中国医科大学学报  2023, Vol. 52 Issue (7): 633-637

文章信息

尤佳琪, 刘畅, 崇巍
YOU Jiaqi, LIU Chang, CHONG Wei
Tubastatin A通过降低氧化应激减轻脓毒症所致心肌损伤的体外研究
Effect of tubastatin A on attenuating myocardial cell damage in sepsis by reducing oxidative stress in vitro
中国医科大学学报, 2023, 52(7): 633-637
Journal of China Medical University, 2023, 52(7): 633-637

文章历史

收稿日期:2023-01-11
网络出版时间:2023-07-06 14:12:59
Tubastatin A通过降低氧化应激减轻脓毒症所致心肌损伤的体外研究
尤佳琪 , 刘畅 , 崇巍     
中国医科大学附属第一医院急诊科,沈阳 110001
摘要目的 探讨Tubastatin A(Tub A)对脂多糖(LPS)刺激RAW264.7巨噬细胞导致心肌细胞氧化应激损伤的作用。方法 将H9C2心肌细胞分为3组:Sham组(用无LPS刺激的巨噬细胞所获上清液培养心肌细胞)、MCM组(用LPS刺激的巨噬细胞所获上清液培养心肌细胞,建立体外脓毒症心肌损伤模型)、Tub A组(Tub A预处理后,再用含Tub A经LPS刺激的巨噬细胞所获上清液培养心肌细胞)。3组心肌细胞培养24 h后检测细胞活性、细胞氧化应激水平及心肌损伤标志物。结果 与Sham组比较,MCM组巨噬细胞上清液中一氧化氮水平显著增高(P = 0.000 1);MCM组心肌细胞活性氧(ROS)、脂质过氧化产物丙二醛(MDA)含量显著升高,而心肌细胞活性明显下降,心肌细胞释放的乳酸脱氢酶(LDH)及心肌型肌酸激酶同工酶明显升高(均P < 0.05)。与MCM组比较,Tub A组ROS、MDA明显下降,细胞活性明显升高,LDH明显下降(均P < 0.05)。结论 Tub A可以减轻LPS刺激巨噬细胞导致的心肌细胞损伤,其作用机制可能是通过降低氧化应激来完成的。
关键词Tubastatin A    脓毒症    心肌细胞    氧化应激    体外    
Effect of tubastatin A on attenuating myocardial cell damage in sepsis by reducing oxidative stress in vitro
Department of Emergency, The First Hospital of China Medical University, Shenyang 110001, China
Abstract: Objective To study the effects of tubastatin A (Tub A) on oxidative stress damage caused by inflammatory cytokines produced by lipopolysaccharide (LPS) -stimulated macrophages (RAW264.7). Methods Rat H9C2 myocardial cells were divided into three groups: the sham group, the MCM group, and the Tub A group. The sham group was cultured using the cell supernatant acquired from macrophages without LPS stimulation. The MCM group was cultured using the cell supernatant acquired from macrophages with LPS stimu-lation. The Tub A group was pretreated with Tub A and then cultured in the cell supernatant containing Tub A, which was acquired from macrophages with LPS stimulation. After culturing the three groups of myocardial cells for 24 h, various parameters including cell activity, cell oxidative stress levels, and the concentration of myocardial damage markers in the supernatant were determined. Results The concentration of nitric oxide in the cell supernatant of the MCM group was significantly higher than that in the sham group (P = 0.000 1). In the MCM group, cardiomyocytes displayed significantly elevated levels of reactive oxygen species (ROS) and the lipid peroxidation product malondialdehyde (MDA) compared to that of the sham group. Moreover, myocardial cell activity decreased significantly, and the levels of lactic acid dehydrogenase (LDH) and myocardial creatine kinase-MB (CK-MB) released by myocardial cells significantly increased in the MCM group (all P < 0.05). In contrast, the Tub A group demonstrated a significant decrease in ROS and MDA content, along with a significant increase in cell activity and a reduction in LDH release compared to that of the MCM group (all P < 0.05). Conclusion Tub A alleviates myocardial cell damage caused by LPS-stimulated macrophages, and the mechanism of action may be accomplished by reducing oxidative stress.
Keywords: tubastatin A    sepsis    myocardial cell    oxidative stress injury    in vitro    

研究[1]显示,40%~50%脓毒症患者可发生心肌抑制,其中的7%会发生心力衰竭。目前,对于脓毒症所致心功能障碍的机制尚未明确,普遍认为心肌抑制与脓毒症时的炎症介质、线粒体功能障碍和氧化应激损伤等有关,但确切机制仍不清楚[2]。生理条件下,心脏组织中活性氧(reactive oxygen species,ROS)生成很少[3],然而在缺氧、高糖、炎症等刺激下ROS大量产生[3-6]。脓毒症时,循环中病原体相关分子模式(pathogen-associated molecular patterns,PAMPs)、损伤相关分子模式(damage-associated molecular patterns,DAMPs)共同作用于心肌细胞[7],通过诱导胞内的黄嘌呤氧化酶(xanthine oxidase,XO)、NADPH氧化酶(NADPH oxidase,NOX)活化和线粒体损伤产生ROS[8]。过量的ROS引起心肌细胞氧化应激损伤[9]。Tubstatin A(Tub A)是组蛋白去乙酰化酶6(histone deacetylase 6,HDAC6)选择性抑制剂[10],本课题组密歇根大学合作伙伴发现Tub A可以提高致死性脓毒症大鼠的远期生存率[11]。有研究[12-16]表明,Tub A可以减少心肌细胞、星形胶质细胞、乳腺上皮细胞等ROS的产生,减轻炎症反应,从而对细胞发挥保护作用。

本研究应用脂多糖(lipopolysaccharide,LPS)刺激巨噬细胞获得细胞上清液,用其刺激心肌细胞,建立体外脓毒症心肌损伤模型,并用Tub A进行干预,探讨Tub A对脓毒症心肌细胞氧化应激损伤的作用。

1 材料与方法 1.1 细胞培养及分组

RAW264.7巨噬细胞购自美国ATCC公司,培养条件为完全培养基(DMEM高糖培养基+10%FBS+1%青链霉素),37 ℃,5% CO2以及饱和湿度孵箱。巨噬细胞生长达80%左右接触率时饥饿培养(DMEM高糖培养基+0.5%FBS+1%青链霉素)过夜,用1 μg/mL LPS(L8247,美国Sigma公司)刺激8 h后取上清液获得心肌细胞培养基(MCM组);用无LPS刺激的巨噬细胞8 h后取上清液获得心肌细胞培养基(Sham组),两种上清液4 ℃保存备用。

用完全培养基培养H9C2心肌细胞(美国ATCC公司),培养条件与RAW264.7巨噬细胞一致。待H9C2生长达80%左右接触率并饥饿过夜后,Sham组用无LPS刺激的巨噬细胞上清液培养;MCM组用LPS刺激巨噬细胞所获上清液培养;Tub A组预处理(饥饿培养基+40 μmol/L Tub A)3 h,正式处理(MCM组应用的培养基+40 μmol/L Tub A)孵育24 h[17-18],收集心肌细胞及上清液检测相关指标。

1.2 巨噬细胞上清液中一氧化氮(nitric oxide,NO)水平检测

应用总NO含量检测试剂盒(S0024,中国碧云天公司)检测,操作按照说明书步骤进行。酶标仪(美国Biotec公司)测定样本在540 nm的吸光度值,根据标准曲线计算样品浓度。

1.3 心肌细胞活性检测

将Sham组、MCM组、Tub A组和空白对照组(饥饿培养基培养的心肌细胞)按照1×104/孔接种到96孔板并饥饿过夜后给予相应刺激。在各孔中加入10 μL的CCK8试剂(日本同仁化工公司),混匀后放回孵箱,2 h后拿出96孔板,酶标仪测定样本在450 nm处的吸光度值。

1.4 流式细胞仪检测心肌细胞内ROS水平

收集各组心肌细胞制备细胞悬液,应用ROS检测试剂盒(CA1410,中国索莱宝公司)将DCFH-DA探针装载入心肌细胞内(阴性对照除外),应用流式细胞仪检测荧光强度,用FITC通道检测2,7-二氯荧光素(2,7-dichlorofluorescein,DCF)荧光,应用Flow Jo软件分析结果。

1.5 心肌细胞内丙二醛(malondialdehyde,MDA)含量检测

收集各组心肌细胞,检测MDA含量。按照试剂盒(BC0025,中国索莱宝公司)说明书步骤进行操作,检测心肌细胞内MDA含量,应用酶标仪测定样本在532 nm和600 nm处的吸光度值。各组分别计算:ΔA532=A532测定-A532空白,ΔA600=A600测定-A600空白,ΔA=ΔA532-ΔA600;MDA含量(nmol/107cell)=107.5×ΔA。

1.6 细胞释放的乳酸脱氢酶(lactate dehydrogenase,LDH)检测

按照试剂盒(BC0685,中国索莱宝公司)说明书检测2组巨噬细胞上清液中以及各组心肌细胞上清液中的LDH,应用酶标仪测定样本在450 nm处的吸光度值,根据标准曲线计算样品浓度。心肌细胞所产生的LDH=LDH(心肌细胞上清液)-LDH(所用的巨噬细胞上清液)。

1.7 心肌细胞释放心肌型肌酸激酶同工酶(creatine kinase-MB,CK-MB)检测

收集各组心肌细胞上清液,按照试剂盒(SEKR-0059,中国索莱宝公司)说明书步骤检测CK-MB水平,应用酶标仪测定样本在450 nm、630 nm处的吸光度值,根据标准曲线计算样品浓度。巨噬细胞不产生CK-MB,因此心肌细胞上清液中的CK-MB是心肌细胞产生的。

1.8 统计学分析

应用Excel 2016录入数据,计量资料采用x±s表示,组间比较采用独立样本t检验,P < 0.05为差异有统计学意义。

2 结果 2.1 MCM组和Sham组巨噬细胞上清液中NO水平

结果显示,MCM组和Sham组巨噬细胞上清液NO含量分别为(16.27±3.57)μmol/L、(0.90±0.68)μmol/L,2组比较差异有统计学意义(P < 0.001)。

2.2 各组心肌细胞氧化应激水平比较

检测各组细胞ROS荧光强度,以阳性对照组荧光强度峰值为标准,测量各组大于该荧光强度的细胞占比。结果显示,阳性对照组、Sham组、MCM组、Tub A组、阴性对照组细胞占比分别为46.2%、22.9%、33.0%、22.5%和0。见图 1A。对各组平均荧光强度进行定量分析,结果显示MCM组荧光强度显著高于Sham组和Tub A组(均P < 0.05),而Sham组和Tub A组荧光强度比较无统计学差异(P > 0.05),见图 1B。与Sham组比较,MCM组心肌细胞中MDA含量显著增加(P < 0.05);与MCM组比较,Tub A组MDA含量显著减少(P < 0.05)。见图 1C

A,peak of intracellular ROS fluorescence intensity;B,cell fluorescence intensity;C,intracellular MDA content. ***P < 0.001. 图 1 各组心肌细胞中ROS及MDA水平比较 Fig.1 Comparison of ROS and MDA levels in each group

2.3 各组心肌细胞损伤情况比较

与Sham组比较,MCM组心肌细胞释放的LDH水平明显升高(P < 0.05);与MCM组比较,Tub A组LDH水平明显下降(P < 0.05),见图 2A。与Sham组比较,MCM组CK-MB水平明显升高(P < 0.05),与MCM组比较,Tub A组CK-MB水平有下降趋势,但差异无统计学意义(P > 0.05),见图 2B

A,LDH;B,CK-MB. *P < 0.05;***P < 0.001. 图 2 各组心肌细胞损伤情况比较 Fig.2 Comparison of myocardial cell injury in each group

2.4 各组心肌细胞活性比较

结果显示,空白对照组与Sham组比较心肌细胞活性无统计学差异(P > 0.05)。与Sham组比较,MCM组与Tub A组心肌细胞活性明显降低(P < 0.001);与MCM组比较,Tub A组心肌细胞活性明显升高(P < 0.001),见图 3

***P < 0.001. 图 3 各组心肌细胞活性比较 Fig.3 Comparison of myocardial cell activity in each group

3 讨论 3.1 经LPS刺激的巨噬细胞可以导致心肌细胞氧化应激和损伤

本研究结果显示,使用经LPS刺激巨噬细胞的上清液培养心肌细胞后,细胞内ROS及脂质过氧化产物MDA水平均显著增加,LDH和CK-MB释放明显增加,同时细胞活性明显下降,提示经LPS刺激的巨噬细胞可以导致心肌细胞氧化应激和损伤。

JI等[16]、RUAN等[18]研究结果与本研究相似,经LPS刺激的巨噬细胞使心肌细胞发生氧化应激损伤,加剧细胞的炎症反应。过量产生的ROS可抑制线粒体氧化磷酸化,减少细胞内ATP的产生,使细胞活性下降。另外,磷脂膜对ROS的攻击十分敏感,可发生脂质过氧化,产生MDA和4-羟基壬烯酸等脂质过氧化产物[19],这些产物可以破坏DNA、蛋白质和酶活性,并激活信号通路,引发细胞的自噬、凋亡、铁死亡等[20];大量ROS导致脂质过氧化还可破坏细胞膜结构,导致通透性增加,大量释放心肌酶及其他细胞损伤标志物[21]

3.2 Tub A可减轻经LPS刺激的巨噬细胞所致的心肌细胞氧化应激和损伤

本研究结果显示,应用Tub A对心肌细胞进行干预后,细胞内ROS及脂质过氧化产物MDA水平均明显降低,细胞释放LDH明显减少,CK-MB作为临床和体外实验中诊断脓毒症心肌损害的关键指标,同样呈下降趋势。此前已有研究[14]证实,Tub A在星形胶质细胞、乳腺上皮细胞等的脓毒症模型中具有减轻氧化应激损伤的作用,且在缺氧/复氧的H9C2心肌细胞中也具有减少ROS产生的作用[17],因此Tub A可能通过降低细胞的氧化应激水平,减轻经LPS刺激的巨噬细胞所致的心肌细胞损伤。

大量研究证实,巨噬细胞受LPS等刺激发生M1极化,形成促炎表型,产生促炎性细胞因子,而NO可作为巨噬细胞发生M1极化的标志物之一。本研究中LPS刺激后的RAW264.7巨噬细胞产生大量NO,可以认为其发生了M1极化,形成促炎表型。脓毒症引起的靶器官损伤来自于PAMPs、DAMPs的共同作用[7]。本研究应用LPS刺激巨噬细胞获得的上清液,同时具备了PAMPs和DAMPs,模拟脓毒症时复杂的内环境,成功构建体外细胞模型,符合脓毒症心肌损害的病理机制。此外,众多研究[22-24]表明,氧化应激损伤是脓毒症心肌损害发生的重要病理生理过程,即心肌细胞内ROS、MDA含量、心肌细胞损伤标志物的释放水平及细胞活性的改变,与本研究结果一致。JI等[16]、RUAN等[18]同样应用本研究方法成功建立了脓毒症心肌损害体外模型,故应用此方法建立体外脓毒症心肌损伤模型具有较高科学性。

综上所述,心肌损伤作为急诊科常见的脓毒症并发症,其发生机制与氧化应激损伤有着十分密切的关系。Tub A可以通过减少ROS的产生,减轻脓毒症导致的心肌细胞氧化应激损伤,进而保护心肌细胞,提高心肌细胞的生存率,维持心脏功能的稳定。本研究为体外实验,无法完全模拟复杂的体内过程,因此有待体内实验进一步验证。

参考文献
[1]
ESPER AM, MARTIN GS. Extending international sepsis epidemiology: the impact of organ dysfunction[J]. Crit Care, 2009, 13(1): 120. DOI:10.1186/cc7704
[2]
HOLLENBERG SM, SINGER M. Pathophysiology of sepsis-induced cardiomyopathy[J]. Nat Rev Cardiol, 2021, 18(6): 424-434. DOI:10.1038/s41569-020-00492-2
[3]
QIU Z, HE YH, MING H, et al. Lipopolysaccharide (LPS) aggravates high glucose-and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes[J]. J Diabetes Res, 2019, 2019: 8151836. DOI:10.1155/2019/8151836
[4]
SUSANA, CADENAS. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection[J]. Free Radic Biol Med, 2018, 117: 76-89. DOI:10.1016/j.freeradbiomed.2018.01.024
[5]
JANKAUSKAS SS, KANSAKAR U, VARZIDEH F, et al. Heart failu-re in diabetes[J]. Metabolism, 2021, 125: 154910. DOI:10.1016/j.metabol.2021.154910
[6]
LI N, WANG W, ZHOU H, et al. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury[J]. Free Radic Biol Med, 2020, 160: 303-318. DOI:10.1016/j.freeradbiomed.2020.08.009
[7]
CHEN X, LI X, ZHANG W, et al. Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-κB pathway[J]. Metabolism, 2018, 83: 256-270. DOI:10.1016/j.metabol.2018.03.004
[8]
VERMOT A, PETIT-HÄRTLEIN I, SMITH SME, et al. NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology[J]. Antioxidants, 2021, 10(6): 890. DOI:10.3390/antiox10060890
[9]
FORMAN HJ, ZHANG HQ. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy[J]. Nat Rev Drug Discov, 2021, 20(9): 689-709. DOI:10.1038/s41573-021-00233-1
[10]
ARAUJO-SILVA CA, SOUZA WD, duarte em, et al. HDAC inhibitors Tubastatin A and SAHA affect parasite cell division and are potential anti-Toxoplasma gondii chemotherapeutics[J]. Int J Parasitol Drugs Drug Resist, 2021, 15: 25-35. DOI:10.1016/j.ijpddr.2020.12.003
[11]
LI YQ, ZHAO T, LIU BL, et al. Inhibition of histone deacetylase 6 improves long-term survival in a lethal septic model[J]. J Trauma Acute Care Surg, 2015, 78(2): 378-385. DOI:10.1097/ta.0000000000000510
[12]
JO H, JANG HY, YOUN GS, et al. Hindsiipropane B alleviates HIV-1 Tat-induced inflammatory responses by suppressing HDAC6-NADPH oxidase-ROS axis in astrocytes[J]. BMB Rep, 2018, 51(8): 394-399. DOI:10.5483/bmbrep.2018.51.8.061
[13]
YOUN GS, CHO H, KIM D, et al. Crosstalk between HDAC6 and Nox2-based NADPH oxidase mediates HIV-1 Tat-induced pro-inflammatory responses in astrocytes[J]. Redox Biol, 2017, 12: 978-986. DOI:10.1016/j.redox.2017.05.001
[14]
ZHANG WB, YANG F, JIAO FZ, et al. Inhibition of HDAC6 attenuates LPS-induced inflammation in macrophages by regulating oxidative stress and suppressing the TLR4-MAPK/NF-κB pathways[J]. Biomed Pharmacother, 2019, 117: 109166. DOI:10.1016/j.biopha.2019.109166
[15]
LENG Y, WU Y, LEI SQ, et al. Inhibition of HDAC6 activity alleviates myocardial ischemia/reperfusion injury in diabetic rats: potential role of peroxiredoxin 1 acetylation and redox regulation[J]. Oxidative Med Cell Longev, 2018, 2018: 1-15. DOI:10.1155/2018/9494052
[16]
JI LW, HE QQ, LIU YH, et al. Ketone body β-hydroxybutyrate prevents myocardial oxidative stress in septic cardiomyopathy[J]. Oxidative Med Cell Longev, 2022, 2022: 1-14. DOI:10.1155/2022/2513837
[17]
XU JF, ZHAO X, JIANG XK, et al. Tubastatin A improves post-resuscitation myocardial dysfunction by inhibiting NLRP3-mediated pyroptosis through enhancing transcription factor EB signaling[J]. J Am Heart Assoc, 2022, 11(7): e024205. DOI:10.1161/jaha.121.024205
[18]
RUAN WB, JI XY, QIN YT, et al. Harmine alleviated Sepsis-induced cardiac dysfunction by modulating macrophage polarization via the STAT/MAPK/NF-κB pathway[J]. Front Cell Dev Biol, 2022, 9: 792257. DOI:10.3389/fcell.2021.792257
[19]
XIAO M, ZHONG H, XIA L, et al. Pathophysiology of mitochondrial lipid oxidation: role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria[J]. Free Radic Biol Med, 2017, 111: 316-327. DOI:10.1016/j.freeradbiomed.2017.04.363
[20]
ŁUCZAJ W, GĘGOTEK A, SKRZYDLEWSKA E. Antioxidants and HNE in redox homeostasis[J]. Free Radic Biol Med, 2017, 111: 87-101. DOI:10.1016/j.freeradbiomed.2016.11.033
[21]
HAYMAN TJ, BARO M, MACNEIL T, et al. STING enhances cell death through regulation of reactive oxygen species and DNA damage[J]. Nat Commun, 2021, 12: 2327. DOI:10.1038/s41467-021-22572-8
[22]
LIN Y, XU YC, ZHANG ZC. Sepsis-induced myocardial dysfunction (SIMD): the pathophysiological mechanisms and therapeutic strate-gies targeting mitochondria[J]. Inflammation, 2020, 43(4): 1184-1200. DOI:10.1007/s10753-020-01233-w
[23]
JIANG L, ZHANG L, YANG J, et al. 1-Deoxynojirimycin attenuates septic cardiomyopathy by regulating oxidative stress, apoptosis, and inflammation via the JAK2/STAT6 signaling pathway[J]. Biomed Pharmacother, 2022, 155: 113648. DOI:10.1016/j.biopha.2022.113648
[24]
QI Z, WANG RR, LIAO RH, et al. Neferine ameliorates sepsis-induced myocardial dysfunction through anti-apoptotic and antioxidative effects by regulating the PI3K/AKT/mTOR signaling pathway[J]. Front Pharmacol, 2021, 12: 706251. DOI:10.3389/fphar.2021.706251