


氧化苦参碱(oxymatrine,OMT)是从豆科槐属植物苦参(sophoraflavescens ait)中提取的生物碱,具有四环喹嗪啶类结构。研究证实氧化苦参碱具有抗炎、抗纤维化、抗增殖等多方面的药理活性和临床应用。本文就其对肝脏、心血管、内分泌和神经系统作用的可能分子机制进行了总结,为其临床用药及进一步开发提供参考。
1 对肝脏作用分子机制 1.1 抗肝脏脂肪化Shi等[1]采用高果糖饮食诱导大鼠脂肪肝模型研究,结果表明氧化苦参碱以剂量依赖的方式减少体重增加,降低肝重、肝指数、血脂异常以及肝脏中甘油三酯水平。氧化苦参碱明显增加肝脏CPT1A活动,增强脂肪酸的β-氧化作用,减少肝脏甘油三酯蓄积,其减少肝脂质的分子机制可能是脂肪酸β-氧化增加的结果。也有研究发现氧化苦参碱可抑制Srebf1表达,使转换乙酰辅酶A为丙二酰辅酶A的限速酶Acc表达降低,导致脂肪酸合成减少[2]。此外PPARα也是调控肝脏脂质代谢的一个重要的转录因子,在脂肪酸代谢中起关键作用。研究表明,氧化苦参碱可能通过激活PPARα介导的基因转录来增强肝脏脂肪酸的β-氧化,从而降低肝脏脂肪合成[1]。
1.2 抗肝脏纤维化氧化苦参碱能抑制小鼠肝星状细胞活性和增殖作用,明显降低成纤维细胞Ⅲ型前胶原mRNA及转化生长因子(TGF-β1)的表达[3],通过降低TIMP的表达来有效抑制CCl4诱导肝组织纤维生成。近来研究表明,p38促分裂原活化蛋白激酶( MAPK)信号途径在肝纤维化中起重要作用,Deng等[4]证实调节p38蛋白激酶信号通路可改善肝脏纤维化。也有研究证明氧化苦参碱可有效地减少实验性大鼠肝组织胶原蛋白的产生和沉积、促进Smad蛋白7的表达、抑制Smad 3和CBP的表达,调控TGFbeta-Smad纤维化信号转导通路,达到抗肝脏纤维化效果[5]。同时,Fan等[6]通过体外培养人瘢痕疙瘩成纤维细胞发现氧化苦参碱减少胶原蛋白和Smad3蛋白合成,抑制Smad3蛋白磷酸化。
1.3 抗病毒作用氧化苦参碱具有直接抗乙型肝炎病毒和丙型肝炎病毒作用,可抑制HepG2.2.15细胞分泌HBsAg和HBeAg,抑制HCV的复制 [7]。有研究报道,氧化苦参碱对乙肝病毒转基因小鼠血清HBV DNA具有抑制作用。Gu等[8]经分析临床病例得出氧化苦参碱能够清除或者抑制慢性乙型肝炎患者HBV水平,其可能机制是下调患者外周血HBV特异性CTL表面的PD-1的表达,增加HBV特异性CTL水平。
2 心血管系统作用分子机制 2.1 抗肺动脉高压肺动脉高压是一种渐进性疾病,特点是肺动脉重塑和血管阻力增加,炎症和氧化应激促进其发展。研究发现氧化苦参碱通过抑制肺动脉平滑肌细胞的增殖及减弱肺小动脉收缩来缓解肺动脉重构。另外,已有研究表明持续性肺血管收缩导致血管重建和肺动脉高压,而氧化苦参碱可抑制缺氧或MCT诱导的炎症反应及氧化应激,也在体外直接抑制缺氧或TGF-β诱导的肺动脉平滑肌细胞增殖,从而明显防止肺动脉高压的发展。HIFs由HIF-1α和HIF -1β亚基组成的炎性介质,参与了慢性缺氧和MCT诱导的肺动脉高压的发展[9, 10],缺氧或MCT使HIF-1α活性增强,而氧化苦参碱明显抑制HIF-1α的表达。NF-κB是主要炎症和氧化还原敏感的转录因子,被认为激发炎症反应、调控促炎因子生成。Fan等认为氧化苦参碱通过下调NF-κB的表达保护大脑局灶性缺血[9],氧化苦参碱明显抑制肺组织中NF-κB活化,降低炎性细胞因子和粘附分子表达,减少炎症细胞聚集。缺氧已被认为在ROS产生的一个重要因素,并且ROS还可能影响HIF活性[11, 12, 13]。此外,NF-κB家族的转录因子是由活性氧调节[14, 15]。故限制ROS的潜在毒性可能是改善肺动脉高压的一个靶点。氧化苦参碱抑制肺动脉平滑肌细胞中过氧化氢的产生。Nrf2被称为氧化应激的关键感受器和抗氧化蛋白如SODs和HO-1的转录激活剂[16],在调节活性氧代谢中发挥重要作用。缺氧明显抑制Nrf2的表达及下调抗氧化蛋白SOD1和HO-1的水平,而氧化苦参碱明显上调Nrf2和抗氧化蛋白SOD1、HO-1的表达。总之,氧化苦参碱通过抗增殖、抗炎、抗氧化来防止肺动脉高压。
2.2 抗急性心肌缺血损伤作用氧化苦参碱具有对抗急性心肌缺血损伤,改善慢性心力衰竭大鼠心肌细胞功能及血流动力学,逆转心室重塑等明显的心血管作用[17],Li等[18]证实苦参碱对异丙肾上腺素致大鼠急性心肌缺血损伤具有保护作用,其机制与ADMA代谢通路有关,此后王洋等[19]通过ISO诱导大鼠慢性心力衰竭模型,发现氧化苦参碱减轻ISO所致慢性心力衰竭大鼠心肌组织纤维化最明显,而对炎细胞浸润、心肌细胞水肿及毛细血管扩张无明显改善,与前期研究氧化苦参碱改善心力衰竭大鼠心室重构和心肌损伤一致,其可能机制与增加心肌组织DDAH2的表达,进而降低血清ADMA水平有关。
3 神经系统作用分子机制众所周知,脊髓NMDA受体促进脊髓内兴奋性突触传递,在脊髓背根神经元和伤害性传播的兴奋中起着重要作用[20]。功能性NMDA受体,比如NR2B亚基与疼痛信号的传递有更为重要的相关性[21, 22]。OMT通过抑制NMDA受体相关的ERK / CREB激活来镇痛。转录因子cAMP反应元件结合蛋白(CREB),其可通过多种细胞内激酶响应于生理和病理刺激的广阔范围被磷酸化。据报道NMDA受体激活诱导Ca2+内流可触发CREB磷酸化的早期阶段,CREB的磷酸化持续阶段由延迟的细胞外信号调节激酶(ERK)信号介导,对慢性疼痛的发展与维持很重要[23]。另外,ERK磷酸化谷氨酸受体,通过在背角神经元翻译后和CREB或ELK-1介导的转录调控来使中枢敏感化[24, 25, 26],而OMT可降低CCI模型ERK、 CREB的磷酸化。由此可见NMDA NR2B receptor-ERK/CREB的调控也许是OMT镇痛效果的靶点。
OMT慢性治疗可缓解糖尿病大鼠相关的认知下降,与氧化应激、炎症反应和细胞凋亡级联反应相关。
在人类糖尿病,慢性高血糖症在发病率很高的进行性痴呆中起重要作用[27]。内皮氧化应激已被证明会造成严重的血管损伤[28] ,而氧化损伤大鼠突触可诱发认知缺陷[29] 。OMT可降低血糖水平,改善认知功能,抑制氧化应激反应,减轻炎症反应并抑制神经细胞凋亡。慢性高血糖刺激,微血管和神经组织的内源性TNF-α生成加速,可能增加微血管通透性、血液高凝状态及神经元损伤,促进糖尿病微血管病变的发展。而NF-κB可能是炎性损伤的关键调节剂之一[30, 31],线粒体活性氧能调节肿瘤坏死因子α介导的NF-κB活化,并诱导细胞凋亡[32, 33]。OMT可抑制氧化应激和剂量依赖性地抑制NF-κB信号传导。另外,研究发现糖尿病患者大脑皮质和海马Caspase-3活性明显升高,OMT通过降低Caspase-3活性来抑制糖尿病大鼠模型中神经元细胞细胞凋亡。
4 内分泌系统作用分子机制研究证明,氧化苦参碱通过提高胰岛素释放及增加胰岛素敏感性来降低高果糖饮食联合STZ诱导致糖尿病大鼠血糖,显著降低糖化血红蛋白、食物和水摄入量、非酯化脂肪酸(NEFA)、总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白(LDL-C),增加血清胰岛素、高密度脂蛋白(HDL-C)、胰高血糖素样肽-1(GLP-1)、肌肉葡萄糖转运蛋白-4(GLUT-4)。胰腺和肝的组织学检查提示,氧化苦参碱保护胰岛结构和防止肝脏结构紊乱。
长期高脂饮食导致胰岛素抵抗和高胰岛素血症,代偿性高胰岛素血症压力下,胰岛β细胞容易被低剂量STZ破坏[34, 37],导致高血糖,而氧化苦参碱具有降血糖作用,推断其潜在机制:首先,刺激胰岛素释放或再生胰岛β细胞;其次,提高靶组织对胰岛素的敏感性。研究表明糖尿病大鼠模型中血清胰岛素水平和胰岛细胞的数量和大小明显降低,与前期报道一致[36],氧化苦参碱可明显增加胰岛数量,促进糖尿病大鼠的胰岛素分泌。GLP-1,由肠道的L细胞分泌的肠促胰岛素激素,餐后被迅速释放,刺激胰岛素分泌,以葡萄糖依赖性方式抑制胰高血糖素的分泌。GLP-1已经被作为2型糖尿病的一个新药理学治疗法[37]。氧化苦参碱可明显增加血清GLP-1水平,这可能是其增加胰岛素分泌和改善胰岛β细胞受损的机制。甘油三酯和游离脂肪酸的氧化竞争性抑制葡萄糖氧化,从而降低骨骼肌中葡萄糖摄入与利用。同时,胰岛素缺乏导致脂质代谢异常,包括动物脂质积累[38, 39],而氧化苦参碱明显降低高甘油三酯血症和高胆固醇血症,其可能机制是氧化苦参碱降低甘油三酯和胆固醇的吸收和内源性合成,同时增加外周组织的摄入。肝脏病理组织学研究发现,氧化苦参碱降低肝细胞肥大,表明氧化苦参碱防止肝损伤[35]。GLUT-4存在于脂肪组织、骨骼肌和心肌,通过易位和激活胰岛素触发在葡萄糖稳态中起关键作用[40]。高糖下,由于胰岛素信号损伤,GLUT-4表达和易位减少,导致脂肪组织和骨骼肌中葡萄糖的消耗减少[41]。而氧化苦参碱可增加骨骼肌中GLUT-4含量,提高葡萄糖转运,起降低血糖作用。
5 展望氧化苦参碱的各种药理作用,并不是单一作用的结果,它具有多种作用途径,如抗氧化应激、减轻炎症反应、参与细胞凋亡级联反应、抗组织纤维化、抑制癌基因表达、诱导肿瘤细胞凋亡作用等等。目前总的来说,氧化苦参碱的药理作用分子机制研究仍然不够明确,有必要对此进一步开展深入研究,为临床用药提供理论参考,同时随着分子机制研究的深入进一步发现更多新的药理功能,氧化苦参碱会有更广阔的开发应用空间。
| [1] | Shi LJ,Shi L,Song GY,et al. Oxymatrine attenuates hepatic steatosis in non-alcoholic fatty liver disease rats fed with high fructose diet through inhibition of sterol regulatory element binding transcription factor 1 (Srebf1) and activation of peroxisome proliferator activated receptor alpha (Pparalpha)[J]. Eur J Pharmacol, 2013, 714(1-3):89-95. |
| [2] | Wang X,Wei D,Zhou L,et al. Simple method for large-scale isolation and purification of gangliosides by non-ionic adsorption chromatography[J]. Prep Biochem Biotechnol, 2004, 34(4):305-13. |
| [3] | 陈源文,李定国,吴建新,等.氧化苦参碱对转化生长因子B1促肝星状细胞活化及跨膜信号转导影响[J].胃肠病学和肝病学杂志,2005,14(1):31-5. Chen Y W,Li D G, Wu J X,et al. Effects of oxymatrine on hepatic stellate cells activation and its transmembrane signaling stimulated by TGF-β1 [J]. Chin J Gastro Hepa,2005,14(1):31-35. |
| [4] | Deng Z Y,Li J,Jin Y, et al. Effect of oxymatrine on the p38 mitogen-activated protein kinases signalling pathway in rats with CCl4 induced hepatic fibrosis[J]. Chin Med J (Engl), 2009, 122(12):1449-54. |
| [5] | Wu X L,Zeng W Z,Jiang M D,et al. Effect of Oxymatrine on the TGFbeta-Smad signaling pathway in rats with CCl4-induced hepatic fibrosis[J]. World J Gastroenterol, 2008, 14(13):2100-5. |
| [6] | Fan D L,Zhao WJ,Wang YX,et al. Oxymatrine inhibits collagen synthesis in keloid fibroblasts via inhibition of transforming growth factor-beta1/Smad signaling pathway[J]. Int J Dermatol, 2012, 51(4):463-72. |
| [7] | Lu L G,Zeng M D,Mao Y M,et al. Inhibitory effect of oxymatrine on serum hepatitis B virus DNA in HBV transgenic mice[J]. World J Gastroenterol, 2004, 10(8):1176-9. |
| [8] | Gu X B,Yang X J,Hua Z,et al.Effect of oxymatrine on specific cytotoxic T lymphocyte surface programmed death receptor-1 expression in patients with chronic hepatitis B[J]. Chin Med J (Engl), 2012, 125(8):1434-8. |
| [9] | Chirala S S, Wakil S J. Structure and function of animal fatty acid synthase[J]. Lipids, 2004, 39(11):1045-53. |
| [10] | Hashimoto T,Fujita T,Usuda N,et al. Peroxisomal and mitochondrial fatty acid beta-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor alpha and peroxisomal fatty acyl-CoA oxidase. Genotype correlation with fatty liver phenotype[J]. J Biol Chem, 1999, 274(27):19228-36. |
| [11] | Frid M G,Brunetti J A,Burke D L,et al. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage[J]. Am J Pathol, 2006, 168(2):659-69. |
| [12] | Fan H,Li L,Zhang X,et al. Oxymatrine downregulates TLR4, TLR2, MyD88, and NF-kappaB and protects rat brains against focal ischemia[J]. Mediators Inflamm, 2009, 2009:704706. |
| [13] | Ito H,Tamura M,Matsui H,et al. Reactive oxygen species involved cancer cellular specific 5-aminolevulinic acid uptake in gastric epithelial cells[J]. J Clin Biochem Nutr, 2014, 54(2):81-5. |
| [14] | Zorov D B, Juhaszova M, Sollott S J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiol Rev, 2014, 94(3):909-50. |
| [15] | Kalogeris T, Bao Y, Korthuis R J. Mitochondrial reactive oxygen species:a double edged sword in ischemia/reperfusion vs preconditioning[J]. Redox Biol, 2014, 2:702-14. |
| [16] | Barnes P J, Karin M. Nuclear factor-kappaB:a pivotal transcription factor in chronic inflammatory diseases[J]. N Engl J Med, 1997, 336(15):1066-71. |
| [17] | 胡海波.氧化苦参碱对心血管疾病的药理作用及其机制研究进展[J].中国药业,2012,21(13):110. Hu H B. Research progress on pharmacological effects and mechanism of oxymatrine in cardiovascular disease [J]. China Pharmaceut,2012,21(13):110. |
| [18] | Li X,Wang X,Guo Y,et al. Regulation of endothelial nitric oxide synthase and asymmetric dimethylarginine by matrine attenuates isoproterenol-induced acute myocardial injury in rats[J]. J Pharm Pharmacol, 2012, 64(8):1107-18. |
| [19] | 王 洋,徐烨华,熊爱琴,等.氧化苦参碱抑制异丙肾上腺素诱导大鼠慢性心力衰竭及对ADMA代谢通路的影响[J]. 中国中药杂志,2014,39(3):471-6. Wang Y,Xu Y H,Xiong A Q, et al.Protective effect of oxymatrine on chronic heart failure and ADMA metabolism pathway in isoproterenol-induced chronic heart failure in rats[J]. China J Chin Mat Med,2014, 39(3):471-6. |
| [20] | Nakajima S,Kitamura M. Bidirectional regulation of NF-kappaB by reactive oxygen species:a role of unfolded protein response[J]. Free Radic Biol Med, 2013, 65:162-74. |
| [21] | Jaiswal A K. Nrf2 signaling in coordinated activation of antioxidant gene expression[J]. Free Radic Biol Med, 2004, 36(10):1199-207. |
| [22] | Gao X,Kim HK,Chung JM,Chung K. Enhancement of NMDA receptor phosphorylation of the spinal dorsal horn and nucleus gracilis neurons in neuropathic rats[J]. Pain, 2005, 116(1-2):62-72. |
| [23] | Wilson J A,Garry E M,Anderson H A,et al. NMDA receptor antagonist treatment at the time of nerve injury prevents injury-induced changes in spinal NR1 and NR2B subunit expression and increases the sensitivity of residual pain behaviours to subsequently administered NMDA receptor antagonists[J]. Pain, 2005, 117(3):421-32. |
| [24] | Paoletti P,Neyton J. NMDA receptor subunits:function and pharmacology[J]. Curr Opin Pharmacol, 2007, 7(1):39-47. |
| [25] | Laurie DJ,Bartke I,Schoepfer R,et al. Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies[J]. Brain Res Mol Brain Res, 1997, 51(1-2):23-32. |
| [26] | Song XS,Cao J L,Xu Y B,et al. Activation of ERK/CREB pathway in spinal cord contributes to chronic constrictive injury-induced neuropathic pain in rats[J]. Acta Pharmacol Sin, 2005, 26(7):789-98. |
| [27] | Kawasaki Y, Kohno T,Zhuang Z Y, et al. Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization[J]. J Neurosci, 2004, 24(38):8310-21. |
| [28] | Ji R R,Baba H,Brenner G J,et al. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity[J]. Nat Neurosci, 1999, 2(12):1114-9. |
| [29] | Ryan C M, Geckle M O, Orchard T J. Cognitive efficiency declines over time in adults with type 1 diabetes:effects of micro-and macrovascular complications[J]. Diabetologia, 2003, 46(7):940-8. |
| [30] | Angeli J K,Cruz Pereira C A,de Oliveira Faria T,et al. Cadmium exposure induces vascular injury due to endothelial oxidative stress:the role of local angiotensin Ⅱ and COX-2[J]. Free Radic Biol Med, 2013, 65:838-48. |
| [31] | Hasanein P,Shahidi S. Effects of hypericum perforatum extract on diabetes-induced learning and memory impairment in rats[J]. Phytother Res, 2011, 25(4):544-9. |
| [32] | Hughes G, Murphy M P, Ledgerwood E C. Mitochondrial reactive oxygen species regulate the temporal activation of nuclear factor kappaB to modulate tumour necrosis factor-induced apoptosis:evidence from mitochondria-targeted antioxidants[J]. Biochem J, 2005, 389(Pt 1):83-9. |
| [33] | Hong K,Zhang Y,Guo Y,et al. All-trans retinoic acid attenuates experimental colitis through inhibition of NF-kappaB signaling[J]. Immunol Lett, 2014,162(1PtA):34-40. |
| [34] | Davidson E P,Coppey L J,Holmes A,et al. Effect of treatment of high fat fed/low dose streptozotocin-diabetic rats with Ilepatril on vascular and neural complications[J]. Eur J Pharmacol, 2011, 668(3):497-506. |
| [35] | Tahara A, Matsuyama-Yokono A, Shibasaki M. Effects of antidiabetic drugs in high-fat diet and streptozotocin-nicotinamide-induced type 2 diabetic mice[J]. Eur J Pharmacol, 2011, 655(1-3):108-16. |
| [36] | Prabhakar P K,Prasad R,Ali S, et al. Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats[J]. Phytomedicine, 2013, 20(6):488-94. |
| [37] | Jimenez A,Mari A,Casamitjana R,et al. GLP-1 and glucose tolerance after sleeve gastrectomy in morbidly obese subjects with type 2 diabetes[J]. Diabetes, 2014, 63(10):3372-7. |
| [38] | Moree S S, Kavishankar G B, Rajesha J. Antidiabetic effect of secoisolariciresinol diglucoside in streptozotocin-induced diabetic rats[J]. Phytomedicine, 2013, 20(3-4):237-45. |
| [39] | Rajalingam R, Srinivasan N, Govindarajulu P. Effects of alloxan induced diabetes on lipid profiles in renal cortex and medulla of mature albino rats[J]. Indian J Exp Biol, 1993, 31(6):577-9. |
| [40] | Charron M J, Katz E B, Olson A L. GLUT4 gene regulation and manipulation[J]. J Biol Chem, 1999, 274(6):3253-6. |
| [41] | Gandhi G R,Stalin A,Balakrishna K,et al. Insulin sensitization via partial agonism of PPARgamma and glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway by embelin in type 2 diabetic rats[J]. Biochim Biophys Acta, 2013,1830(1):2243-55. |
