文章信息
- 郭晓莉, 杜燕, 李莎莎, 袁二磊
- GUO Xiaoli, DU Yan, LI Shasha, YUAN Erlei
- miR-494-3p靶向调控RCAN1对高糖诱导的足细胞损伤的影响
- RCAN1-targeted effects of miR-494-3p on high glucose-induced podocyte injury
- 中国医科大学学报, 2023, 52(8): 711-717
- Journal of China Medical University, 2023, 52(8): 711-717
-
文章历史
- 收稿日期:2022-11-08
- 网络出版时间:2023-07-28 15:18:16
2. 西安医学院第一附属医院肾脏内科, 西安 710077;
3. 陕西双博中医肝肾病医院肾脏内科, 西安 710016
2. Department of Nephrology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China;
3. Department of Nephrology, Shaanxi Shuangbo Hospital of HepatoRenal Diseases, Xi'an 710016, China
糖尿病肾病是糖尿病并发症之一,足细胞损伤与糖尿病肾病的发生发展密切相关。持续高血糖水平可增加炎性细胞因子分泌量、促进细胞凋亡,进而造成足细胞损伤[1-2]。微RNA(microRNA,miRNA)是一种小的非编码RNA,调节基因表达,参与糖尿病肾病和终末期肾病的发生和发展[3-4]。据研究[5-6]报道,miRNA与足细胞损伤有关,并可作为糖尿病肾病诊断的潜在生物标志物。miR-494-3p在心脏手术相关急性肾损伤中表达上调,可靶向HtrA3,增加缺氧/复氧(hypoxia/reoxygenation,H/R)诱导的人肾小管上皮细胞HK-2中的炎症反应[7]。最近的研究[8]显示,在db/db小鼠肾组织和高糖(high glucose,HG)处理的人肾小管上皮细胞HK-2中,miR-494-3p水平上调,抑制miR-494-3p可减轻HG诱导的细胞功能障碍。但miR-494-3p在糖尿病肾病中的作用机制尚不完全清楚。StarBase数据库预测显示,miR-494-3p与钙调磷酸酶调节蛋白1(regulator of calcineurin 1,RCAN1)存在互补序列,RCAN1是miR-494-3p的潜在靶基因。RCAN1已被报道在人类糖尿病肾病、IgA肾病和狼疮性肾炎的肾小球以及人类免疫缺陷病毒(human immunodeficiency virus,HIV)相关肾病和糖尿病肾病的小鼠模型中表达受到抑制;RCAN1抑制会加重足细胞损伤[9]。在HG诱导的足细胞中,RCAN1表达下调,上调其表达可减轻足细胞损伤[10]。然而,miR-494-3p能否通过调控RCAN1减轻糖尿病肾病足细胞损伤还未见相关报道。因此,本研究拟探讨miR-494-3p是否可通过靶向调控RCAN1表达而影响HG诱导的足细胞损伤。
1 材料与方法 1.1 材料小鼠肾足细胞MPC5购自美国ATCC公司;LipofectamineTM 3000 Transfection Reagent购自美国Invitrogen公司;TRIzol Universal、miRcute增强型miRNA cDNA第一链合成试剂盒、FastKing一步法除基因组cDNA第一链合成预混试剂、SuperReal荧光定量预混试剂彩色版(SYBR Green)购自天根生化科技(北京)有限公司;anti-miR-NC、anti-miR-494-3p、miR-NC、miR-494-3p mimic购自广州锐博生物技术有限公司;pcDNA、RCAN1过表达载体购自上海吉玛制药技术有限公司;凋亡检测试剂盒、荧光素酶活性检测试剂盒购自美国Sigma公司;野生型载体Wt-RCAN1、突变型载体Mut-RCAN1购自美国Promega公司;白细胞介素-1β(interleukin 1β,IL-1β)、肿瘤坏死因子-α(tumor necrosis factor α,TNF-α)检测试剂盒、内参GAPDH抗体、IgG二抗购自美国Abcam公司;兔抗鼠Bcl-2、Bax抗体购自美国CST公司。
1.2 方法 1.2.1 细胞培养及分组MPC5细胞于含5.3 mmol/L葡萄糖培养基内培养24 h,记为NC组。加入含有30 mmol/L葡萄糖培养基培养24 h[11],记为HG组。参照LipofectamineTM 3000 Transfection Reagent说明书,将anti-miR-NC、anti-miR-494-3p、pcDNA、RCAN1过表达载体分别转染至MPC5细胞,48 h后收集细胞,用含30 mmol/L葡萄糖培养基培养24 h,分别记为HG+anti-miR-NC组、HG+anti-miR-494-3p组、HG+pcDNA组、HG+RCAN1组。anti-miR-494-3p和si-NC、si-RCAN1分别共转染至MPC5细胞,48 h后收集细胞,用含30 mmol/L葡萄糖培养基培养24 h,分别记为HG+anti-miR-494-3p+si-NC组、HG+anti-miR-494-3p+si-RCAN1组。
1.2.2 qRT-PCR检测miR-494-3p、RCAN1 mRNA的表达水平用TRIzol Universal提取各组MPC5细胞总RNA,用miRcute增强型miRNA cDNA第一链合成试剂盒合成cDNA(miRNA专用),FastKing一步法除基因组cDNA第一链合成预混试剂合成cDNA(用于检测RCAN1),SuperReal荧光定量预混试剂彩色版(SYBR Green)进行定量检测,2-ΔΔCt法计算基因相对表达量。
1.2.3 流式细胞术检测细胞凋亡率收集各组MPC5细胞,弃上清,细胞沉淀中加入500 μL结合缓冲液重悬,按照凋亡检测试剂盒说明书检测凋亡率。
1.2.4 ELISA法检测IL-1β、TNF-α水平取各组MPC5细胞培养上清液,ELISA法检测IL-1β、TNF-α水平,按照试剂盒说明书操作。
1.2.5 双荧光素酶报告实验检测miR-494-3p与RCAN1的靶向关系将miR-494-3p与RCAN1结合位点的序列克隆至pGL3,构建野生型载体Wt-RCAN1。用点突变试剂盒对结合位点进行突变,将突变位点的序列克隆至pGL3,构建突变型载体Mut-RCAN1。用LipofectamineTM 3000 Transfection Reagent分别共转染miR-NC/miR-494-3p mimics、Wt-RCAN1/Mut-RCAN1至MPC5细胞,24 h后检测细胞荧光素酶活性。
1.2.6 Western blotting检测Bcl-2、Bax、RCAN1蛋白表达量取MPC5细胞加入RIPA裂解液提取总蛋白,100 ℃变性10 min,取30 μg蛋白行SDS-PAGE,转膜,5%脱脂牛奶封闭2 h,加入Bcl-2(1∶800)、Bax(1∶800)、RCAN1(1∶1 000)一抗、内参GAPDH抗体(1∶2 000),4 ℃孵育过夜,加入二抗(1∶3 000),37 ℃孵育2 h。用Quantity One软件对蛋白条带进行定量。
1.3 统计学分析采用SPSS 21.0统计软件分析数据,计量资料均符合正态分布,采用X±s表示,2组间比较采用独立样本t检验,多组间比较采用单因素方差分析。P < 0.05为差异有统计学意义。
2 结果 2.1 miR-494-3p在HG诱导的小鼠足细胞中的表达与NC组比较,HG组miR-494-3p表达量升高(2.26±0.19 vs 0.99±0.08,P < 0.05);与HG+anti-miR-NC组比较,HG+anti-miR-494-3p组miR-494-3p表达量降低(1.38±0.12 vs 2.30±0.21,P < 0.05)。
2.2 沉默miR-494-3p对HG诱导的小鼠足细胞损伤的影响与NC组比较,HG组凋亡率、Bax蛋白水平、IL-1β、TNF-α水平升高(P < 0.05),Bcl-2蛋白水平降低(P < 0.05);与HG+anti-miR-NC组比较,HG+anti-miR-494-3p组凋亡率、Bax蛋白水平、IL-1β、TNF-α水平降低(P < 0.05),Bcl-2蛋白水平升高(P < 0.05)。见图 1、表 1。
![]() |
A, apoptosis rate; B, Bcl-2 and Bax protein expression. 图 1 沉默miR-494-3p对HG诱导的小鼠足细胞凋亡的影响 Fig.1 Effect of silencing miR-494-3p on apoptosis of mouse podocytes induced by high glucose |
Group | Apoptosis rate(%) | Bcl-2 | Bax | IL-1β(ng/L) | TNF-α(ng/L) |
NC | 6.71±0.43 | 0.88±0.09 | 0.19±0.03 | 41.38±3.74 | 62.17±5.82 |
HG | 28.47±2.251) | 0.42±0.051) | 0.57±0.061) | 98.52±7.911) | 125.43±10.391) |
HG+anti-miR-NC | 28.62±2.49 | 0.39±0.04 | 0.59±0.05 | 94.59±8.28 | 121.42±11.56 |
HG+anti-miR-494-3p | 13.44±1.522) | 0.61±0.052) | 0.33±0.042) | 62.77±5.642) | 92.36±7.572) |
F | 317.315 | 124.490 | 156.837 | 150.231 | 93.562 |
P | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 |
1)compared with NC group,P < 0.05;2)compared with HG+anti-miR-NC group,P < 0.05. |
2.3 miR-494-3p靶向RCAN1
miR-494-3p和RCAN1存在结合位点,见图 2。双荧光素酶实验结果显示,共转染Wt-RCAN1与miR-494-3p mimic的MPC5细胞荧光素酶活性较共转染Wt-RCAN1与miR-NC的MPC5细胞荧光素酶活性降低(0.41±0.06 vs 0.99±0.10,t = 14.920,P < 0.05),共转染Mut-RCAN1与miR-494-3p mimics的MPC5细胞荧光素酶活性较共转染Mut-RCAN1与miR-NC的MPC5细胞荧光素酶活性无统计学差异(0.99±0.09 vs 1.02±0.10,t = 0.669,P > 0.05)。
![]() |
图 2 miR-494-3p和RCAN1相互结合的位点 Fig.2 The binding sites of miR-494-3p and RCAN1 |
2.4 miR-494-3p靶向负调控RCAN1
与NC组比较,HG组RCAN1 mRNA及蛋白水平降低(P < 0.05);与HG+anti-miR-NC组比较,HG+anti-miR-494-3p组RCAN1 mRNA及蛋白水平升高(P < 0.05),见图 3、表 2。
![]() |
图 3 RCAN1蛋白表达 Fig.3 Expression of RCAN1 protein |
Group | RCAN1 mRNA | RCAN1 protein |
NC | 1.00±0.09 | 0.83±0.07 |
HG | 0.35±0.061) | 0.20±0.031) |
HG+anti-miR-NC | 0.37±0.04 | 0.22±0.04 |
HG+anti-miR-494-3p | 0.75±0.062) | 0.59±0.052) |
F | 210.267 | 338.182 |
P | < 0.001 | < 0.001 |
1)compared with NC group,P < 0.05;2)compared with HG+anti-miR-NC group,P < 0.05. |
2.5 上调RCAN1对HG诱导的小鼠足细胞损伤的影响
与HG+pcDNA组比较,HG+RCAN1组凋亡率、Bax蛋白水平、IL-1β、TNF-α水平降低(P < 0.05),Bcl-2蛋白水平升高(P < 0.05),见图 4、表 3。
![]() |
, apoptosis rate; B, RCAN1, Bcl-2 and Bax protein expression. 图 4 上调RCAN1对HG诱导的小鼠足细胞凋亡的影响 Fig.4 Effect of upregulation of RCAN1 on apoptosis of mouse podocytes induced by high glucose |
Group | RCAN1 mRNA | RCAN1 protein | Apoptosis rate(%) | Bcl-2 | Bax | IL-1β(ng/L) | TNF-α(ng/L) |
HG+pcDNA | 0.34±0.05 | 0.24±0.03 | 27.52±3.07 | 0.39±0.04 | 0.58±0.07 | 95.77±9.42 | 124.39±11.23 |
HG+RCAN1 | 0.88±0.04 | 0.63±0.07 | 12.38±1.50 | 0.56±0.05 | 0.29±0.03 | 57.36±6.71 | 89.47±8.52 |
t | 25.300 | 15.363 | 13.293 | 7.965 | 11.424 | 9.963 | 7.432 |
P | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 |
2.6 下调RCAN1可逆转沉默miR-494-3p对HG诱导的小鼠足细胞损伤的影响
与HG+anti-miR-494-3p+si-NC组比较,HG+anti-miR-494-3p+si-RCAN1组凋亡率、Bax蛋白水平、IL-1β、TNF-α水平升高(P < 0.05),Bcl-2蛋白水平降低(P < 0.05),见图 5、表 4。
![]() |
A, apoptosis rate; B, RCAN1, Bcl-2 and Bax protein expression. 1, HG+anti-miR-494-3p+si-NC; 2, HG+anti-miR-494-3p+si-RCAN1. 图 5 下调RCAN1可逆转沉默miR-494-3p对HG诱导的小鼠足细胞凋亡的影响 Fig.5 Down-regulation of RCAN1 reversed the effect of silencing miR-494-3p on the apoptosis of mouse podocytes induced by high glucose |
Group | RCAN1 mRNA | RCAN1 protein | Apoptosis rate(%) | Bcl-2 | Bax | IL-1β(ng/L) | TNF-α(ng/L) |
HG+anti-miR-494-3p+si-NC | 0.76±0.08 | 0.60±0.04 | 13.26±1.19 | 0.62±0.06 | 0.32±0.04 | 61.59±5.74 | 87.26±8.58 |
HG+anti-miR-494-3p+si-RCAN1 | 0.38±0.03 | 0.27±0.05 | 19.58±1.63 | 0.45±0.03 | 0.50±0.03 | 80.55±7.18 | 117.36±10.26 |
t | 13.343 | 15.461 | 9.395 | 7.603 | 10.800 | 6.188 | 6.752 |
P | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 |
3 讨论
miRNA与糖尿病肾病密切相关,可作为疾病诊断的生物标志物和治疗靶点[12-13]。在HG诱导的足细胞损伤中有miR-15b-5p[14]、miR-770-5p[15]和miR-21-5p[16]等多种miRNA存在异常表达。因此,对异常miRNA的调控是治疗糖尿病肾病的重要策略。miR-494-3p在肾损伤中存在高表达,具有一定的临床诊断价值[17-18]。在糖尿病大鼠心肌细胞中,miR-494-3p呈高表达,与高脂程度呈正相关,并可促进胰岛素抵抗的发生[19]。此外,在HG诱导的HK-2细胞中miR-494-3p表达上调,抑制其表达可减轻细胞功能障碍[8]。本研究结果显示,HG诱导的MPC5细胞凋亡率、Bax蛋白水平升高,Bcl-2表达下调,与既往研究[20]结果相似,表明成功建立足细胞损伤模型。本研究发现,HG诱导的MPC5细胞中miR-494-3p表达上调,提示miR-494-3p可能参与HG诱导的足细胞损伤。而沉默miR-494-3p可减弱HG对MPC5细胞凋亡的促进作用,提示沉默miR-494-3p可抑制HG诱导的MPC5细胞凋亡,与以往的研究一致,再次证实了miR-494-3p可能参与糖尿病肾病发生过程。IL-1β、TNF-α水平升高可促进足细胞损伤,引起足细胞功能障碍[21-22]。本研究结果显示,HG诱导的MPC5细胞中IL-1β、TNF-α水平升高,沉默miR-494-3p可降低IL-1β、TNF-α水平,提示沉默miR-494-3p可抑制HG诱导的MPC5细胞炎症反应。这可能与miR-494-3p表达状态有关,其水平升高可引起足细胞功能障碍,促进细胞凋亡、炎性细胞因子分泌,造成细胞损伤。
RCAN1是一种多功能蛋白,参与神经退行性变、炎症和细胞凋亡[23-25]。在心血管疾病中,RCAN1呈低表达,可作为心血管疾病治疗的潜在靶点[26]。在肾脏疾病中,RCAN1表达水平降低,上调其表达可降低活化T细胞核因子转录活性,稳定肌动蛋白细胞骨架组织,减轻阿霉素诱导的足细胞损伤[9]。此外,RCAN1是炎症反应的重要调节因子[27]。升高的RCAN1可抑制氧糖剥夺诱导的星形胶质细胞中NF-κB的活化和核转移,减轻炎性细胞因子TNF-α、IL-1β、IL-6的释放,而RCAN1沉默则具有相反的作用[28]。本研究显示,在HG处理的MPC5细胞中,RCAN1水平降低,上调其表达可抑制细胞凋亡及炎性细胞因子表达,提示上调RCAN1表达可抑制炎症反应和细胞凋亡,对HG诱导的足细胞损伤具有保护作用。
miRNA是基因表达的重要转录后调节剂,能特异性结合下游靶基因mRNA的3’UTR,抑制靶基因翻译、表达[29-31]。本研究通过生物信息学预测发现miR-494-3p与RCAN1序列存在互补的结合位点,双荧光素酶实验结果证实miR-494-3p可靶向结合RCAN1,并负向调控RCAN1表达,由此推测miR-494-3p/RCAN1在足细胞损伤中可能发挥重要调控作用。为了验证此推测,本研究在沉默miR-494-3p的基础上,采用小分子干扰技术下调RCAN1表达。结果发现,RCAN1表达的下调可减弱沉默miR-494-3p对HG诱导的MPC5细胞凋亡、炎性细胞因子表达的抑制作用。提示miR-494-3p靶向调控RCAN1促进HG诱导的MPC5细胞损伤。
综上所述,沉默miR-494-3p可通过促进RCAN1表达而抑制HG诱导的MPC5细胞凋亡及炎症反应。本研究首次证实了miR-494-3p可靶向调控RCAN1参与HG诱导的足细胞损伤,为进一步阐释糖尿病肾病的调节机制提供了理论基础,可为糖尿病肾病治疗提供新方向。
[1] |
HAN X, LI QB, WANG CY, et al. MicroRNA-204-3p attenuates high glucose-induced MPC5 podocytes apoptosis by targeting braykinin B2 receptor[J]. Exp Clin Endocrinol Diabetes, 2019, 127(6): 387-395. DOI:10.1055/a-0630-0173 |
[2] |
WEI B, LIU YS, GUAN HX. MicroRNA-145-5p attenuates high glucose-induced apoptosis by targeting the Notch signaling pathway in podocytes[J]. Exp Ther Med, 2020, 19(3): 1915-1924. DOI:10.3892/etm.2020.8427 |
[3] |
JIANG ZH, TANG YZ, SONG HN, et al. miRNA-342 suppresses renal interstitial fibrosis in diabetic nephropathy by targeting SOX6[J]. Int J Mol Med, 2020, 45(1): 45-52. DOI:10.3892/ijmm.2019.4388 |
[4] |
FELACO P, FELACO M, FRANCESCHELLI S, et al. Erythropoietin induces miRNA-210 by JAK2/STAT5 signaling in PBMCs of end-stage renal disease patients[J]. FEBS J, 2020, 287(23): 5167-5182. DOI:10.1111/febs.15302 |
[5] |
XU Y, ZHANG J, FAN L, et al. MiR-423-5p suppresses high-glucose-induced podocyte injury by targeting Nox4[J]. Biochem Biophys Res Commun, 2018, 505(2): 339-345. DOI:10.1016/j.bbrc.2018.09.067 |
[6] |
CHEN JF, XU Q, ZHANG W, et al. MiR-203-3p inhibits the oxidative stress, inflammatory responses and apoptosis of mice podocytes induced by high glucose through regulating Sema3A expression[J]. Open Life Sci, 2020, 15(1): 939-950. DOI:10.1515/biol-2020-0088 |
[7] |
GONG Q, SHEN ZM, SHENG Z, et al. Hsa-miR-494-3p attenuates gene HtrA3 transcription to increase inflammatory response in hypoxia/reoxygenation HK2 Cells[J]. Sci Rep, 2021, 11(1): 1665. DOI:10.1038/s41598-021-81113-x |
[8] |
XUE XJ, LIU MJ, WANG YL, et al. MicroRNA-494-3p exacerbates renal epithelial cell dysfunction by targeting SOCS6 under high glucose treatment[J]. Kidney Blood Press Res, 2022, 47(4): 247-255. DOI:10.1159/000521647 |
[9] |
LI HL, ZHANG WJ, ZHONG F, et al. Epigenetic regulation of RCAN1 expression in kidney disease and its role in podocyte injury[J]. Kidney Int, 2018, 94(6): 1160-1176. DOI:10.1016/j.kint.2018.07.023 |
[10] |
宋现静, 刘明, 吕文山. MiR-103靶向钙调磷酸酶调节蛋白1对糖尿病肾病足细胞损伤的影响[J]. 安徽医药, 2021, 25(10): 1966-1971. DOI:10.3969/j.issn.1009-6469.2021.10.014 |
[11] |
卢发菊, 王丽, 陈永建. lncRNA TUG1靶向调控miR-199a-3p对高糖诱导的足细胞损伤的作用与机制研究[J]. 广西医科大学学报, 2021, 38(12): 2294-2299. DOI:10.16190/j.cnki.45-1211/r.2021.12.015 |
[12] |
KAUR P, KOTRU S, SINGH S, et al. miRNA signatures in diabetic retinopathy and nephropathy: delineating underlying mechanisms[J]. J Physiol Biochem, 2022, 78(1): 19-37. DOI:10.1007/s13105-021-00867-0 |
[13] |
ISHⅡ H, KANEKO S, YANAI K, et al. MicroRNA expression profiling in diabetic kidney disease[J]. Transl Res, 2021, 237: 31-52. DOI:10.1016/j.trsl.2021.05.008 |
[14] |
FU YQ, WANG CX, ZHANG DM, et al. MiR-15b-5p ameliorated high glucose-induced podocyte injury through repressing apoptosis, oxidative stress, and inflammatory responses by targeting Sema3A[J]. J Cell Physiol, 2019, 234(11): 20869-20878. DOI:10.1002/jcp.28691 |
[15] |
WANG L, LI H. MiR-770-5p facilitates podocyte apoptosis and inflammation in diabetic nephropathy by targeting TIMP3[J]. Biosci Rep, 2020, 40(4): BSR20193653. DOI:10.1042/bsr20193653 |
[16] |
DING X, JING N, SHEN A, et al. MiR-21-5p in macrophage-derived extracellular vesicles affects podocyte pyroptosis in diabetic nephropathy by regulating A20[J]. J Endocrinol Investig, 2021, 44(6): 1175-1184. DOI:10.1007/s40618-020-01401-7 |
[17] |
魏萍, 王艳侠, 尹娣, 等. 尿液外泌体miR-494-3p在急性肾损伤患者中的表达水平及诊断价值[J]. 国际检验医学杂志, 2022, 43(18): 2283-2287. DOI:10.3969/j.issn.1673-4130.2022.18.022 |
[18] |
CHEN L, XU JY, TAN HB. LncRNA TUG1 regulates the development of ischemia-reperfusion mediated acute kidney injury through miR-494-3p/E-cadherin axis[J]. J Inflamm, 2021, 18(1): 12. DOI:10.1186/s12950-021-00278-4 |
[19] |
吴洁, 秦兴华, 侯作旭, 等. MiR-494-3p通过下调胰岛素受体底物-1促糖尿病大鼠心肌细胞胰岛素抵抗[J]. 生理学报, 2019, 71(2): 271-278. DOI:10.13294/j.aps.2018.0095 |
[20] |
CHEN YY, ZHANG L, LIU SX, et al. Sam68 mediates high glucose-induced podocyte apoptosis through modulation of Bax/Bcl-2[J]. Mol Med Report, 2019, 20(4): 3728-3734. DOI:10.3892/mmr.2019.10601 |
[21] |
XING YW, LIU KZ. Azithromycin inhibited oxidative stress and apoptosis of high glucose-induced podocytes by inhibiting STAT1 pathway[J]. Drug Dev Res, 2021, 82(7): 990-998. DOI:10.1002/ddr.21801 |
[22] |
YU YX, ZHU CX, YU N, et al. Tim-1 alleviates lupus nephritis-induced podocyte injury via regulating autophagy[J]. Cent Eur J Immunol, 2021, 46(3): 305-313. DOI:10.5114/ceji.2021.109827 |
[23] |
CHOI C, PARK J, KIM H, et al. DSCR1 upregulation enhances dural meningeal lymphatic drainage to attenuate amyloid pathology of Alzheimer's disease[J]. J Pathol, 2021, 255(3): 296-310. DOI:10.1002/path.5767 |
[24] |
NORBERG KJ, NANIA S, LI X, et al. RCAN1 is a marker of oxidative stress, induced in acute pancreatitis[J]. Pancreatology, 2018, 18(7): 734-741. DOI:10.1016/j.pan.2018.08.005 |
[25] |
LLORET A, MONLLOR P, FUCHSBERGER T, et al. Increased basal antioxidant levels in RCAN1 - deficient mice lowers oxidative injury after acute paraquat insult[J]. Free Radic Res, 2020, 54(6): 442-454. DOI:10.1080/10715762.2020.1798002 |
[26] |
WANG S, WANG YQ, QIU KX, et al. RCAN1 in cardiovascular diseases: molecular mechanisms and a potential therapeutic target[J]. Mol Med, 2020, 26(1): 118. DOI:10.1186/s10020-020-00249-0 |
[27] |
YUN Y, ZHANG Y, ZHANG C, et al. Regulator of calcineurin 1 is a novel RNA-binding protein to regulate neuronal apoptosis[J]. Mol Psychiatry, 2021, 26(4): 1361-1375. DOI:10.1038/s41380-019-0487-0 |
[28] |
YANG XX, YUN Y, WANG P, et al. Upregulation of RCAN1.4 by HIF1α alleviates OGD-induced inflammatory response in astrocytes[J]. Ann Clin Transl Neurol, 2022, 9(8): 1224-1240. DOI:10.1002/acn3.51624 |
[29] |
GUO D, FAN Y, YUE JR, et al. A regulatory miRNA-mRNA network is associated with transplantation response in acute kidney injury[J]. Hum Genom, 2021, 15(1): 69. DOI:10.1186/s40246-021-00363-y |
[30] |
ZHOU QW, LI DG, ZHENG HY, et al. A novel lncRNA-miRNA-mRNA competing endogenous RNA regulatory network in lung adenocarcinoma and kidney renal papillary cell carcinoma[J]. Thorac Cancer, 2021, 12(19): 2526-2536. DOI:10.1111/1759-7714.14129 |
[31] |
SONG Y, GUO F, LIU YF, et al. Identification of circular RNAs and functional competing endogenous RNA networks in human proximal tubular epithelial cells treated with sodium-glucose cotransporter 2 inhibitor dapagliflozin in diabetic kidney disease[J]. Bioengineered, 2022, 13(2): 3911-3929. DOI:10.1080/21655979.2022.2031391 |