中国医科大学学报  2025, Vol. 54 Issue (2): 150-155

文章信息

刘双双, 朱正帅, 杨子林, 段东奎, 符克优, 沈索姣
LIU Shuangshuang, ZHU Zhengshuai, YANG Zilin, DUAN Dongkui, FU Keyou, SHEN Suojiao
积雪草苷调节HIF-1α/VEGF信号通路对食管癌细胞上皮-间质转化和放疗敏感性的影响
Effect of asiaticoside on epithelial-mesenchymal transition and radiotherapy sensitivity of esophageal cancer cells via regulation of the HIF-1α/VEGF signaling pathway
中国医科大学学报, 2025, 54(2): 150-155
Journal of China Medical University, 2025, 54(2): 150-155

文章历史

收稿日期:2023-12-19
网络出版时间:2025-01-15 17:44:52
积雪草苷调节HIF-1α/VEGF信号通路对食管癌细胞上皮-间质转化和放疗敏感性的影响
南阳市中心医院胸外科, 河南 南阳 473000
摘要目的 探讨积雪草苷(AS)调节缺氧诱导因子-1α(HIF-1α)/血管内皮生长因子(VEGF)信号通路对食管癌(EC)细胞上皮-间质转化(EMT)和放疗敏感性的影响。方法 以不同浓度的AS或不同放疗剂量干预EC9706细胞,四甲基偶氮唑蓝法检测细胞增殖,计算半数抑制浓度;将EC9706细胞分为control组、放射组(单纯X射线照射)、AS组、联合组(AS+X射线照射)、激活剂组(AS+X射线照射+HIF-1α/VEGF通路激活剂二甲基草酰甘氨酸),平板克隆实验检测放疗敏感性;Transwell实验检测细胞迁移与侵袭;流式细胞仪检测细胞凋亡;实时定量PCR检测HIF-VEGF mRNA表达。Western blotting检测基质金属蛋白酶-2(MMP-2)、波形蛋白(vimentin)、E-钙黏蛋白(E-cadherin)、Bcl-2相关X蛋白(Bax)及HIF-1α、VEGF蛋白表达。结果 随着AS浓度和放疗剂量的增加,EC9706细胞活力逐渐降低;与control组相比,放射组、AS组存活分数、迁移与侵袭细胞数、HIF-VEGF mRNA表达及MMP-2、vimentin、HIF-1α、VEGF蛋白表达降低,细胞凋亡率及E-cadherin、Bax表达升高(P < 0.05);与放射组、AS组相比,联合组存活分数、迁移与侵袭细胞数、HIF-VEGF mRNA表达及MMP-2、vimentin、HIF-、VEGF表达降低,细胞凋亡率及E-cadherin、Bax表达升高(P < 0.05);与联合组相比,激活剂组上述指标变化均逆转(P < 0.05)。结论 AS可能通过抑制HIF1-α/VEGF信号通路抑制EMT,增强EC细胞的放疗敏感性。
Effect of asiaticoside on epithelial-mesenchymal transition and radiotherapy sensitivity of esophageal cancer cells via regulation of the HIF-1α/VEGF signaling pathway
Department of Thoracic Surgery, Nanyang Central Hospital, Nanyang 473000, China
Abstract: Objective To investigate the effects of asiaticoside (AS) on epithelial-mesenchymal transition (EMT) and radiotherapy sensitivity of esophageal cancer (EC) cells by its mechanism of regulating the hypoxia inducible factor-1α (HIF-1α) /vascular endothelial growth factor (VEGF) signaling pathway. Methods EC9706 cells were subjected to different concentrations of AS or different doses of radiation. Methyl thiazolyl tetrazolium method was used to detect cell proliferation and calculate the half-maximal inhibitory concentration. EC9706 cells were divided into a control group, radiology group (X-ray irradiation), AS group, combined group (AS+X-ray irradiation), and activator group (AS+X-ray irradiation+HIF-1α/VEGF pathway activator dimethyloxallyl glycine). Plate cloning experiments were conducted to detect sensitivity, and Transwell assays were used to detect cell migration and invasion. Flow cytometry helped detect apoptosis, and real-time quantitative polymerase chain reaction detected the expression of HIF- and VEGF mRNA. Western blotting method was used to detect the expression of matrix metalloproteinase-2 (MMP-2), vimentin, E-cadherin, Bcl-2 associated X protein (Bax), HIF-1α, and VEGF proteins. Results With the increase of AS concentration and radiation dose, the cell viability of EC9706 cells gradually decreased; compared with the control group, the survival fraction; the numbers of cells that had migrated and invaded; the expression of HIF- and VEGF mRNA; and the expression of MMP-2, vimentin, HIF-1α, and VEGF in the radiology group and AS group were reduced; further, the apoptosis rate and the expression of E-cadherin and Bax were increased (P < 0.05). Compared with the radiology group and AS group, the survival fraction; the numbers of cells that had migrated and invaded; the expression of HIF- and VEGF mRNA; and the expressions of MMP-2, vimentin, HIF-1α, and VEGF in the combined group were reduced; the apoptosis rate and the expression of E-cadherin and Bax were increased (P < 0.05). In comparison with the combined group, the changes in the above indicators in the activator group were reversed (P < 0.05). Conclusion AS may inhibit EMT by inhibiting the HIF-1α/VEGF signaling pathway, thus enhancing the radiotherapy sensitivity of EC cells.

食管癌(esophageal cancer,EC) 是一种具有强侵袭性的消化道恶性肿瘤,2020年全球新发病例超过60万,死亡人数超过54万,且中国的发病率最高,占全球新病例的50% [1]。放疗是晚期或转移性EC的主要治疗手段,放射耐药的EC患者预后较差[2]。研究[3]显示,DNA损伤修复、上皮-间质转化(epithelial-mesenchymal transition,EMT) 和细胞程序性死亡的异常调控等均与EC的放射耐药相关。积雪草苷(asiaticoside,AS) 是一种五环三萜皂苷,具有抗炎、抗肿瘤等多种药理作用[4]。AS可抑制电离辐射诱导的肺癌细胞迁移和侵袭,增强非小细胞肺癌患者的放疗效果[5]。AS对胃癌[6]、胰腺癌[7]等消化道肿瘤有抑制作用,因此推测AS对EC细胞进展也具有抑制作用。缺氧诱导因子-1α (hypoxia inducible factor-1α,HIF-1α) /血管内皮生长因子(vascular endothelial growth factor,VEGF) 可以介导血管生成,促进结直肠癌细胞侵袭和转移[8]。HIF-1α/VEGF信号通路的激活能够降低子宫内膜癌细胞放疗敏感性[9]。AS调节HIF-1α/VEGF信号通路对EC细胞EMT和放疗敏感性的影响尚不清楚。本研究旨在探讨AS对EC细胞系EC9706细胞EMT和放疗敏感性的影响。

1 材料与方法 1.1 细胞来源

EC9706细胞购自美国ATCC。

1.2 主要试剂与仪器

AS (纯度≥98%),南京道斯夫生物科技有限公司;四甲基偶氮唑蓝(methyl thiazolyl tetrazolium,MTT) 细胞增殖检测试剂盒,上海白益生物科技有限公司;HIF-1α/VEGF通路激活剂二甲基草酰甘氨酸(dimethyloxallyl glycine,DMOG),杭州昊鑫生物科技股份有限公司;实时定量PCR试剂盒,北京达科为生物技术有限公司;膜联蛋白V异硫氰酸荧光素/碘化丙啶(Annexin V fluorescein isothiocyanate/propy-liodide,Annexin V FITC/PI) 检测试剂盒,上海晶风生物科技有限公司;兔源基质金属蛋白酶(matrix me-talloproteinase,MMP) -2、波形蛋白(vimentin)、E-钙黏蛋白(E-cadherin)、Bcl-2相关X蛋白(Bcl-2 associated X protein,Bax) 及HIF-1α、VEGF、GAPDH一抗及HRP标记的羊抗兔二抗,英国abcam公司;Multiskan FC酶标仪、A24858流式细胞仪,美国赛默飞世尔科技公司;Turbo 16P实时荧光定量PCR仪,南京诺唯赞生物科技股份有限公司;TE2000-U荧光显微镜,日本Nikon公司。

1.3 实验方法

1.3.1 MTT法检测EC9706细胞增殖活性

将EC9706以1×104/孔接种到96孔板中培养过夜。加入含0、0.5、1、2、4、8 μmol/L AS [10]的培养液24 h或用0、2、4、6、8 Gy照射1~2 min后用完全培养液培养24 h,加入20 μL MTT溶液,弃上清液,用二甲基亚砜溶解甲臜,酶标仪检测490 nm吸光度,计算细胞增殖抑制率和半数抑制浓度(half maximal inhibitory concentration,IC50)。

1.3.2 平板克隆实验

将EC9706细胞分为control组、放射组(单纯X射线照射)、AS组、联合组(AS+X射线照射)、激活剂组(AS+X射线照射+HIF-1α/VEGF通路激活剂DMOG),AS组、联合组、激活剂组加入含有4 μmol/L的AS培养液,激活剂组加入10 μmol/L

DMOG[11],培养48 h,放射组、联合组、激活剂组用6 Gy照射。孵育10~14 d后,甲醇固定、结晶紫染色、水洗、干燥。在光学显微镜下计数,并计算细胞存活分数。

1.3.3 细胞迁移与侵袭实验

细胞以1.0×105/mL悬浮于无血清培养基中。将带有或不带有Matrigel预包被的Transwell小室插入24孔板中,在上室加入200 μL悬液,在下室加入500 μL完全培养基。48 h后用5%多聚甲醛固定,0.1%结晶紫染色。随机选取5个视野进行计数。侵袭实验的Transwell小室用Matrigel预先包被。

1.3.4 细胞凋亡检测

取对数生长期各组EC9706细胞,用磷酸盐缓冲液洗涤。加入5 μL Annexin V-FITC和PI染液,遮光染色15 min,采用流式细胞仪检测细胞凋亡。

1.3.5 HIF-VEGF mRNA表达检测

实时定量PCR检测HIF-VEGF mRNA表达。用TRIzol试剂提取细胞总RNA。用反转录试剂盒将RNA合成cDNA,按照实时定量PCR试剂盒配置反应体系。用实时定量PCR仪检测HIF-VEGF mRNA表达。实时定量PCR引物序列见表 1GAPDH为内参,采用2-ΔΔCt法计算相对表达量。

表 1 引物序列 Tab.1 Primer sequences
Gene Forward primer (5’-3’) Reverse primer (5’-3’)
HIF- GAAGTGTACCCTAACTAGCCG TCACAAATCAGCACCAAGC
VEGF TGCTTTCTCCGCTCTGA ACTGAGGAGTCCAACAT
GAPDH GAAGGTGAAGGTCGGAGTCA AATGAAGGGGTCATTGATGG

1.3.6 蛋白表达检测

用RIPA缓冲液从细胞中分离提取蛋白。二辛可宁酸法测定蛋白浓度。25 µg蛋白经6%十二烷基硫酸钠聚丙烯酰胺凝胶电泳分离后,转移至聚偏二氟乙烯膜上。用5%脱脂牛奶37 ℃封闭1 h后,与MMP-2、vimentin、E-cadherin、Bax、HIF-1α、VEGF、GAPDH蛋白一抗4 ℃孵育过夜,再与二抗37 ℃孵育1 h。以GAPDH为内参,使用化学发光检测试剂对蛋白质进行可视化,并通过软件Imagepro Plus 6.0定量蛋白表达。

1.4 统计学分析

采用Graphpad Prism 7.0软件分析数据。计量资料以x±s表示。单因素方差分析用于多组间的比较,组间两两比较采用SNK-q检验。P < 0.05为差异有统计学意义。

2 结果 2.1 AS对EC9706细胞活力的影响

与0 μmol/L AS干预(0.00%±0.00%) 比较,EC9706细胞增殖抑制率在0.5、1、2、4、8 μmol/L AS干预下以剂量依赖性的方式增加(6.02%±2.15%、13.78%±2.36%、31.46%±3.42%、46.19%±3.90%、63.21%±4.68%,P < 0.05),EC9706细胞IC50为4.60 μmol/L,故选取4 μmol/L AS进行后续实验。与0 Gy照射(0.00%±0.00%) 比较,在2、4、6、8 Gy照射后EC9706细胞增殖抑制率增加(8.49%±1.67%、19.83%±2.19%、38.52%±2.71%、65.31%±3.84%,P < 0.05),IC50为6.48 Gy,故选取6 Gy放疗剂量进行后续实验。

2.2 AS对EC9706细胞放疗敏感性的影响

与control组(91.27%±4.76%) 相比,放射组(72.31%±3.68%) 和AS组(65.13%±3.41%) 细胞存活分数降低(P < 0.05);与放射组和AS组相比,联合组(34.65%±2.52%) 细胞存活分数降低(P < 0.05);与联合组相比,激活剂组(54.82%±4.72%) 细胞存活分数升高(P < 0.05)。见图 1

A, control group; B, radiology group; C, AS group; D, combined group; E, activator group. 图 1 AS对EC9706细胞放疗敏感性的影响×40 Fig.1 Effect of AS on the sensitivity of EC9706 cells to radiotherapy ×40

2.3 AS对EC9706细胞迁移与侵袭的影响

与control组(134.57±9.26,125.78±8.34) 相比,放射组(96.42±8.25,87.53±6.56) 和AS组(86.39±5.14,72.65±5.17) 迁移与侵袭细胞数降低(P < 0.05);与放射组和AS组相比,联合组(45.28±3.16,43.58±4.18) 迁移与侵袭细胞数降低(P < 0.05);与联合组相比,激活剂组(61.48±5.37,60.48±4.69) 迁移与侵袭细胞数升高(P < 0.05)。见图 2

图 2 AS对EC9706细胞迁移与侵袭的影响 结晶紫染色×200 Fig.2 Effects of AS on the migration and invasion of EC9706 cells Crystal violet staining ×200

2.4 AS对EC9706细胞凋亡的影响

与control组(8.54%±2.16%) 相比,放射组(17.83%±3.09%) 和AS组(22.75%±3.28%) 凋亡率升高(P < 0.05);与放射组和AS组相比,联合组(45.68%±3.37%) 凋亡率升高(P < 0.05);与联合组相比,激活剂组(24.65%±2.61%) 凋亡率降低(P < 0.05)。见图 3

A, control group; B, radiology group; C, AS group; D, combined group; E, activator group. 图 3 AS对EC9706细胞凋亡的影响 Fig.3 Effect of AS on the apoptosis of EC9706 cells

2.5 AS对EC9706细胞中HIF-VEGF mRNA表达的影响

与control组(1.00±0.11,1.00±0.12) 相比,放射组(0.69±0.09,0.72±0.07) 和AS组(0.54±0.06,0.56±0.08) HIF-VEGF mRNA表达降低(P < 0.05);与放射组和AS组相比,联合组(0.23±0.04,0.25±0.03) HIF-VEGF mRNA表达降低(P < 0.05);与联合组相比,激活剂组(0.49±0.05,0.51±0.06) HIF-VEGF mRNA表达升高(P < 0.05)。

2.6 AS对MMP-2、vimentin、E-cadherin、Bax、HIF-1α、VEGF蛋白表达的影响

与control组相比,放射组和AS组MMP-2、vimentin、HIF-1α、VEGF表达降低,E-cadherin、Bax表达升高(P < 0.05);与放射组和AS组相比,联合组MMP-2、vimentin、HIF-1α、VEGF表达降低,E-cadherin、Bax表达升高(P < 0.05);与联合组相比,激活剂组MMP-2、vimentin、HIF-1α、VEGF表达升高,E-cadherin、Bax表达降低(P < 0.05)。见图 45

1, control group; 2, radiology group; 3, AS group; 4, combined group; 5, activator group. 图 4 EC9706细胞中MMP-2、vimentin、E-cadherin、Bax、HIF-1α、VEGF蛋白表达情况 Fig.4 Expressions of MMP-2, vimentin, E-cadherin, Bax, HIF-1α, and VEGF in EC9706 cells

A, MMP-2; B, vimentin; C, E-cadherin; D, Bax; E, HIF-1α; F, VEGF. *P < 0.05 vs. control group; $ P < 0.05 vs. radiology group; &P < 0.05 vs. AS group; #P < 0.05 vs. combined group. 图 5 各组EC9706细胞中MMP-2、vimentin、E-cadherin、Bax、HIF-1α、VEGF表达比较 Fig.5 Comparison of the expressions of MMP-2, vimentin, E-cadherin, Bax, HIF-1α, and VEGF in EC9706 cells of each group

3 讨论

AS是积雪草的主要活性成分,可通过miR-635/高迁移率族蛋白1轴抑制胃癌进展,是对抗胃癌的潜在治疗药物[10]。EMT与肿瘤、侵袭、转移和耐药性有关,可促进肿瘤细胞侵袭和迁移。在EMT发生时E-cadherin表达降低,vimentin表达升高[12]。AS通过阻断p65和p38丝裂原活化蛋白激酶激活,抑制胰腺癌PANC-1细胞EMT特性[7]。本研究发现,AS可抑制EC9706细胞增殖、迁移和侵袭,降低转移相关蛋白(MMP-2、Vimentin) 表达,促进细胞凋亡及凋亡蛋白Bax及E-cadherin蛋白表达,且联合X射线照射对EC9706细胞恶性行为的抑制作用更明显。提示AS通过降低EMT抑制细胞迁移和侵袭,促进细胞凋亡,增加放疗敏感性,从而抑制EC进展。目前EC患者的传统治疗方法包括手术、化疗、放化疗等,近期手术、免疫治疗与放化疗联合能够提高EC患者生存率,但放化疗对人体损害较大[2, 13]。AS作为天然提取物,不良反应小,具有成为治疗EC靶向药物的潜力,未来可能单独或者通过与放化疗联合发挥抗EC作用。

VEGF能促进MMP分泌,导致细胞外基质降解并为细胞侵入附近组织提供通道。MMP-2和MMP-9与EC等癌细胞的迁移和侵袭能力密切相关[14]。VEGF是HIF-1α的关键下游效应物,HIF-1α/VEGF信号通路激活可诱导非小细胞肺癌的EMT [15]。靶向抑制HIF-1α/VEGF信号通路可以提高子宫内膜癌细胞的放疗敏感性[9]。基于这些发现,HIF-1α/VEGF信号通路可能是治疗EC转移的重要靶点。本研究结果显示,AS可抑制EC9706细胞HIF1-α、VEGF表达。而使用HIF1-α/VEGF信号通路激活剂后减弱了AS对EMT的抑制作用。提示AS可能通过抑制HIF1-α/VEGF通路抑制EMT,从而增强EC细胞的放疗敏感性。

综上所述,AS可能通过抑制HIF1-α/VEGF信号通路抑制EMT,从而增强EC细胞的放疗敏感性。本研究为EC的治疗提供新的药物参考,然而AS增强EC细胞的放疗敏感性可能涉及到其他通路,有待进一步验证。

参考文献
[1]
LIU CQ, MA YL, QIN Q, et al. Epidemiology of esophageal cancer in 2020 and projections to 2030 and 2040[J]. Thorac Cancer, 2023, 14(1): 3-11. DOI:10.1111/1759-7714.14745
[2]
WANG HL, XU YF, ZUO FL, et al. Immune-based combination thera- py for esophageal cancer[J]. Front Immunol, 2022, 13: 1020290. DOI:10.3389/fimmu.2022.1020290
[3]
AN LB, LI MY, JIA QG. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma[J]. Mol Cancer, 2023, 22(1): 140. DOI:10.1186/s12943-023-01839-2
[4]
HE ZL, HU YY, NIU ZQ, et al. A review of pharmacokinetic and pharmacological properties of asiaticoside, a major active constituent of Centella asiatica (L.) Urb[J]. J Ethnopharmacol, 2023, 302(Pt A): 115865. DOI:10.1016/j.jep.2022.115865
[5]
HAN AR, LEE SH, HAN SJ, et al. Triterpenoids from the leaves of Centella asiatica inhibit ionizing radiation-induced migration and invasion of human lung cancer cells[J]. Evid Based Complement Alternat Med, 2020, 2020: 3683460. DOI:10.1155/2020/3683460
[6]
YE CM, YAO ZC, WANG YY, et al. Asiaticoside promoted ferroptosis and suppressed immune escape in gastric cancer cells by downregulating the Wnt/β-catenin pathway[J]. Int Immunopharmacol, 2024, 134: 112175. DOI:10.1016/j.intimp.2024.112175
[7]
HE YG, PENG XH, ZHENG L, et al. Asiaticoside inhibits epithe- lial-mesenchymal transition and stem cell-like properties of pancreatic cancer PANC-1 cells by blocking the activation of p65 and p38MAPK[J]. J Gastrointest Oncol, 2021, 12(1): 196-206. DOI:10.21037/jgo-20-533
[8]
CHEN MT, ZHONG KY, TAN JC, et al. Baicalein is a novel TLR4- targeting therapeutics agent that inhibits TLR4/HIF-1α/VEGF signaling pathway in colorectal cancer[J]. Clin Transl Med, 2021, 11(11): e564. DOI:10.1002/ctm2.564
[9]
MIYASAKA A, ODA K, IKEDA Y, et al. PI3K/mTOR pathway inhibition overcomes radioresistance via suppression of the HIF1-α/VEGF pathway in endometrial cancer[J]. Gynecol Oncol, 2015, 138(1): 174-180. DOI:10.1016/j.ygyno.2015.04.015
[10]
ZHANG C, JI XL, CHEN ZG, et al. Asiaticoside suppresses gastric cancer progression and induces endoplasmic reticulum stress through the miR-635/HMGA1 axis[J]. J Immunol Res, 2022, 2022: 1917585. DOI:10.1155/2022/1917585
[11]
LI J, LU X, WEI LQ, et al. PHD2 attenuates high-glucose-induced blood retinal barrier breakdown in human retinal microvascular endothelial cells by regulating the HIF-1α/VEGF pathway[J]. Inflamm Res, 2022, 71(1): 69-79. DOI:10.1007/s00011-021-01518-2
[12]
XU JC, CHEN TY, LIAO LT, et al. NETO2 promotes esophageal cancer progression by inducing proliferation and metastasis via PI3K/AKT and ERK pathway[J]. Int J Biol Sci, 2021, 17(1): 259-270. DOI:10.7150/ijbs.53795
[13]
YANG H, LIU H, CHEN YP, et al. Long-term efficacy of neoadjuvant chemoradiotherapy plus surgery for the treatment of locally advanced esophageal squamous cell carcinoma: the NEOCRTEC5010 randomized clinical trial[J]. JAMA Surg, 2021, 156(8): 721-729. DOI:10.1001/jamasurg.2021.2373
[14]
MOHAMMADI F, JAVID H, AFSHARI AR, et al. Substance P accelerates the progression of human esophageal squamous cell carcinoma via MMP-2, MMP-9, VEGF-A, and VEGFR1 overexpression[J]. Mol Biol Rep, 2020, 47(6): 4263-4272. DOI:10.1007/s11033-020-05532-1
[15]
WANG ML, WANG WD, DING JM, et al. Downregulation of Rab17 promotes cell proliferation and invasion in non-small cell lung cancer through STAT3/HIF-1α/VEGF signaling[J]. Thorac Cancer, 2020, 11(2): 379-388. DOI:10.1111/1759-7714.13278