图像质量无法保证满足诊断要求。
研究表明,前瞻性心电门控辐射剂量均较回顾性心电门控扫描模式低[10, 12];而本研究2种前瞻性心电门控扫描模式中,大螺距扫描模式组的辐射剂量较序列扫描模式组显著降低。
本研究的局限性:①样本量较小,无法探求在大螺距扫描模式中,数据采集时相落于R-R间期的规律;②手动触发扫描,扫描时间缺乏统一的量化标准。而先天性心脏病患儿心内结构畸形不同,血液循环存在差异,手动触发扫描在一定程度上提高了扫描的成功率,减少了对比剂用量,但对临床医师的操作经验要求较高。
综上所述,心电门控大螺距扫描模式的辐射剂量低于序列扫描模式,但其图像质量和诊断准确率均低于序列扫描,因此,在疑诊先天性心脏病合并冠状动脉发育异常患儿的诊断中,应首先选择前瞻性心电门控序列扫描模式。
| [1] |
SRIHARAN M, LAZOURA O, PAVITT C W, et al. Evaluation of high-pitch ungated pediatric cardiovascular computed tomography for the assessment of cardiac structures in neonates[J]. J Thorac Imaging, 2016, 31(3): 177-182. DOI:10.1097/RTI.0000000000000201 |
| [2] |
TANGCHAROEN T, BELL A, HEGDE S, et al. Detection of coronary artery anomalies in infants and young children with congenital heart disease by using MR imaging[J]. Radiology, 2011, 259(1): 240-247. DOI:10.1148/radiol.10100828 |
| [3] |
VASTEL-AMAZLLAG C, LE BRET E, PAUL J-F, et al. Diagnostic accuracy of dual-source multislice computed tomographic analysis for the preoperative detection of coronary artery anomalies in 100 patients with tetralogy of Fallot[J]. J Thorac Cardiovasc Surg, 2011, 142(1): 120-126. DOI:10.1016/j.jtcvs.2010.11.016 |
| [4] |
AGARWAL P P, DENNIE C, PENA E, et al. Anomalous coronary arteries that need intervention: review of pre-and postoperative imaging appearances[J]. Radiographics, 2017, 37(3): 740-757. DOI:10.1148/rg.2017160124 |
| [5] |
PAUL J-F, ROHNEAN A, SIGAL-CINGUALBRE A. Multidetector CT for congenital heart patients: what a paediatric radiologist should know[J]. Pediatr Radiol, 2010, 40(6): 869-875. DOI:10.1007/s00247-010-1614-x |
| [6] |
聂佩, 杨光杰, 徐文坚, 等. 128层双源CT前瞻性心电门控序列扫描与大螺距扫描在小儿先天性心脏病诊断准确率、图像质量及辐射剂量的对比研究[J]. 中华放射学杂志, 2016, 50(6): 421-426. DOI:10.3760/cma.j.issn.1005-1201.2016.06.005 |
| [7] |
MEINEL F G, HUDA W, SCHOEPF U J. Diagnostic accuracy CT angiography in infants with terralogy of Fallot with pulmonary atresia and magior aortopulmonary collatery arteries[J]. J Cardiovasc Comput Tomogr, 2013, 7(6): 367-375. DOI:10.1016/j.jcct.2013.11.001 |
| [8] |
GHADRI J R, KAZAKAUSKAITE E, BRAUNSCHWEIG S, et al. Congenital coronary anomalies detected by coronary computed tomography compared to invasive coronary angiography[J]. BMC Cardiovasc Disord, 2014, 14: 81. DOI:10.1186/1471-2261-14-81 |
| [9] |
PANDEY N N, SINHA M, SHARMA A, et al. Anomalies of coronary artery origin: evaluation on multidetector CT Angiography[J]. Clin Imaging, 2019, 57: 87-98. DOI:10.1016/j.clinimag.2019.05.010 |
| [10] |
GOO H W. Coronary artery imaging in children[J]. Korean J Radiol, 2015, 16(2): 239-250. DOI:10.3348/kjr.2015.16.2.239 |
| [11] |
SCHINDLER P, KEHL H-G, WILDGRUBER M, et al. Cardiac CT in the preoperative diagnostics of neonates with congenital heart disease: radiation dose optimization by omitting test bolus or bolus tracking[J]. Acad Radiol, 2020, 27(5): e102-e108. DOI:10.1016/j.acra.2019.07.019 |
| [12] |
GAO Y, LU B, HOU Z, et al. Low dose dual-source CT angiography in infants with complex congenital heart disease: a randomized study[J]. Eur J Radiol, 2012, 81(7): e789-e795. DOI:10.1016/j.ejrad.2012.03.023 |
| [13] |
曹婷, 王锡明, 程召平, 等. 128层双源CT联合低管电压及低剂量对比剂在法洛四联症患儿血管成像中的应用[J]. 中华放射学杂志, 2015, 49(8): 577-581. DOI:10.3760/cma.j.issn.1005-1201.2015.08.004 |
| [14] |
YAMASAKI Y, KAMITANI S, KAWANAMI T, et al. Patient-related factors influencing detectability of coronary arteries in 320-row CT angiography in infants with complex congenital heart disease[J]. Int J Cardiovasc Imaging, 2018, 34(9): 1485-1491. DOI:10.1007/s10554-018-1363-8 |
| [15] |
Tan R S. Anomalous coronary arteries and sudden death: time for action[J]. Singapore Med J, 2007, 48(6): 490-491. |
| [16] |
GOITEIN O, SALEM Y, JACOBSON J, et al. The role of cardiac computed tomography in infantswith congenital heart disease[J]. Isr Med Assoc J, 2014, 16(3): 147-152. |
| [17] |
RUZMETOV M, JIMENEZ M A, PRUITT A, et al. Repair of tetralogy of Fallot with anomalous coronary arteries coursing across the obstructed right ventricular outflow tract[J]. Pediatr Cardiol, 26(5): 537-542. DOI:10.1007/s00246-004-0640-6 |
| [18] |
GOO H W, SEO D M, YUN T J, et al. Coronary artery anomalies and clinically important anatomy in patients with congenital heart disease: multislice CT findings[J]. Pediatr Radiol, 2009, 39(3): 265-273. DOI:10.1007/s00247-008-1111-7 |
| [19] |
TSAI I-C, LEE T, CHEN M-C, et al. Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique[J]. Pediatr Radiol, 2007, 37(8): 818-825. DOI:10.1007/s00247-007-0512-3 |
| [20] |
段艳华, 王锡明, 程召平, 等. 双源CT前瞻性心电门控心胸联合扫描在儿童先天性心脏病诊断中的应用[J]. 中华放射学杂志, 2012, 92(3): 179-183. |
2021, Vol. 19








