中国医科大学学报  2023, Vol. 52 Issue (10): 928-933

文章信息

胡英凡, 贾佳, 李国福
HU Yingfan, JIA Jia, LI Guofu
C-C基序趋化因子配体14的研究进展
Progress in research on C-C motif chemokine ligand 14
中国医科大学学报, 2023, 52(10): 928-933
Journal of China Medical University, 2023, 52(10): 928-933

文章历史

收稿日期:2022-07-16
网络出版时间:2023-10-16 18:20:16
C-C基序趋化因子配体14的研究进展
胡英凡 , 贾佳 , 李国福     
中国医科大学附属盛京医院重症医学科, 沈阳 110004
摘要:C-C基序趋化因子配体14(CCL14)是一类趋化细胞定向移动的小分子蛋白质,可能参与多种疾病(包括肿瘤、免疫相关疾病、脓毒症、急性肾损伤)的发生发展。本文对近几年CCL14的研究进展进行了综述。
Progress in research on C-C motif chemokine ligand 14
HU Yingfan , JIA Jia , LI Guofu     
Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
Abstract: C-C motif chemokine ligand 14 (CCL14) is a type of small molecule protein signaling the directed movement of chemotactic cells, which may have particular significance in the occurence and development of many diseases including tumors, immune-related disease, spesis and acute kidney injury. The present article summarizes recent progress in research investigating CCL14.

急性肾损伤(acute kidney injury,AKI) 是重症监护室(intensive care uint,ICU) 中常见的一种临床并发症。ICU中AKI常见高危因素包括低血容量休克、脓毒症、脑外伤、风湿免疫类疾病、妊娠高血压、外科大手术后等。AKI患者的预后受肾脏受累程度及持续时间的影响。持续性肾损伤患者临床结局差,包括死亡风险及心血管事件发生率增加,进展为慢性肾功能不全。早期识别可能进展为持续性肾损伤的患者尤为重要,但目前尚无明确的生物标志物用于早期预测进展为持续性肾损伤的风险。C-C基序趋化因子配体14 (C-C motif chemokine ligand 14,CCL14) 是一类趋化细胞定向移动的小分子蛋白质,在机体中参与各种生理活动并发挥关键作用。最近的研究[1]表明,CCL14可能对预测持续性重度肾损伤的发生风险有一定意义。本文对CCL14的基本生理功能,在不同疾病中的意义和目前在AKI中的研究进展进行综述,旨在为临床诊疗工作提供参考。

1 趋化因子的基本生理功能

趋化因子是一类能够趋化细胞定向移动的小分子蛋白质,介导包括趋化性、造血和血管生成等生物过程,并通过与细胞表面G蛋白偶联受体(G-protein-coupled receptors,GPCR) 相互作用发挥功能。根据不同趋化因子中保守的半胱氨酸残基排列位置,趋化因子分为4个亚家族,即XC、CC、CXC、CX3C[2],其中CC家族主要是单核细胞和淋巴细胞趋化因子。趋化因子广泛存在于多种生物活动中,如白细胞脱颗粒、呼吸爆发、增殖活化,还可通过原始趋化能力及抗菌肽(antimicrobial peptide,AMP) 活性产生直接抗菌作用,某些非白细胞(如神经元细胞、星形胶质细胞、上皮细胞、间充质细胞和内皮细胞) 可表达常规趋化因子受体,并以多种方式对趋化因子做出反应[2-8]。趋化因子导向的白细胞迁移维护着机体的免疫防御功能,但也会导致自身免疫、过敏、慢性炎症性疾病以及动脉粥样硬化、癌症等多种疾病。

2 CCL14的生理功能

CC家族中的CCL14因1996年首次在慢性肾衰竭患者血浆滤过液中发现,因此CCL14又称血浆滤过趋化因子-1 (hemofiltrate C-C chemokine-1,HCC-1) [9]。CCL14受体包括趋化因子受体(chemokine receptor,CCR) 1、CCR3、CCR5,其中与CCR1和CCR5具有高亲和力,对CCR3的亲和力则较低[10]。研究[11]表明,CCL3加角质形成细胞衍生的趋化因子(keratinocyte-derived chemokine,KC) 是对脓毒症相关急性肾损伤(sepsis associated acute kidney injury,SA-AKI) 最具预测性的候选标志物。CCL14蛋白序列与CCL3有46%同源[9],是最先在慢性肾衰竭患者血滤液中发现的高表达趋化因子,但其是否为预测AKI后持续性肾损伤的候补标志物值得进一步探讨。

3 CCL14在不同疾病中的意义 3.1 CCL14与肿瘤

趋化因子及其受体在肿瘤中具有促癌与抑癌作用的双面性。CCL5在乳腺癌[12]、肝细胞癌[13]中表达升高,可促进肿瘤发生、发展。但同时,趋化因子也可通过CCL5/CCR5轴诱导肿瘤中抗癌浸润淋巴细胞的积累,并增加其细胞毒性,从而发挥抑制肿瘤的作用[14-15]。CCL14在肝细胞癌、乳腺癌、肺癌、前列腺癌中呈低表达[16-17],而在脑癌、食管癌、胃癌中却表达升高[17-18]。ZHU等[16]首次发现CCL14在肝细胞癌中低表达,且与患者的预后不良相关;在肝细胞癌动物模型中,过表达CCL14可抑制肿瘤生长、进展,并促进肝细胞癌细胞的凋亡。CCL14的过表达有助于肝细胞癌患者的总生存期延长[16],表明CCL14可能作为一种预测肝细胞癌患者预后的标志物[16-17]。CCL14在胃癌组织中表达水平明显高于相邻正常组织[18],CCL14高表达可抑制结肠癌细胞的增殖和侵袭[19],CCL14在其他消化系统肿瘤中是否也有表达水平的相应变化暂未见报道。但CCL3在胰腺癌中呈高表达,具有促进免疫抑制恢复和致癌作用[20],CCL3与CCL14在结构上有46%同源[9],并有相同受体CCR1,CCL14是否与CCL3一样在胰腺癌中起类似作用值得探讨。CCL14的促癌特性表现为可促进肿瘤转移,抑制CCL14可抑制乳腺癌的血管生成和转移[21],可作为乳腺癌潜在的治疗靶点。研究[22]表明,非典型趋化因子受体ACKR2与CCR1协同控制乳腺发育,对控制青春期乳腺发育速度从而降低乳腺癌的发病率提供了新的潜在机制,CCR1与ACKR2是CCL14的重要受体,故猜测CCL14在其中也可能扮演重要角色。CCL14作为肺腺癌患者的关键生存基因,可代表肺腺癌未来化疗、化学预防和免疫调节的潜在靶成分[23]。CCL14还是上皮性卵巢癌的独立预后因素,CCL14的上调与上皮性卵巢癌患者更好的预后有关[24]。CCL14参与单核细胞募集至肿瘤细胞的过程,在调节骨髓瘤样巨噬细胞的增殖和分化中起重要作用。巨噬细胞是介导多发性骨髓瘤细胞耐药的关键因素,因此针对CCL14的靶向治疗可为多发性骨髓瘤的治疗提供新的方案[25]。以上研究表明,CCL14可作为评估肿瘤患者预后的一种潜在生物学标志物。

3.2 CCL14与免疫相关疾病

趋化因子超家族在免疫系统中扮演着关键角色,趋化因子诱导白细胞迁移具有至关重要的免疫学意义。白细胞必须在正确的时间出现在正确的位置,当组织受损和(或) 感染时,先天免疫细胞的快速募集对于杀死病原体、防止微生物传播、驱动炎症和帮助修复损伤至关重要。趋化因子在驱动白细胞进出血液和淋巴管并指导其间质运动和定位的过程中至关重要。如果没有趋化因子导向的白细胞迁移,会发生免疫耐受性崩溃、免疫监测失败、保护性免疫反应受损。研究[26]表明,CCL14可激活人类免疫缺陷病毒(human immunodeficiency virus,HIV) 患者的CD4+T细胞,并改变内在抵抗因子或靶细胞内对抗HIV感染的分子的表达水平。自身免疫性疾病系统性红斑狼疮(systemic lupus erythematosus,SLE) 的相关变异可能位于CCL14基因序列内或其附近,且CCR5的多态性与SLE相关[27],提示CCL14/CCR5轴可能在SLE中具有潜在作用。CCL2及其受体CCR2参与白细胞募集及单核细胞激活[2, 28-30],在Th2炎症的发展中起重要作用,CCL2或CCR2的脱敏被证实可能引起某些过敏反应的病理生理改变[31-32]。n-壬酰基-趋化因子配体14 (N-nonanoyl-C-C motif chemokine ligand 14,NNY-CCL14) 是一种新型的过敏性气道炎症抑制剂,是CCR2的部分激动剂,可抑制单核细胞对CCR2选择性配体CCL2的反应,快速脱敏受体并防止趋化性,从而减弱CCR2介导的反应[33]。在移植物抗宿主反应中,CCL14也参与其中。同种异体造血细胞移植(hematopoietic cell transplantation,HCT) 通过供体T细胞的移植物抗白血病活性治愈血液系统恶性肿瘤[34],但供体T细胞也介导对正常宿主组织的损伤,可能导致急性移植物抗宿主病(acute graft‐versus‐host disease,aGVHD),其中胃肠道aGVHD是一种高死亡率的并发症。在GVHD和人类异体行为模型中,CCR5已被证明是T细胞迁移至炎症肠道所必需[35],CCR5小分子抑制剂maraviroc的阻断在临床试验中被证实可能在阻止内脏GVHD的发生中发挥作用[36]。CCL14是在T细胞上表达的趋化因子受体CCR5的配体,被证实存在于GI-GAVD组织中,且其趋化性也可被maraviroc抑制[37]。趋化因子及其受体参与白细胞募集、细胞脱颗粒等炎症反应或直接参与抗菌作用。类风湿性关节炎是一种破坏性的慢性自身免疫性炎症性疾病,滑膜炎症是类风湿性关节炎的主要特征,与白细胞募集有关。CCR1拮抗剂被证实具有治疗类风湿性关节炎的可能[38]。CCL14在类风湿性关节炎患者的滑膜中显著增加[38-40],招募内皮细胞进入炎症关节[40],提示CCL14在类风湿性关节炎中可能具有促炎趋化性。在多发性硬化症、SLE等其他风湿免疫性疾病中,CCL14也存在促炎趋化性[41]。研究[42]表明,CCL14可能是染色体17p12-q11区域的代表性易感基因之一,该区域被认为是SLE的易感位点。

3.3 CCL14与脓毒症

脓毒症是由于宿主对感染反应失调引起的危及生命的器官功能障碍[43]。脓毒症和脓毒性休克每年影响数百万人,其中1/6~1/3患者死亡[44],是全球的重大卫生保健问题[45]。高迁移率族蛋白1 (high mobility group box-1 protein,HMGB1) 被证明是一种晚期炎症介质,可驱动脓毒症中的内毒素致死性[46-47],趋化因子CXCL12可与HMGB1形成复合物[48],而CXCL12与受体CXCR4结合则可引发趋化活性。作为CCL14的非典型趋化因子受体,ACKR2可去除和降解炎症性CC趋化因子,动物实验证实ACKR2缺陷小鼠的存活率显著降低[49],脓毒症患者较非脓毒症患者的肺部ACKR2细胞数量增加[49],表明ACKR2在脓毒症中可能具有保护作用,因此,脓毒症患者CCL14低表达可能预示预后较好。ACKR1可显著改变血液中的趋化因子浓度,但在脓毒症期间不具有保护作用[50],表明CCL14-ACKR1轴可能与脓毒症无关联。CCL14受体CCR1缺陷小鼠被显著保护免受败血症影响[51],CCR5阳性小鼠则全身炎症反应加重、死亡率升高[52],提示CCL14可能参与脓毒症的发生发展。

3.4 CCL14与AKI

目前关于CCL14与AKI的关系的研究较少。2020年的RUBY实验是一项多中心国际前瞻性观察性研究[53],目的是评估预测肾功能不全持续性的新的候选生物标志物。结果显示,CCL14能预测持续的重度AKI,曲线下面积(the area under the curve,AUC) 为0.83 (95%CI: 0.78~0.87),显著大于其他测试生物标志物的AUC值。在所有未进展为持续性AKI的患者中,不同共病条件下的尿CCL14浓度相似,提示尿CCL14升高对AKI持续存在具有特异性。但是,在患有某些共病的患者中,即使没有持续性AKI,CCL14也显示显著升高,表明CCL14可能受疾病种类的影响较大。BAGSHAW等[1]发现,尿CCL14在预测持续性重度AKI方面具有优势,且随着尿CCL14浓度的增加,持续性重度AKI的风险增加,但是该研究仅局限于有心脏或呼吸障碍的高龄患者,对ICU普遍的其他高危因素患者及年轻患者持续性重度AKI未进行进一步研究。以上研究均表明,尿CCL14可用于预测持续性重度AKI。

ICU收治的疾病种类大部分为脓毒症、脑外伤、外科大手术、风湿免疫性疾病、妊娠高血压等。这些疾病都是AKI高危因素,相当一部分患者不可避免地经历AKI,其肾功能或者迅速恢复,或者随着基础病情的改善而逐渐恢复。但其中约有1/3患者可能长期经历肾功能异常[54],尤其是AKI 2期、3期患者预后明显不佳,预示着长期后遗症的高风险,包括需长期血液透析治疗、总死亡率升高、慢性肾脏病的发生等[55]。自2013年KASHANI等[56]首次报道尿液组织抑制剂金属蛋白酶-2和胰岛素样生长因子结合蛋白7用于预测AKI危险程度分层以来,尿肾损伤分子-1、肝型脂肪酸结合蛋白、中性粒细胞明胶酶相关脂质运态氨酸等也被发现可用于预测AKI危险因素[57-60]

AKI的持续存在不仅与长期结局相关,还可能因不同医生对患者病情恢复的预估以及肾脏替代治疗(renal replacement therapy,RRT) 时机的选择而产生不同的临床决策,导致采用相同治疗措施的患者的预后存在较大差异。因此,围绕RRT的时机存在重大争议。研究[61]表明,不同患者是否需要接受RRT治疗存在个体化差异。对于正在经历AKI的患者,亟需可预测其经历持续重度AKI风险的生物标志物。CCL14是单核细胞/巨噬细胞募集的重要趋化因子,巨噬细胞募集被认为在肾组织损伤和持续性肾功能不全的发展中起重要作用[62]。作为参与机体慢性炎症的生物标志物,CCL14也被证实可用于识别糖尿病患者发生终末期肾病的风险[63]。以上均表明,CCL14在肾脏疾病中扮演重要角色,并可能对AKI的进展及预后有预测作用。最近也有研究[53]表明,尿CCL14可更好地预测发生持续性重度AKI的可能性。有关尿CCL14浓度与持续性重度AKI风险性的关系及根据CCL14的浓度做出临床治疗决策的进一步研究值得期待,CCL14的检测有望为持续性肾损伤的诊疗带来助益。

综上所述,CCL14在肿瘤、免疫相关疾病、脓毒症及AKI中具有重要意义,相关机制有待进一步探讨。

参考文献
[1]
BAGSHAW SM, AL-KHAFAJI A, ARTIGAS A, et al. External validation of urinary C-C motif chemokine ligand 14 (CCL14) for prediction of persistent acute kidney injury[J]. Crit Care, 2021, 25(1): 1-8. DOI:10.1186/s13054-021-03618-1
[2]
HUGHES CE, NIBBS RJB. A guide to chemokines and their receptors[J]. FEBS J, 2018, 285(16): 2944-2971. DOI:10.1111/febs.14466
[3]
LÓPEZ-COTARELO P, GÓMEZ-MOREIRA C, CRIADO-GARCÍA O, et al. Beyond chemoattraction: multifunctionality of chemokine receptors in leukocytes[J]. Trends Immunol, 2017, 38(12): 927-941. DOI:10.1016/j.it.2017.08.004
[4]
RUSTENHOVEN J, DRIEU A, MAMULADZE T, et al. Functional characterization of the dural sinuses as a neuroimmune interface[J]. Cell, 2021, 184(4): 1000-1016.e27. DOI:10.1016/j.cell.2020.12.040
[5]
KULKARNI N, PATHAK M, LAL G. Role of chemokine receptors and intestinal epithelial cells in the mucosal inflammation and tole-rance[J]. J Leukoc Biol, 2017, 101(2): 377-394. DOI:10.1189/jlb.1RU0716-327R
[6]
GIRI J, DAS R, NYLEN E, et al. CCL2 and CXCL12 derived from mesenchymal stromal cells cooperatively polarize IL-10+ tissue macrophages to mitigate gut injury[J]. Cell Rep, 2020, 30(6): 1923-1934.e4. DOI:10.1016/j.celrep.2020.01.047
[7]
AGARWAL P, ISRINGHAUSEN S, LI H, et al. Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells[J]. Cell Stem Cell, 2019, 24(5): 769-784.e6. DOI:10.1016/j.stem.2019.02.018
[8]
KARNEZIS T, FARNSWORTH RH, HARRIS NC, et al. CCL27/CCL28-CCR10 chemokine signaling mediates migration of lymphatic endothelial cells[J]. Cancer Res, 2019, 79(7): 1558-1572. DOI:10.1158/0008-5472.CAN-18-1858
[9]
SCHULZ-KNAPPE P, MÄGERT HJ, DEWALD B, et al. HCC-1, a novel chemokine from human plasma[J]. J Exp Med, 1996, 183(1): 295-299. DOI:10.1084/jem.183.1.295
[10]
KORBECKI J, KOJDER K, SIMIŃSKA D, et al. CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of the li-gands of receptors CCR1, CCR2, CCR3, and CCR4[J]. Int J Mol Sci, 2020, 21(21): 8412. DOI:10.3390/ijms21218412
[11]
ODUM JD, STANDAGE S, ALDER M, et al. Candidate biomarkers for Sepsis-associated acute kidney injury mechanistic studies[J]. Shock, 2022, 57(5): 687-693. DOI:10.1097/SHK.0000000000001916
[12]
THOMAS JK, MIR H, KAPUR N, et al. CC chemokines are differentially expressed in breast cancer and are associated with disparity in overall survival[J]. Sci Rep, 2019, 9: 4014. DOI:10.1038/s41598-019-40514-9
[13]
SINGH SK, MISHRA MK, RIVERS BM, et al. Biological and clinical significance of the CCR5/CCL5 axis in hepatocellular carcinoma[J]. Cancers, 2020, 12(4): 883. DOI:10.3390/cancers12040883
[14]
BÖTTCHER JP, BONAVITA E, CHAKRAVARTY P, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control[J]. Cell, 2018, 172(5): 1022-1037.e14. DOI:10.1016/j.cell.2018.01.004
[15]
ARAUJO JM, GOMEZ AC, AGUILAR A, et al. Effect of CCL5 expression in the recruitment of immune cells in triple negative breast cancer[J]. Sci Rep, 2018, 8: 4899. DOI:10.1038/s41598-018-23099-7
[16]
ZHU MX, XU WY, WEI CY, et al. CCL14 serves as a novel prognostic factor and tumor suppressor of HCC by modulating cell cycle and promoting apoptosis[J]. Cell Death Dis, 2019, 10: 796. DOI:10.1038/s41419-019-1966-6
[17]
GU YR, LI XY, BI YH, et al. CCL14 is a prognostic biomarker and correlates with immune infiltrates in hepatocellular carcinoma[J]. Aging, 2020, 12(1): 784-807. DOI:10.18632/aging.102656
[18]
REZAEI Z, RANJBARAN J, SAFARPOUR H, et al. Identification of early diagnostic biomarkers via WGCNA in gastric cancer[J]. Biomed Pharmacother, 2022, 145: 112477. DOI:10.1016/j.biopha.2021.112477
[19]
LI N, LIANG XS, LI JW, et al. C-C motif chemokine ligand 14 inhibited colon cancer cell proliferation and invasion through suppressing M2 polarization of tumor-associated macrophages[J]. Histol Histopathol, 2021, 36(7): 743-752. DOI:10.14670/HH-18-348
[20]
ZHANG YQ, LAZARUS J, STEELE NG, et al. Regulatory T-cell depletion alters the tumor microenvironment and accelerates pancrea-tic carcinogenesis[J]. Cancer Discov, 2020, 10(3): 422-439. DOI:10.1158/2159-8290.CD-19-0958
[21]
LI Q, SHI L, GUI B, et al. Binding of the JmjC demethylase JARID1B to LSD1/NuRD suppresses angiogenesis and metastasis in breast cancer cells by repressing chemokine CCL14[J]. Cancer Res, 2011, 71(21): 6899-6908. DOI:10.1158/0008-5472.can-11-1523
[22]
WILSON GJ, FUKUOKA A, LOVE SR, et al. Chemokine receptors coordinately regulate macrophage dynamics and mammary gland development[J]. Development, 2020, 147(12): dev187815. DOI:10.1242/dev.187815
[23]
RAO CV, XU C, FAROOQUI M, et al. Survival-critical genes associated with copy number alterations in lung adenocarcinoma[J]. Cancers, 2021, 13(11): 2586. DOI:10.3390/cancers13112586
[24]
CAI YB, LING YH, HUANG LB, et al. C-C motif chemokine 14 as a novel potential biomarker for predicting the prognosis of epithe-lial ovarian cancer[J]. Oncol Lett, 2020, 19(4): 2875-2883. DOI:10.3892/ol.2020.11378
[25]
LI Y, ZHENG YH, LI TS, et al. Chemokines CCL2, 3, 14 stimulate macrophage bone marrow homing, proliferation, and polarization in multiple myeloma[J]. Oncotarget, 2015, 6(27): 24218-24229. DOI:10.18632/oncotarget.4523
[26]
JACOBS ES, KEATING SM, ABDEL-MOHSEN M, et al. Cytokines elevated in HIV elite controllers reduce HIV replication in vitro and modulate HIV restriction factor expression[J]. J Virol, 2017, 91(6): e02051-16. DOI:10.1128/jvi.02051-16
[27]
RZESZOTARSKA E, SOWINSKA A, STYPINSKA B, et al. The role of MECP2 and CCR5 polymorphisms on the development and course of systemic lupus erythematosus[J]. Biomolecules, 2020, 10(3): 494. DOI:10.3390/biom10030494
[28]
SZABO PA, DOGRA P, GRAY JI, et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19[J]. Immunity, 2021, 54(4): 797-814.e6. DOI:10.1016/j.immuni.2021.03.005
[29]
LECHNER AJ, DRIVER IH, LEE J, et al. Recruited monocytes and type 2 immunity promote lung regeneration following pneumonectomy[J]. Cell Stem Cell, 2017, 21(1): 120-134.e7. DOI:10.1016/j.stem.2017.03.024
[30]
BEN-YEHUDA H, ARAD M, PERALTA RAMOS JM, et al. Key role of the CCR2-CCL2 axis in disease modification in a mouse model of tauopathy[J]. Mol Neurodegener, 2021, 16(1): 1-19. DOI:10.1186/s13024-021-00458-z
[31]
HONG L, WANG Q, CHEN M, et al. Mas receptor activation attenuates allergic airway inflammation via inhibiting JNK/CCL2-induced macrophage recruitment[J]. Biomed Pharmacother, 2021, 137: 111365. DOI:10.1016/j.biopha.2021.111365
[32]
JIANG H, CUI H, WANG T, et al. CCL2/CCR2 signaling elicits itch- and pain-like behavior in a murine model of allergic contact dermatitis[J]. Brain Behav Immun, 2019, 80: 464-473. DOI:10.1016/j.bbi.2019.04.026
[33]
GUPTA S, ERDMANN G, SCHULZ-MARONDE S, et al. N-nonanoyl-CCL14 (NNY-CCL14), a novel inhibitor of allergic airway inflammation is a partial agonist of human CCR2[J]. Allergy, 2008, 63(10): 1317-1323. DOI:10.1111/j.1398-9995.2008.01787.x
[34]
TOFFALORI C, ZITO L, GAMBACORTA V, et al. Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation[J]. Nat Med, 2019, 25(4): 603-611. DOI:10.1038/s41591-019-0400-z
[35]
ALFEN JS, LARGI P, FACCIOTTI F, et al. Intestinal IFN-γ-produ-cing type 1 regulatory T cells coexpress CCR5 and programmed cell death protein 1 and downregulate IL-10 in the inflamed guts of patients with inflammatory bowel disease[J]. J Allergy Clin Immunol, 2018, 142(5): 1537-1547.e8. DOI:10.1016/j.jaci.2017.12.984
[36]
KHANDELWAL P, FUKUDA T, TEUSINK-CROSS A, et al. CCR5 inhibitor as novel acute graft versus host disease prophylaxis in children and young adults undergoing allogeneic stem cell transplant: results of the phaseⅡstudy[J]. Bone Marrow Transplant, 2020, 55(8): 1552-1559. DOI:10.1038/s41409-020-0888-3
[37]
LI W, LIU LY, GOMEZ A, et al. Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease[J]. JCI Insight, 2016, 1(6): e86660. DOI:10.1172/jci.insight.86660
[38]
HARINGMAN JJ, KRAAN MC, SMEETS TM, et al. Chemokine blockade and chronic inflammatory disease: proof of concept in patients with rheumatoid arthritis[J]. Ann Rheum Dis, 2003, 62(8): 715-721. DOI:10.1136/ard.62.8.715
[39]
RUMP L, MATTEY DL, KEHOE O, et al. An initial investigation into endothelial CC chemokine expression in the human rheumatoid synovium[J]. Cytokine, 2017, 97: 133-140. DOI:10.1016/j.cyto.2017.05.023
[40]
HUANG J, FU XK, CHEN XX, et al. Promising therapeutic targets for treatment of rheumatoid arthritis[J]. Front Immunol, 2021, 12: 686155. DOI:10.3389/fimmu.2021.686155
[41]
VYSHKINA T, SYLVESTER A, SADIQ S, et al. CCL genes in multiple sclerosis and systemic lupus erythematosus[J]. J Neuroimmunol, 2008, 200(1/2): 145-152. DOI:10.1016/j.jneuroim.2008.05.016
[42]
JOHANSSON CM, ZUNEC R, GARCÍA MA, et al. Chromosome 17p12-Q11 harbors susceptibility loci for systemic lupus erythematosus[J]. Hum Genet, 2004, 115(3): 230-238. DOI:10.1007/s00439-004-1145-3
[43]
RHODES A, EVANS LE, ALHAZZANI W, et al. Surviving sepsis campaign: international guidelines for management of Sepsis and septic shock: 2016[J]. Intensive Care Med, 2017, 43(3): 304-377. DOI:10.1007/s00134-017-4683-6
[44]
FLEISCHMANN-STRUZEK C, MELLHAMMAR L, ROSE N, et al. Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis[J]. Intensive Care Med, 2020, 46(8): 1552-1562. DOI:10.1007/s00134-020-06151-x
[45]
RUDD KE, JOHNSON SC, AGESA KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017:analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219): 200-211. DOI:10.1016/S0140-6736(19)32989-7
[46]
YANG K, FAN M, WANG XH, et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis[J]. Cell Death Differ, 2022, 29(1): 133-146. DOI:10.1038/s41418-021-00841-9
[47]
DENG M, TANG Y, LI W, et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis[J]. Immunity, 2018, 49(4): 740-753.e7. DOI:10.1016/j.immuni.2018.08.016
[48]
DE LEO F, QUILICI G, TIRONE M, et al. Diflunisal targets the HMGB 1/CXCL 12 hetero complex and blocks immune cell recruitment[J]. EMBO Rep, 2019, 20(10): e47788. DOI:10.15252/embr.201947788
[49]
CASTANHEIRA FVES, BORGES V, SÔNEGO F, et al. The atypical chemokine receptor ACKR2 is protective against sepsis[J]. Shock, 2018, 49(6): 682-689. DOI:10.1097/shk.0000000000000969
[50]
MAYR FB, SPIEL AO, LEITNER JM, et al. Duffy antigen modifies the chemokine response in human endotoxemia[J]. Crit Care Med, 2008, 36(1): 159-165. DOI:10.1097/01.ccm.0000297875.55969.db
[51]
NESS TL, CARPENTER KJ, EWING JL, et al. CCR1 and CC chemokine ligand 5 interactions exacerbate innate immune respon-ses during sepsis[J]. J Immunol, 2004, 173(11): 6938-6948. DOI:10.4049/jimmunol.173.11.6938
[52]
CASTANHEIRA FVES, ALVES DE LIMA K, CEBINELLI GCM, et al. CCR5-positive inflammatory monocytes are crucial for control of sepsis[J]. Shock, 2019, 52(5): e100-e106. DOI:10.1097/shk.0000000000001301
[53]
HOSTE E, BIHORAC A, AL-KHAFAJI A, et al. Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study[J]. Intensive Care Med, 2020, 46(5): 943-953. DOI:10.1007/s00134-019-05919-0
[54]
PERINEL S, VINCENT F, LAUTRETTE A, et al. Transient and persistent acute kidney injury and the risk of hospital mortality in critically ill patients[J]. Crit Care Med, 2015, 43(8): e269-e275. DOI:10.1097/ccm.0000000000001077
[55]
KELLUM JA, SILEANU FE, BIHORAC A, et al. Recovery after acute kidney injury[J]. Am J Respir Crit Care Med, 2017, 195(6): 784-791. DOI:10.1164/rccm.201604-0799OC
[56]
KASHANI K, AL-KHAFAJI A, ARDILES T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury[J]. Crit Care, 2013, 17(1): R25. DOI:10.1186/cc12503
[57]
WEN YM, PARIKH CR. Current concepts and advances in biomar-kers of acute kidney injury[J]. Crit Rev Clin Lab Sci, 2021, 58(5): 354-368. DOI:10.1080/10408363.2021.1879000
[58]
TANASE DM, GOSAV EM, RADU S, et al. The predictive role of the biomarker kidney molecule-1 (KIM-1) in acute kidney injury (AKI) cisplatin-induced nephrotoxicity[J]. Int J Mol Sci, 2019, 20(20): 5238. DOI:10.3390/ijms20205238
[59]
GREENBERG JH, ZAPPITELLI M, JIA YQ, et al. Biomarkers of AKI progression after pediatric cardiac surgery[J]. J Am Soc Nephrol, 2018, 29(5): 1549-1556. DOI:10.1681/ASN.2017090989
[60]
ALLEGRETTI AS, PARADA XV, ENDRES P, et al. Urinary NGAL as a diagnostic and prognostic marker for acute kidney injury in cirrhosis: a prospective study[J]. Clin Transl Gastroenterol, 2021, 12(5): e00359. DOI:10.14309/ctg.0000000000000359
[61]
FORNI LG, JOANNIDIS M. IDEAL timing of renal replacement therapy in critical care[J]. Nat Rev Nephrol, 2019, 15(1): 5-6. DOI:10.1038/s41581-018-0088-1
[62]
OKUBO K, KUROSAWA M, KAMIYA M, et al. Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury[J]. Nat Med, 2018, 24(2): 232-238. DOI:10.1038/nm.4462
[63]
NIEWCZAS MA, PAVKOV ME, SKUPIEN J, et al. A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes[J]. Nat Med, 2019, 25(5): 805-813. DOI:10.1038/s41591-019-0415-5