
2. 中国科学技术大学附属第一医院(安徽省立医院)药学部,安徽 合肥 230001;
3. 安徽医科大学第二临床医学院,安徽 合肥 230032
2. Dept of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China;
3. the Second Clinical Medical College, Anhui Medical University, Hefei 230032, China
钠-葡萄糖协同转运蛋白2(sodium glucose cotransporter 2,SGLT-2)存在于近端肾小管S1和S2段的上皮细胞刷状缘,负责80%~90%肾血糖重吸收。钠-葡萄糖协同转运蛋白2抑制剂(sodium-glucose cotransporter 2 inhibitors,SGLT-2i)最初被设计为新型口服降糖药而研发上市。它通过抑制肾近端小管SGLT-2,使肾脏对葡萄糖的再吸收下降,促进了尿糖的排出,使血糖下降。目前,国内已上市的SGLT-2i包含达格列净、恩格列净、卡格列净、艾托格列净、恒格列净。近年来,大规模临床研究数据均表明[1-3],SGLT2i可以明显降低心血管死亡率和心力衰竭(heart failure,HF)再住院率,因此,SGLT2i作为慢性HF的主要治疗策略之一,在各类型HF的诊疗指南中得到推荐[4-5]。由于人心脏组织缺乏SGLT2表达[6],因此,SGLT2i独立于SGLT2发挥心血管保护作用的机制备受研究者们关注。本文拟重点针对近年来关于SGLT2i心血管保护作用临床应用及潜在机制进行综述。
1 SGLT-2i心血管保护作用的临床研究进展美国食品和药物管理局在2008年提出所有商业化的降血糖药物应证明其心血管安全性,这项提议促进了逐多新型降糖药物心血管结局试验的发展,SGLT-2i相关的一系列心血管保护作用的临床试验证据应运而生(Tab 1)。
| Study | EMPA-REG OUTCOME trial[3] | CANVAS trial[2] | DAPA-HF trial[7] | EMPEROR-reduced trial[8] | EMPEROR-preserve trial[9] | DELIVER trial[10] |
| Year of publication | 2015 | 2017 | 2019 | 2020 | 2021 | 2022 |
| SGLT2 inhibitors | Empagliflozin | Canagliflozin | Dapagliflozin | Empagliflozin | Empagliflozin | Dapagliflozin |
| No. of patients | 7 020 (Empagliflozin vs.Placebo: 4 687 vs. 2 333) | 10 142(Canagliflozin vs. Placebo: 5 795 vs. 4 347) | 4 744(Dapagliflozin vs. Placebo: 2 373 vs. 2 371) | 3 730(Empagliflozin vs.Placebo: 1 863 vs. 1 867) | 5 988(Empagliflozin vs. Placebo: 2 997 vs. 2 991) | 6 263(Dapagliflozin vs. Placebo: 3 131 vs. 3 132) |
| Trial Outcomes | Patients with type 2 diabetes at high risk for cardiovascular events who received empagliflozin, as compared with placebo, had a lower rates of death from cardiovascular causes,hospitalization for heart failure, and death from any cause. | Patients with type 2 diabetes and an elevated risk of cardiovascular disease, who were treated with canagliflozin had a lower risk of cardiovascular events than those who received placebo. | Among patients with heart failure and a reduced ejection fraction, the risk of worsening heart failure or death from cardiovascular causes was lower among those who received dapagliflozin than among those who received placebo, regardless of the presence or absence of diabetes. | Among patients receiving recommended therapy for heart failure with reduced ejection fraction, those in the empagliflozin group had a lower risk of cardiovascular death or hospitalization for heart failure than those in the placebo group, regardless of the presence or absence of diabetes. | Empagliflozin reduced the combined risk of cardiovascular death or hospitalization for heart failure in patients with heart failure and a preserved ejection fraction, regardless of the presence or absence of diabetes. | Dapagliflozin reduced the combined risk of worsening heart failure or cardiovascular death among patients with heart failure and a mildly reduced or preserved ejection fraction. |
2015年EMPA-REG OUTCOME试验[3]首次研究了SGLT-2i恩格列净对伴有心血管疾病的2型糖尿病患者终点事件的影响,该研究具有划时代的意义。研究显示,恩格列净组与安慰剂组相比,射血分数降低的心衰(heart failure with reduced ejection fraction,HFrEF)患者因HF住院的绝对风险降低1.4%,相对风险降低35%;心血管原因死亡的绝对风险降低2.2%,相对风险降低38%;任何原因死亡的绝对风险降低2.6%,相对风险降低32%。2017年CANVAS试验[2]研究SGLT-2i卡格列净在2型糖尿病患者中的疗效,65.6%受试者有心血管疾病史。与安慰剂组相比,卡格列净组发生主要终点事件(心血管原因、非致死性心肌梗死或非致死性卒中的复合死亡)的受试者显著减少,每1 000患者年发生1次事件的受试者为26.9例vs 31.5例(HR 0.86,95%CI 0.75~0.97)。2019年公布的DAPA-HF研究[7]是SGLT2i在HF治疗领域的第一次革命性突破,该研究评估了达格列净对无论是否患有2型糖尿病且射血分数为40%或更低患者的影响,共纳入4 744例NYHA Ⅱ~Ⅳ级、左心射血分数(left ventricular ejection fraction,LVEF)≤40%的慢性HF患者,其中达格列净组2 373例,安慰剂组2 371例。结果显示,达格列净组因HF再住院的患者为231例(9.7%),安慰剂组为318例(13.4%)(HR 0.70,95%CI 0.59~0.83)。达格列净组心血管死亡患者为227例(9.6%),安慰剂组为273例(11.5%)(HR 0.82,95%CI 0.69~0.98),该研究进一步将SGLT2i的获益范围扩大到糖尿病治疗之外的HFrEF患者。2020年EMPEROR-reduced试验[8]研究显示,出现心血管事件或者由HF而入院的患者,1 863例恩格列净组有361例(19.4%),1 867例安慰剂组有462例(24.7%)(HR 0.75,95%CI 0.65~0.86)。但是,试验的主要结局发生率比DAPA-HF试验高出约40%。主要原因是与SGLT-2i达格列净在DAPA-HF试验中的作用相比,此项试验探究SGLT-2i恩格列净的益处扩展到更晚期且稳定的HF患者。2021年EMPEROR-preserve试验[9]进一步探索恩格列净治疗对无论是否患有2型糖尿病射血分数保留的心衰(HF with preserved ejection fraction,HFpEF)患者的影响。证实与安慰剂相比,恩格列净组的复合性终点事件和初次因HF而入院的危险分别减少21%(0.79,0.69-0.90)和27%(HR0.73,0.61~0.88)。2022年DELIVER试验[10]进一步研究达格列净治疗对射血分数轻度降低的心衰(heart failure with mildly reduced ejection fraction,HFmrEF)和HFpEF患者预后的影响。与安慰剂组相比,达格列净组可降低LVEF>40% HF患者心血管死亡或HF恶化复合事件风险18%(HR 0.82,0.73~0.92)。以上临床试验进一步证实,HF患者无论射血分数处于何种状态,SGLT2i均能显著改善患者的临床转归。
1.2 临床诊疗指南推荐回顾HF药物治疗的发展历程,可以概括为3个阶段:(1)1990年以前,HF药物治疗旨在改善患者血流动力学,缓解疾病症状,强调“强心、利尿、扩张血管”。(2)20世纪90年代以后,HF药物治疗聚焦在阻断交感神经系统(sympathetic nervous system,SNS)和肾素-血管紧张素-醛固酮系统(renin-angiotensin-aldosterone system,RAAS)的病理性激活方面。《中国心力衰竭诊断和治疗指南2014》[5]建议以血管紧张素转换酶抑制剂(angiotensin converting enzyme inhibitors,ACEIs)/血管紧张素Ⅱ受体拮抗剂(angiotensin receptor blocker,ARB)、β-受体阻断剂、盐皮质激素受体拮抗剂(mineralocorticoid receptor antagonist,MRA)3种药物联合作为HFrEF的“金三角”治疗方案。《中国心力衰竭诊断和治疗指南2018》[11]又推荐采用血管紧张素受体脑啡肽酶抑制剂(angiotensin receptor neprilysin inhibitor,ARNI)替代ACEI/ARB,与β-受体阻滞剂和MRA形成HFrEF的“新金三角”治疗方案。(3)2019年以来,大型临床试验结果的不断公布,为SGLT2i治疗HF提供了充足的循证医学证据,使其成为指南导向的药物治疗。《2021 ESC急慢性心力衰竭诊断与治疗指南》[12]将SGLT2i联合ARNI、β受体阻滞剂及MRA,纳入HFrEF患者“新四联疗法”,SGLT2i正式作为HFrEF一线用药。《2023 ESC急慢性心力衰竭诊断与治疗指南》[4]更新,亦推荐将SGLT2i用于HFmrEF(LVEF为41%~49%)和HFpEF(LVEF≥50%)患者的治疗。自此,SGLT2i在HF治疗中的地位进一步升高,适应症范围进一步扩大。《中国心力衰竭诊断和治疗指南2024》[5]也随即进行更新,推荐SGLT-2i适用于所有类型HF患者,以改善慢性HF的预后。
2 SGLT-2i心血管保护作用的机制研究进展近年来,SGLT2i独立于SGLT2发挥心血管保护作用的机制备受关注。目前研究者们已提出几种可能的机制,用于揭示SGLT2i的心血管保护作用(Fig 1)。
|
| Fig 1 Potential mechanism of the cardiovascular protective effect of SGLT2i Up means up-regulated or promoted, down means down-regulated or inhibited; EAT is radial adipose tissue; ISF is interstitial fluid; KET is ketone; NLRP3 is nucleotide-binding oligomerization domain, leucine-repeat and pyrin domain-containing 3; MCP-1 is monocyte chemoattractant protein; IL-6 is interleukin-6; M2 is alternatively activated macrophages; TGF-β is transforming growth factor; Nrf2/ARE is the signal path of nuclear factor-E2-related factor 2/antioxidant response element; PLT is platelet; LP is leptin; adiponectin is ADPN. |
已报道,SGLT-2i通过渗透性利尿,阻止近曲小管对钠和葡萄糖的重吸收,发挥降低心脏前后负荷的作用。血浆容量标记物的改变,如红细胞压积和血红蛋白的增加,是降低心血管死亡的关键。研究表明,与降低组织间质液(interstitial fluid,ISF)容量相比,SGLT-2i对降低血容量、动脉血流量和器官灌流的影响不明显。由于HF患者血容量和ISF容量都增加了,心输出量变低,存在相对的动脉充盈不足。因此,减少ISF容量可能比减少血容量更有意义。一项研究通过使用含血液、ISF、外周血Na+和水含量的数学模型,将使用SGLT2i达格列净或利尿剂布美他尼的健康受试者容量相关检测数据进行输入,模型模拟血清Na+浓度、ISF体积、血容量、外周Na+储存和水摄入量的时间过程。结果预测显示,达格列净减少的ISF体积是血容量减少的3倍(480 mL vs 150 mL)。相比之下,布美他尼预测的ISF体积的减少仅为血容量减少的80% (510 mL vs 780 mL)。该结果表明,达格列净的钠尿利尿作用总体上弱于布美他尼,但预计与布美他尼相比,它对ISF容量的影响相对大于对血容量的影响[13]。此外,有研究显示SGLT2i可通过增加一氧化氮(nitrogen monoxide,NO)生物利用度来缓解内皮功能障碍并诱导内皮依赖性血管舒张,NO可进一步降低动脉僵硬并改善相关血管参数,例如中心收缩压、中心脉压和反射波幅度[14]。可见,SGLT2i除通过发挥容量调节作用外,还能通过舒张血管发挥降压作用,从而改善心室前后负荷。
2.2 改善心脏能量代谢在生理环境下,心脏会产生大量的三磷酸腺苷(adenosine triphosphate,ATP)以维持收缩功能。ATP是由线粒体能量代谢产生,以脂肪酸和葡萄糖为主。HF时,机体的脂肪酸及葡萄糖的氧化能力均受到损伤,从而引起机体的能量代谢及心脏功能发生显著改变[15]。且过度依赖脂肪酸合成ATP,会引起中间产物堆积,增加脂质毒性,影响心肌细胞对Ca2+的吸收,加剧舒张功能紊乱。因此,HF情况下,为了维持能量供应,心脏将适应地提高对酮体(ketone body,KET)的吸收和利用,此时,KET消耗量比正常心脏增加约3倍[16]。研究认为,SGLT2i可通过增加线粒体氧摄取和转化,降低胰岛素/胰高血糖素比值,从而促进血KET生成,在心脏保护中起到逆转心室重塑的作用[17]。因此,研究者推测,SGLT2i可通过改善和/或优化心脏能量代谢,发挥心血管保护作用,且该保护作用可能与SGLT2i促进心脏能量代谢向KET转变有关。
2.3 抗炎和抗纤维化炎症与心肌纤维化互为因果并相互促进,在HF病程中发挥至关重要作用。SGLT2i可通过多种途径发挥抗炎特性,由于巨噬细胞需要葡萄糖作为能量来源,SGLT2i可能是通过诱导葡萄糖水平降低,进而降低巨噬细胞炎症反应[18]。恩格列净亦可降低HF患者的核苷酸结合结构域样受体蛋白3(nucleotide- binding oligomerization domain,leucine- rich repeat and pyrin domain- containing 3,NLRP3)炎性小体,从而改善NLRP3激活相关的心功能恶化[19]。SGLT2i也能对内皮细胞产生直接的抗炎作用,临床治疗浓度的卡格列净(10 μmol·L-1)可以AMPK依赖的方式抑制白细胞介素-1β(interleukin-1 beta,IL-1β)刺激的促炎介质单核细胞化学引诱蛋白-1(monocyte chemotactic protein-1,MCP-1)和白介素细胞-6(interleukin-6,IL-6)表达与分泌[20]。心肌纤维化被普遍认为是导致HF的根本原因,其主要原因是由于心脏成纤维细胞分泌的细胞外基质蛋白积累导致心脏结构重塑,从而阻碍心室顺应性,加速HF进展[21]。心肌梗死后大鼠模型实验表明,SGLT2i达格列净可通过活性氮氧化物(reactive oxygen and nitrogen species,RONS)/信号转导及转录激活因子3(signal transducer and activator of transcription 3,STAT3)信号通路激活M2巨噬细胞,抑制肌成纤维细胞分化来抑制胶原蛋白合成,从而表现出显着的心脏抗纤维化作用[22]。另有研究证实,恩格列净能通过抑制转化生长因子β(transforming growth factor β,TGF-β)诱导的成纤维细胞活化,并减少细胞介导的细胞外基质重塑。此外,恩格列净已被证明可直接抑制多个促纤维化基因,包括Ⅰ型胶原蛋白、α平滑肌肌动蛋白、结缔组织生长因子和基质金属蛋白酶2[23]。另一项研究表明,伊格列净能够预防自发性心肌病的非糖尿病大鼠的左心室肥大和纤维化,而不会影响血浆葡萄糖水平,这加强了其在非糖尿病患者中使用的可能性[24]。
2.4 抑制心肌细胞钠氢交换Na+/H+交换器-1(Na+/H+ exchanger-1,NHE1)的异常激活与缺血/再灌注、HF、肥厚性心肌病等多种心血管疾病有密切关系,而抑制NHE1活性则可延缓其进展[25]。在HF状态下,葡萄糖再进行糖代谢,引起H+和乳酸蓄积,并经NHE1与细胞外Ca2+交换,引起细胞内Ca2+过载,引起内质网应激以及线粒体能量供应紊乱,诱发心肌细胞损伤[26]。Baartscheer等[27]通过对兔和大鼠离体心肌细胞进行荧光测定,结果显示SGLT2i恩格列净可抑制心肌细胞NHE1,减低细胞质Na+和Ca2+浓度,并通过这种机制增加线粒体Ca2+水平,恢复钠钙平衡。另有研究显示[28],从健康人外周血中分离髓系血管生成细胞(myeloid angiogenic cells,MACs)和血小板(Platelet,PLT)(两者均表达NHE亚型,不表达SGLT2)。加/不加SGLT2i(恩格列净/达格列净)培养,通过流式细胞术评估它们对硬脂酸(systemic amyloidosis,SA)诱导的MAC炎症、氧化应激和凋亡的影响,以及二磷酸腺苷(adenosine diphosphate,ADP)刺激的PLT激活标志物表达的影响。结果显示,恩格列净和达格列净可能是通过抑制NHE1,改善SA诱导的MAC脂毒性损伤,并减少ADP刺激的PLT激活,从而发挥斑块稳定和/或血栓形成抑制的心血管保护。
2.5 心外膜脂肪组织和脂肪因子水平改变心外膜脂肪组织(epicardial adipose tissue,EAT)是心肌表面与心外膜内脏层间的一种特殊内脏脂肪组织,由大量脂肪细胞及少量炎症细胞、内皮细胞、基质细胞以及神经细胞构成。正常生理状态下,EAT具有心肌保护、能量代谢及分泌瘦素(leptin,LP)、脂联素(adiponectin,ADPN)、IL-6等来调节冠脉血管张力的作用。HF患者伴有明显的ETA扩张及异常沉积[29]。研究显示,心血管病患者ETA高表达SGLT2且促进脂肪因子分泌,达格列净可下调ETA中的SGLT2表达,上调葡萄糖转运蛋白4表达,促进葡萄糖吸收,抑制趋化因子分泌和皮下脂肪,并改善EAT细胞的分化[30]。EMPA-TROPISM-ISM研究[31]表明,与安慰剂相比,恩格列净可明显减少非糖尿病HFrEF患者的EAT以及皮下脂肪,并能明显减轻患者的肥胖、心肌间质纤维化、主动脉粥样硬化和炎性标记物的表达。另有研究认为[32],SGLT2i可能调控促炎性和抗炎性脂肪因子的平衡。一项临床试验表明,卡格列净使血清中LP浓度降低了25%,而抑制炎症的脂肪因子ADPN增加了17%。
2.6 改善线粒体功能并减轻氧化应激线粒体以高度调节的方式不断融合和分裂以维持其功能,包括代谢、能量产生、细胞内信号传导和细胞凋亡调节。线粒体融合的增强是为了应对各种压力,从而增强ATP产生,进而发挥促进生存的作用。线粒体裂变的增强是为了通过线粒体自噬去除功能失调的线粒体。线粒体融合受Mfn1、Mfn2和Opa1,线粒体裂变受动力相关蛋白1(dynamin-relatedprotein 1,Drp1)与线粒体分裂蛋白1(mitochondrial fission protein 1,Fis1)和线粒体裂变因子调控[33]。功能失调的线粒体产生更多有害的活性氧(reactive oxygen species,ROS)并产生更少的ATP。过剩的ROS和ATP产生减少可能会以多种方式失调心脏功能。越来越多的证据表明,SGLT-2i可以调节线粒体动力学。有研究表明,SGLT2i通过恢复单磷酸腺苷(adenosine monophosphate,AMP)与ATP的比率、增加AMPK活化和减少Drp1磷酸化来调节线粒体裂变的生理过程,从而防止线粒体DNA损伤[34]。此外,还有研究表明,恩格列净通过抑制肿瘤坏死因子诱导的氧化应激,进而减少ROS的积累来提高内皮NO生物利用度,从而减轻微血管功能障碍,对心肌细胞收缩和松弛产生积极影响[35]。
3 总结与展望综上,研究者们已经提出了多种可能的理论来解释SGLT2i独立于SGLT2的心血管保护作用,但确切机制尚并未被证实。总之,SGLT2i显示出良好的临床心血管获益,开启了HF药物治疗的新时代。但是,SGLT2i诱导心脏保护效益的科学领域仍处于起步阶段,需要开展进一步的深入研究。
| [1] |
Kato E T, Silverman M G, Mosenzon O, et al. Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus[J]. Circ Res, 2019, 139(22): 2528-36. doi:10.1161/CIRCULATIONAHA.119.040130 |
| [2] |
Neal B, Perkovic V, Mahaffey K W, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. NEJM, 2017, 377(7): 644-57. doi:10.1056/NEJMoa1611925 |
| [3] |
Zinman B, Wanner C, Lachin J M, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. NEJM, 2015, 373(22): 2117-28. doi:10.1056/NEJMoa1504720 |
| [4] |
McDonagh T A, Metra M, Adamo M, et al. 2023 focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure[J]. Eur Heart J, 2023, 44(37): 3627-39. doi:10.1093/eurheartj/ehad195 |
| [5] |
中华医学会心血管病学分会, 中国医师协会心血管内科医师分会, 中国医师协会心力衰竭专业委员会, 等. 中国心力衰竭诊断和治疗指南2024[J]. 中华心血管病杂志, 2024, 52(3): 235-75. Chinese Society of Cardiology, Chinese Medical Association, Chinese College of Cardiovascular Physician, Chinese Heart Failure Association of Chinese Medical Doctor Association, et al. Chinese guidelines for the diagnosis and treatment of heart failure 2024[J]. Chin J Cardiol, 2024, 52(3): 235-75. |
| [6] |
Chen J, Williams S, Ho S, et al. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members[J]. Diabetes Ther, 2010, 1(2): 57-92. doi:10.1007/s13300-010-0006-4 |
| [7] |
McMurray J J V, Solomon S D, Inzucchi S E, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction[J]. N Engl J Med, 2019, 381(21): 1995-2008. doi:10.1056/NEJMoa1911303 |
| [8] |
Packer M, Anker S D, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure[J]. NEJM, 2020, 383(15): 1413-24. doi:10.1056/NEJMoa2022190 |
| [9] |
Anker S D, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction[J]. NEJM, 2021, 385(16): 1451-61. doi:10.1056/NEJMoa2107038 |
| [10] |
Solomon S D, McMurray J J V, Claggett B, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction[J]. N Engl J Med, 2022, 387(12): 1089-98. doi:10.1056/NEJMoa2206286 |
| [11] |
中华医学会心血管病学分会心力衰竭学组, 中国医师协会心力衰竭专业委员会, 中华心血管病杂志编辑委员会, 等. 中国心力衰竭诊断和治疗指南2018[J]. 中华心血管病杂志, 2018, 46(10): 760-89. Heart Failure Group of Chinese Society of Cardiology of Chinese Medical Association, Chinese Heart Failure Association of Chinese Medical Doctor Association, Editorial board of Chinese journal of cardiology, et al. Chinese guidelines for the diagnosis and treatment of heart failure 2018[J]. Chin Heart J, 2018, 46(10): 760-89. doi:10.3760/cma.j.issn.0253-3758.2018.10.004 |
| [12] |
McDonagh T A, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure[J]. Eur Heart J, 2021, 42(36): 3599-726. doi:10.1093/eurheartj/ehab368 |
| [13] |
Hallow K M, Helmlinger G, Greasley P J, et al. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis[J]. Diabetes Obes Metab, 2018, 20(3): 479-87. doi:10.1111/dom.13126 |
| [14] |
Durante W, Behnammanesh G, Peyton K J. Effects of sodium-glucose co-transporter 2 inhibitors on vascular cell function and arterial remodeling[J]. Int J Mol Sci, 2021, 22(16): 8786. doi:10.3390/ijms22168786 |
| [15] |
Lopaschuk G D, Karwi Q G, Tian R, et al. Cardiac energy metabolism in heart failure[J]. Circ Res, 2021, 128(10): 1487-513. doi:10.1161/CIRCRESAHA.121.318241 |
| [16] |
Murashige D, Jang C, Neinast M, et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart[J]. Science, 2020, 370(6514): 364-8. doi:10.1126/science.abc8861 |
| [17] |
Verma S, McMurray J J V. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review[J]. Diabetologia, 2018, 61(10): 2108-17. doi:10.1007/s00125-018-4670-7 |
| [18] |
Lee N, Heo Y J, Choi S E, et al. Anti-inflammatory Effects of empagliflozin and gemigliptin on LPS-stimulated macrophage via the IKK/NF-κB, MKK7/JNK, and JAK2/STAT1 signalling pathways[J]. J Immunol Res, 2021, 2021: 1-11. |
| [19] |
Byrne N J, Matsumura N, Maayah Z H, et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure[J]. Circ-Heart Fail, 2020, 13(1): e006277. doi:10.1161/CIRCHEARTFAILURE.119.006277 |
| [20] |
Mancini S J, Boyd D, Katwan O J, et al. Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms[J]. Sci Rep, 2018, 8(1): 5276. doi:10.1038/s41598-018-23420-4 |
| [21] |
Fedak P W, Verma S, Weisel R D, et al. Cardiac remodeling and failure from molecules to man (Part Ⅱ)[J]. Cardiovasc Pathol, 2005, 14(2): 49-60. doi:10.1016/j.carpath.2005.01.005 |
| [22] |
Lee T M, Chang N C, Lin S Z. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts[J]. Free Radical Bio Med, 2017, 104: 298-310. doi:10.1016/j.freeradbiomed.2017.01.035 |
| [23] |
Kang S, Verma S, Hassanabad A F, et al. Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts: novel translational clues to explain EMPA-REG OUTCOME results[J]. Can J Cardiol, 2020, 36(4): 543-53. doi:10.1016/j.cjca.2019.08.033 |
| [24] |
Takasu T, Takakura S. Effect of ipragliflozin, an SGLT2 inhibitor, on cardiac histopathological changes in a non-diabetic rat model of cardiomyopathy[J]. Life Sci, 2019, 230: 19-27. doi:10.1016/j.lfs.2019.05.051 |
| [25] |
Mraiche F, Fliegel L. Elevated expression of activated Na(+)/H(+) exchanger protein induces hypertrophy in isolated rat neonatal ventricular cardiomyocytes[J]. Mol Cell Biochem, 2011, 358(1-2): 179-87. doi:10.1007/s11010-011-0933-z |
| [26] |
Mohsin A A, Thompson J, Hu Y, et al. Endoplasmic reticulum stress-induced complex Ⅰ defect: Central role of calcium overload[J]. Arch Biochem Biopys, 2020, 683: 108299. doi:10.1016/j.abb.2020.108299 |
| [27] |
Baartscheer A, Schumacher C A, Wüst R C, et al. Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits[J]. Diabetologia, 2017, 60(3): 568-73. doi:10.1007/s00125-016-4134-x |
| [28] |
Spigoni V, Fantuzzi F, Carubbi C, et al. Sodium-glucose cotransporter 2 inhibitors antagonize lipotoxicity in human myeloid angiogenic cells and ADP-dependent activation in human platelets: potential relevance to prevention of cardiovascular events[J]. Cardiovasc Diabetol, 2020, 19(1): 46. doi:10.1186/s12933-020-01016-5 |
| [29] |
柏婷燕, 易希善, 刘凯, 等. 心外膜脂肪组织在射血分数保留性心衰合并2型糖尿病中的研究进展[J]. 心脏杂志, 2024(6): 712-8. Bai T Y, Yi X S, Liu K, et al. Research progress of epicardial adipose tissue in ejection fraction preserved heart failure with type 2 diabetes[J]. Chin Heart J, 2024(6): 712-8. |
| [30] |
Díaz-Rodríguez E, Agra R M, Fernández á L, et al. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability[J]. Cardiovas Res, 2018, 114(2): 336-46. doi:10.1093/cvr/cvx186 |
| [31] |
Requena-Ibá?ez J A, Santos-Gallego C G, Rodriguez-Cordero A, et al. Mechanistic insights of empagliflozin in nondiabetic patients with HFrEF: from the EMPA-TROPISM study[J]. Jacc-Heart Fail, 2021, 9(8): 578-89. doi:10.1016/j.jchf.2021.04.014 |
| [32] |
Garvey W T, Van Gaal L, Leiter L A, et al. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes[J]. Metabolism, 2018, 85: 32-7. doi:10.1016/j.metabol.2018.02.002 |
| [33] |
Shirakabe A, Zhai P, Ikeda Y, et al. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure[J]. Circ, 2016, 133(13): 1249-63. doi:10.1161/CIRCULATIONAHA.115.020502 |
| [34] |
Zhou H, Wang S, Zhu P, et al. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission[J]. Redox Biol, 2018, 15: 335-46. doi:10.1016/j.redox.2017.12.019 |
| [35] |
Juni R P, Kuster D W D, Goebel M, et al. Cardiac Microvascular endothelial enhancement of cardiomyocyte function is impaired by inflammation and restored by empagliflozin[J]. JACC Basic Transl Sci, 2019, 4(5): 575-91. doi:10.1016/j.jacbts.2019.04.003 |

