


异丙酚作为一种静脉全身麻醉药在临床广泛应用。发育期大脑正处于突触形成的巅峰期,对外来化学物质刺激的敏感性较高[1]。研究发现异丙酚可影响发育期大脑学习记忆功能[2]且脑源性神经营养因子(brain derived neurotrophic factor, BDNF)在其中起着关键的作用[3]。BNDF前体(precursor form of BDNF, proBDNF)诱导细胞凋亡,BDNF成熟体(mature form of BDNF, mBDNF)诱导细胞存活[4],proBDNF/mBDNF的平衡比例关系在调节神经细胞存活和突触功能等方面发挥着重要的作用[5]。基质金属蛋白酶-9(matrix metalloproteinase -9, MMP-9) 是一类蛋白水解酶,参与proBDNF向mBDNF的成熟转换过程[6]。那么异丙酚影响大鼠学习记忆能力是否与海马MMP-9表达下调,BDNF成熟转换障碍以及海马神经元凋亡发生有关。本实验通过观察异丙酚麻醉后新生大鼠海马MMP-9、proBDNF、mBDNF表达改变以及海马神经元凋亡情况等,进一步探究异丙酚影响新生大鼠学习记忆功能的机制。
1 材料与方法 1.1 实验动物SPF清洁级SD大鼠[由重庆医科大学实验动物中心提供, 合格证:SCXK(渝)2012-0001],7 d龄,体质量12 g~16 g,♀♂各半。
1.2 实验试剂与器材兔抗MMP-9抗体(Proteintech公司);兔抗Caspase-3、兔抗BDNF抗体(Abcam公司);异丙酚(AstraZeneca公司);TUNEL试剂盒、血糖检测仪(Roche公司);动脉血气分析仪(Abbott公司)等。
1.3 动物模型建立及分组大鼠随机分为3组(n=18/组):生理盐水对照组(NS组)和多次异丙酚麻醉组(RP组):连续7 d分别腹腔注射生理盐水7.5 ml·kg-1和异丙酚75 mg·kg-1;单次异丙酚麻醉组(SP组):前6 d连续腹腔注射生理盐水7.5 mL·kg-1,d 7注射异丙酚75 mg·kg-1。每次注药后立即将大鼠放入有氧恒温的孵育箱中,并用婴儿脉氧饱和度探头检测其SpO2。
1.4 血气分析与血糖建模结束后15 min,各组随机抽取6只大鼠穿刺左心室抽取动脉血用于测定动脉血气及血糖。
1.5 Morris水迷宫实验各组剩余12只大鼠饲养至出生后25 d行水迷宫测试。在实验室常规水迷宫系统设备中进行实验:前5 d将每只大鼠依次从每个象限中部面壁式下水,电脑记录大鼠在60 s内找到隐藏平台的寻台路径和逃逸潜伏期。d 6撤离平台,记录60 s内大鼠在原平台象限的探索时间和穿越原平台的次数。测试中保持测试时间段、室内物品摆放、灯光等不变,排除外界环境对大鼠行为学的干扰。
1.6 Western blot法测定MMP-9、proBDNF、mBDNF、caspase-3含量水迷宫测试结束后,各组随机选取6只大鼠,迅速断头取出两侧海马组织,提取海马总蛋白并用BCA法测定蛋白浓度。经电泳分离,湿转至PVDF膜,脱脂奶粉封闭后,分别加入MMP-9抗体(1 :500),BDNF抗体(1 :800),caspase-3抗体(1 :500),4 ℃孵育过夜后,加入山羊抗兔二抗(1 :3 000),37 ℃孵育1 h。采取ECL化学发光试剂显影,凝胶成像分析仪Fusion成像并行半定量分析,以目的条带灰度值与内参β-actin灰度值的比值反映各目的蛋白的含量。
1.7 TUNEL法检测海马神经元的凋亡情况水迷宫测试结束后,各组剩余6只大鼠经麻醉后用生理盐水与体积分数为0.04的多聚甲醛溶液灌注固定,取出大脑,经固定、脱水、包埋后制成石蜡切片,按照TUNEL试剂盒说明书操作。光镜下观察海马区,细胞核内出现棕色颗粒为阳性细胞。在400倍光镜下,每张切片随机选取海马区6个不重复视野,统计TUNEL阳性神经细胞数量并计算平均值。
1.8 统计学分析采用SPSS 22.0软件行统计分析,计量资料均以x±s表示,各组间结果比较均采取单因素方差分析。
2 结果 2.1 血气分析与血糖结果3组大鼠动脉血气分析各指标值、血糖值均在正常范围内,差异无统计学意义(P>0.05),见Tab 1。
| Group | pH | PaO2/mmHg | SpO2/% | PaCO2/mmHg | HCO3-/mmol·L-1 | Glucose/mmol·L-1 |
| NS | 7.40±0.32 | 99.7±2.6 | 99.2±1.7 | 40±2 | 25.1±1.4 | 6.63±0.18 |
| SP | 7.41±0.24 | 99.3±1.2 | 98.7±1.4 | 41±2 | 24.8±1.7 | 6.59±0.24 |
| RP | 7.39±0.41 | 98.7±2.1 | 98.1±1.8 | 42±3 | 24.5±2.1 | 6.67±0.21 |
与NS组和SP组相比,RP组大鼠逃逸潜伏期与寻台路径明显延长,且在原平台象限探索时间和穿越原平台所在位置的次数减少(P<0.05)。而SP组与NS组相比结果差异无统计学意义(P>0.05),见Fig 1,Tab 2。
|
| Fig 1 Experimental motion locus of water maze in rats |
| Group | Escape Latency/s | Search Path/cm | Exploration Time/s | Number of crossing the platform |
| NS | 29.4±5.5 | 684±136 | 25.4±7.1 | 2.7±1.2 |
| SP | 31.3±6.6 | 753±134 | 24.4±4.9 | 2.5±0.8 |
| RP | 42.6±5.1*# | 1040±122*# | 16.4±4.2*# | 1.0±0.6*# |
| *P<0.05 vs NS; #P<0.05 vs SP | ||||
与NS组与SP组相比,RP组大鼠海马MMP-9、mBDNF蛋白表达减弱(P<0.05),proBDNF蛋白表达增强(P<0.05),proBDNF/mBDNF比值明显升高(P<0.05);而SP组与NS组相比各蛋白表达差异无统计学意义(P>0.05),见Fig 2,Tab 3。
|
| Fig 2 Effects of propofol on expressions of MMP-9, BDNF protein in hippocampus of rats |
| Group | MMP-9 | proBDNF | mBDNF | proBDNF/mBDNF |
| NS | 1.10±0.11 | 0.62±0.10 | 0.385±0.050 | 1.15±0.19 |
| SP | 1.09±0.13 | 0.66±0.04 | 0.391±0.081 | 1.26±0.09 |
| RP | 0.47±0.06*# | 0.96±0.06*# | 0.240±0.022*# | 2.94±0.31*# |
| *P<0.05 vs NS; #P<0.05 vs SP | ||||
神经元凋亡细胞数量的改变与caspase-3蛋白表达的改变一致。NS组中仅少量TUNEL染色阳性的神经元细胞、pro-caspase-3表达较高、cleaved-caspase-3表达较低;SP组的结果与NS组相比差异无统计学意义(P>0.05);RP组与NS组和SP组相比,TUNEL染色阳性的神经元细胞明显增多、pro-caspase-3表达明显减低、cleaved-caspase-3表达明显增高(P<0.05),见Fig 3、4,Tab 4。
|
| Fig 3 Apoptosis of rat hippocampal neurons detected by TUNEL staining(scale bar:50 μm) |
|
| Fig 4 Expression of apoptosis-related protein caspase-3 in hippocampus of rats detected by Western blot |
| Group | Apoptotic cell | pro-caspase-3 | cleaved-caspase-3 |
| NS | 3.6±1.4 | 0.756±0.033 | 0.107±0.005 |
| SP | 5.8±1.5 | 0.720±0.028 | 0.112±0.013 |
| RP | 61.1±3.9*# | 0.538±0.061*# | 0.201±0.013*# |
| *P<0.05 vs NS; #P<0.05 vs SP | |||
MMP-9是MMPs家族中的一员-明胶酶B,其主要作用是通过裂解细胞外基质和细胞表面成分而重塑细胞外环境[7]。另外,MMP-9介导的局部快速蛋白裂解作用可促进突触结构和功能的重塑,在学习记忆功能发生发展中发挥着重要的作用[8]。本实验中大鼠多次注射异丙酚后海马MMP-9表达出现明显的下降,很可能是多次注射异丙酚影响大鼠学习记忆能力的原因之一,而单次注射异丙酚对此影响甚微。Zhang等[9]研究也发现异丙酚可抑制大鼠学习训练后海马MMP-9的增加,与本实验结果一致。
BDNF属于神经营养素家族,主要存在于神经系统中,以海马和皮层含量最高[10]。BDNF是脑内重要的调节因子,其主要作用是促进神经元生长与分化,促进海马长时程增强,诱导神经突触形成,参与海马学习记忆功能等[4, 11]。BDNF首先被细胞合成为proBDNF后经加工转换得到成熟的mBDNF。而两种形式的BDNF发挥着相反的作用:mBDNF通过酪氨酸相关激酶B(TrkB)受体激活Akt进而激活cAMP反应元件结合蛋白(CREB)发挥抗凋亡、促进长时程记忆形成等作用[12];而proBDNF通过p75神经营养因子受体(p75NTR)激活RhoA酶而抑制神经突触形成进而损害新生大鼠远期学习记忆能力[13]。本实验发现,多次注射异丙酚后大鼠海马proBDNF表达增高,mBDNF表达降低,proBDNF/mBDNF比值明显提高。BDNF成熟转换障碍导致proBDNF作用增强而mBDNF作用减弱,从而引起大鼠学习记忆能力的明显下降,这可能是异丙酚影响大鼠学习记忆能力的另一原因。
另外,proBDNF在细胞内质网内合成后被直接分泌到细胞外,经细胞外基质金属蛋白酶MMPs裂解成两个末端片断即mBDNF和前体肽[14]。Lee等[15]研究证实proBDNF成熟转化为mBDNF的过程中需要MMP-9的参与。因此,异丙酚可能通过降低MMP-9表达导致BDNF成熟转换障碍从而影响学习记忆功能,但此推测还需将来进一步的研究证实。
Han等[16]研究发现使用推荐剂量的异丙酚麻醉可引起海马神经元凋亡以及神经炎症的发生,最终导致认知功能障碍。本研究中水迷宫实验结果显示,多次注射异丙酚后大鼠远期学习记忆能力明显下降,同时观察到海马神经元发生明显的凋亡,且凋亡蛋白caspase-3表达明显升高,与其结果相符,表明多次异丙酚麻醉引起大鼠学习记忆障碍的原因可能是由于诱发了海马神经元凋亡的增加。另外,异丙酚可能通过降低mBDNF表达、减弱其抗凋亡作用,同时上调proBDNF表达、增强其抑制神经突触形成作用,从而明显增加神经元凋亡最终导致新生大鼠远期学习记忆功能受损[17-18]。
在本实验中,单次注射异丙酚后神经系统功能与相关蛋白表达的改变较轻,这种轻微的损伤会随着时间的延长以及外来刺激因子的作用停止而逐渐被修复,但多次注射异丙酚后可反复引起大鼠海马相关蛋白表达的抑制、学习记忆相关突触功能的改变,这种持久的损害可能是其影响大鼠大脑功能的原因。本实验监测异丙酚麻醉中血气和血糖在正常范围内,排除低氧和低血糖对发育期大脑的影响。
综上所述,多次注射异丙酚可引起新生大鼠远期学习记忆功能障碍,其机制可能与海马MMP-9表达下调,BDNF成熟转换障碍致proBDNF/mBDNF比值增高以及海马神经元凋亡明显增加有关。而单次注射异丙酚并不会影响新生大鼠神经系统的正常功能。通过本实验的研究,有助于进一步阐明异丙酚影响新生鼠大脑发育的机制,为临床减少或避免新生儿以及婴幼儿接触异丙酚麻醉后认知功能障碍提供新的理论基础。
(致谢: 感谢重庆医科大学附属第一医院中心实验室陈力学、秦光成、谢景梅等老师在实验过程中的指导。 )
| [1] | Yon J H, Daniel-Johnson J, Carter L B, et al. Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways[J]. Neuroscience, 2005, 135(3): 815-27. doi:10.1016/j.neuroscience.2005.03.064 |
| [2] | 赵施施, 张科学, 包素红, 等. 丙泊酚对幼小鼠自主活动和学习记忆行为的影响[J]. 中国药理学通报, 2013, 29(2): 198-201. Zhao S S, Zhang K X, Bao S H, et al. Effects of propofol on spontaneous motor activity and learning behaviors in juvenile mice[J]. Chin Pharmacol Bull, 2013, 29(2): 198-201. |
| [3] | 许佩龙, 刘健, 李雪飞, 等. 丙泊酚麻醉对新生期大鼠海马BDNF及Trk-B的影响[J]. 中国药理学通报, 2012, 28(6): 858-61. Xu P L, Liu J, Li X F, et al. Effects of propofol anesthesia on the expression of BDNF and Trk-B in hippocampus in neonatal rats[J]. Chin Pharmacol Bull, 2012, 28(6): 858-61. |
| [4] | Je H S, Yang F, Ji Y, et al. ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions[J]. J Neurosci, 2013, 33(24): 9957-62. doi:10.1523/JNEUROSCI.0163-13.2013 |
| [5] | Je H S, Yang F, Ji Y, et al. Role of pro-brain-derived neurotrophic factor(proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses[J]. Proc Natl Acad Sci USA, 2012, 109(39): 15924-9. doi:10.1073/pnas.1207767109 |
| [6] | Mizoguchi H, Nakade J, Tachibana M, et al. Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus[J]. J Neurosci, 2011, 31(36): 12963-71. doi:10.1523/JNEUROSCI.3118-11.2011 |
| [7] | Yong V W, Power C, Forsyth P, et al. Metalloproteinases in biology and pathology of the nervous system[J]. Nat Rev Neurosci, 2001, 2(7): 502-11. doi:10.1038/35081571 |
| [8] | Huntley G W. Synaptic circuit remodelling by matrix metalloproteinases in health and disease[J]. Nat Rev Neurosci, 2012, 13(11): 743-57. doi:10.1038/nrn3320 |
| [9] | Zhang J, Zhang X, Jiang W. Propofol impairs spatial memory consolidation and prevents learning-induced increase in hippocampal matrix metalloproteinase-9 levels in rat[J]. Neuroreport, 2013, 24(15): 831-6. doi:10.1097/WNR.0b013e328364fe69 |
| [10] | Park H, Poo M M. Neurotrophin regulation of neural circuit development and function[J]. Nat Rev Neurosci, 2013, 14(1): 7-23. doi:10.1038/nrc3653 |
| [11] | Yang J, Siao C J, Nagappan G, et al. Neuronal release of proBDNF[J]. Nat Neurosci, 2009, 12(2): 113-5. doi:10.1038/nn.2244 |
| [12] | Kozisek M E, Middlemas D, Bylund D B. Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies[J]. Pharmacol Ther, 2008, 117(1): 30-51. doi:10.1016/j.pharmthera.2007.07.001 |
| [13] | Head B P, Patel H H, Niesman I R, et al. Inhibition of p75 neurotrophin receptor attenuates isoflurane-mediated neuronal apoptosis in the neonatal central nervous system[J]. Anesthesiology, 2009, 110(4): 813-25. doi:10.1097/ALN.0b013e31819b602b |
| [14] | Mowla S J, Farhadi H F, Pareek S, et al. Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor[J]. J Biol Chem, 2001, 276(16): 12660-6. doi:10.1074/jbc.M008104200 |
| [15] | Lee R, Kermani P, Teng K K, et al. Regulation of cell survival by secreted proneurotrophins[J]. Science, 2001, 294(5548): 1945-8. doi:10.1126/science.1065057 |
| [16] | Han D, Jin J, Fang H, et al. Long-term action of propofol on cognitive function and hippocampal neuroapoptosis in neonatal rats[J]. Int J Clin Exp Med, 2015, 8(7): 10696-704. |
| [17] | Zhong L, Luo F, Zhao W, et al. Propofol exposure during late stages of pregnancy impairs learning and memory in rat offspring via the BDNF-TrkB signalling pathway[J]. J Cell Mol Med, 2016, 20(10): 1920-31. doi:10.1111/jcmm.12884 |
| [18] | Sebastiani A, Granold M, Ditter A, et al. Posttraumatic Propofol neurotoxicity is mediated via the pro-brain-derived neurotrophic factor-p75 neurotrophin receptor pathway in adult mice[J]. Crit Care Med, 2016, 44(2): e70-82. doi:10.1097/CCM.0000000000001284 |

