中国医科大学学报  2023, Vol. 52 Issue (1): 30-33

文章信息

郭治华, 张荣, 王煜
GUO Zhihua, ZHANG Rong, WANG Yu
辛伐他汀对脓毒血症大鼠肺损伤的保护作用
Protective effect of simvastatin on lung injury in rats with sepsis
中国医科大学学报, 2023, 52(1): 30-33
Journal of China Medical University, 2023, 52(1): 30-33

文章历史

收稿日期:2022-05-12
网络出版时间:2023-01-17 16:54:15
辛伐他汀对脓毒血症大鼠肺损伤的保护作用
郭治华 , 张荣 , 王煜     
中国医科大学附属盛京医院急诊科, 沈阳 110004
摘要目的 探讨辛伐他汀对脓毒血症大鼠肺损伤的保护作用及其机制。方法 选取成年雄性Wistar大鼠36只,随机分为假手术组、脓毒血症组和治疗组。建模前1周进行药物干预,其中,治疗组腹腔注射辛伐他汀0.2 μg/g,每12 h 1次,连续治疗1周。假手术组和脓毒血症组腹腔注射同等剂量安慰剂。取建模24 h后的支气管肺泡灌洗液(BALF),利用蛋白定量试剂盒对总蛋白进行定量,采用酶联免疫吸附法测定脂钙蛋白2(LCN2)和肿瘤坏死因子-α(TNF-α)水平,并对多形核中性粒细胞(PMN)进行计数。取各组大鼠肺组织,采用硫代巴比妥酸(TBA)法检测丙二醛(MDA)水平,黄嘌呤氧化酶法检测超氧化物歧化酶(SOD)活性。肺湿/干重(W/D)比值评估肺水肿情况。HE染色评估肺组织病理变化。结果 与假手术组相比,脓毒血症组的支气管肺泡灌洗液中LCN2、TNF-α和总蛋白水平以及PMN计数均显著增高,肺组织SOD活性下降,MDA水平升高,W/D比值升高。与脓毒血症组相比,治疗组支气管肺泡灌洗液中LCN2、TNF-α、总蛋白水平以及PMN计数均显著降低,肺组织SOD活性增高,MDA水平降低,W/D比值下降。肺组织HE染色结果显示,脓毒血症组大鼠肺损伤明显,辛伐他汀治疗可显著改善肺损伤。结论 辛伐他汀可降低脓毒血症大鼠肺组织的炎症和氧化应激,继而减轻急性肺损伤。
关键词辛伐他汀    脓毒血症    急性肺损伤    炎性细胞因子    氧化应激    
Protective effect of simvastatin on lung injury in rats with sepsis
Emergency Department, Shengjing Hospital of China Medical University, Shenyang 110004, China
Abstract: Objective To observe the protective effects of simvastatin on sepsis-induced acute lung injury (ALI) in rats and to explore the underlying mechanism of the protective effects. Methods In total, 36 adult, male Wistar rats were randomly divided into three groups: sham, sepsis, and treatment (n=12 each). One week before operation, the treatment group received intraperitoneal injection of 0.2 μg/g simvastatin every 12 hours, whereas the sham and sepsis groups received placebo at the same dose. Sepsis was induced by cecum ligation and puncture (CLP); however, the sham group did not undergo CLP. Bronchoalveolar lavage fluid (BALF) was collected 24 hours after modeling. The total protein level was quantified using a protein quantification kit, and lipocalin 2 and TNF-α levels were measured using ELISA. Moreover, polymorphonuclear neutrophils (PMN) were counted. Next, lung tissues were collected from rats in each group. Malondialdehyde (MDA) level was determined with the thiobarbituric acid colorimetric method, and superoxide dismutase (SOD) activity was assessed with the yellow purine oxidase method. Pulmonary edema was assessed by calculating the lung wet/dry mass ratio (W/D). Further, H&E staining was performed to evaluate the pathological changes in lung tissues. Results The sepsis group demonstrated significantly increased lipocalin 2, TNF-α, and total protein concentrations and PMN count in BALF; MDA content; and W/D ratio as well as significantly decreased pulmonary SOD activity. Compared with the sepsis group, the treatment group showed significantly decreased lipocalin 2, TNF-α, and total protein concentrations and PMN count in BALF; MDA content; and W/D ratio, but significantly increased pulmonary SOD activity. Moreover, obvious lung injuries in the sepsis group were shown to be alleviated in the simvastatin group when observed under a light microscope. Conclusion Simvastatin reduces lung inflammation and oxidative stress in septic rats, thereby alleviating ALI.
Keywords: simvastatin    sepsis    acute lung injury    inflammatory factors    oxidative stress    

脓毒血症是一种由感染引起的生理、病理、生化异常的综合征,可导致多器官功能障碍,是重症监护病房患者的主要死亡原因。肺是脓毒血症时最易受损的靶器官,并且急性肺损伤(acute lung injury,ALI)发生的时间最早,发生率最高[1]。在脓毒症诱导ALI进展过程中,炎症和凋亡通路的异常活跃导致肺泡上皮细胞受损,上皮通透性增加,进而导致血管渗漏、炎症渗出,并最终引发急性呼吸窘迫综合征[2]。研究[3]表明,3-羟基-3-甲基戊二酰辅酶A(hydroxy-methyl-glutaryl coenzyme A,HMG-CoA)还原酶抑制剂(他汀类药物)除具有降脂作用外,还具有抗炎、免疫调节以及改善血管内皮细胞功能的作用。因此,本研究旨在探讨辛伐他汀对脓毒血症大鼠肺损伤的保护作用及其主要机制。

1 材料与方法 1.1 实验动物

将36只健康且不携带特异性病原体的成年雄性Wistar大鼠(体质量120 g±20 g,中国医科大学附属盛京医院本溪基地动物实验中心)随机分为假手术组、脓毒血症组和治疗组3组,每组12只。本研究获得中国医科大学附属盛京医院动物实验伦理委员会批准。

1.2 脓毒血症动物模型构建及处理

采用盲肠结扎穿刺术(cecal ligation and puncture,CLP)诱导大鼠脓毒血症模型[4]。腹腔注射5%水合氯醛(0.6 mL/100 g)麻醉大鼠,沿腹中线切口暴露盲肠,用5-0丝缝线结扎盲肠中点处。用pH 7.4磷酸的盐缓冲液PBS浸泡盲肠,18号针头由肠系膜侧向非肠系膜侧刺穿盲肠。然后,将盲肠放回腹腔,缝合腹部切口。假手术组仅开腹,不进行盲肠结扎和穿孔,其余操作与其他2组相同。建模前1周进行预处理:治疗组小鼠腹腔注射辛伐他汀0.2 μg/g(由辛伐他汀5 mg+0.5 mL无水乙醇+0.9%氯化钠溶液500 mL配制,注射体积0.02 mL/g),每12 h 1次,连续注射1周;假手术组和脓毒血症组腹腔注射安慰剂0.02 mL/g(由0.5 mL无水乙醇+0.9%氯化钠溶液500 mL配制),每12 h 1次,连续注射1周。于建模后24 h取材,用于下一步实验。

1.3 支气管肺泡灌洗液(bronchoalveolar lavage fluid,BALF)中肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)和脂钙蛋白2(lipocalin 2,LCN2)的检测

分离大鼠气管及主支气管后进行气管插管,0.5 mL预冷PBS灌洗左肺3次,收集BALF。BALF 1 500 g,4 ℃,离心10 min,收集上清液。蛋白定量试剂盒(Bio-Rad Co.,美国)对BALF中蛋白含量进行测定,严格按照试剂盒说明书操作。酶联免疫吸附(enzyme linked immunosorbent assay,ELISA)试剂盒(R & D Systems Inc.,美国)检测BALF中TNF-α和LCN2的浓度。BALF中的细胞进行瑞氏吉姆萨染色后,利用光学显微镜进行多形核中性粒细胞(polymorphonuclear neutrophils,PMN)计数。

1.4 肺组织氧化应激检测

取左肺组织匀浆,1 500 g,4 ℃,离心15 min。采用硫代巴比妥酸法测定上清中丙二醛(malondialdehyde,MDA)的水平,黄嘌呤氧化酶法测定超氧化物歧化酶(superoxide dismutase,SOD)活性。

1.5 肺水肿评价

采用湿重/干重(wet weight/dry weight,W/D)法评估肺水肿情况。建模24 h后,收集各组大鼠右肺上叶。滤纸吸走表面残余水分及血液,称质量(湿重);然后,将肺组织在80 ℃下干燥24 h后,再称质量(干重)。最后计算肺组织W/D。

1.6 肺组织的病理学评估

取大鼠右肺中叶组织,预冷PBS冲洗3次,10%中性甲醛固定24 h。肺组织进行常规脱水、透明以及石蜡包埋。将石蜡包埋的肺组织进行4 μm连续切片后,二甲苯脱蜡,不同梯度浓度乙醇脱水,苏木精染色5 min,伊红染色2 min。光学显微镜下观察肺组织病理学变化。根据肺泡渗出物、肺间质充血水肿、中性粒细胞浸润、肺泡出血和细胞增生5项指标对肺组织结构完整性进行评估。每项指标分为无病变、轻度病变、中度病变和严重病变,得分依次为0、1、2和3分。各指标评分相加即为肺组织结构受损程度的总得分,得分越高表示受损越严重[5]

1.7 统计学分析

采用SPSS 23.0软件进行数据的统计分析。计量资料以x±s表示,组间比较采用单因素方差分析,两两比较采用LSD检验,P < 0.05为差异有统计学意义。

2 结果 2.1 3组大鼠BALF中各检测指标比较

脓毒血症组BALF中总蛋白、LCN2和TNF-α水平及PMN计数均显著高于假手术组(均P < 0.05),治疗组BALF中上述各指标均明显低于脓毒血症组(均P < 0.05),见表 1

表 1 3组大鼠BALF中总蛋白、TNF-α、LCN2水平及PMN计数比较(x±s Tab.1 Comparison of total protein, TNF-α, and LCN2 concentrations and PMN count in BALF from rats in all groups(x±s)
Group Total protein(g/L) TNF-α(pg/mL) LCN2(μg/L) PMN(×105/L)
Sham 0.5±0.07 213.4±28.62 87.2±9.25 1.9±0.05
Sepsis 6.3±0.451) 1 256.8±125.361) 589.3±47.241) 16.1±2.171)
Treatment 3.5±0.612) 769.3±108.322) 293.4±21.392) 7.8±0.382)
1)P < 0.05 vs sham group;2)P < 0.05 vs sepsis group.

2.2 3组大鼠肺组织MDA水平及SOD活性和肺水肿情况比较

与假手术组相比,脓毒血症组大鼠肺组织MDA水平显著升高,SOD活性则显著降低,W/D比值显著升高(均P < 0.05)。辛伐他汀治疗可显著降低肺组织MDA水平,提高SOD活性,降低W/D比值(均P < 0.05),见表 2

表 2 3组大鼠肺组织MDA水平、SOD活性及W/D比值比较(x±s Tab.2 Comparison of MDA content, SOD activity, and W/D ratio in lung tissues from rats in all groups(x±s)
Group MDA(mmol/g) SOD(kU/g) W/D
Sham 2.2±0.16 27.5±3.24 2.9±0.21
Sepsis 7.4±0.411) 13.4±2.161) 7.8±0.461)
Treatment 3.8±0.582) 19.3±2.942) 5.1±0.672)
1)P < 0.05 vs sham group;2)P < 0.05 vs sepsis group.

2.3 3组大鼠肺组织病理学改变比较

HE染色结果显示,假手术组大鼠肺组织结构正常,肺泡形态清晰,无充血或水肿。脓毒血症组大鼠肺组织出现大量炎症细胞浸润,肺泡充血、水肿,肺泡壁增厚。辛伐他汀治疗可显著改善脓毒血症导致的炎症细胞浸润、肺泡充血和水肿现象(图 1)。此外,假手术组、脓毒症组及治疗组肺组织病理评分分别为1.3±0.12、8.8±0.48和5.6±0.63,差异有统计学意义(P < 0.05)。

A, sham group; B, sepsis group; C, treatment group. 图 1 光镜下3组大鼠肺组织HE染色 ×200 Fig.1 H & E staining results of lung tissues from rats in all groups under light microscope × 200

3 讨论

ALI是脓毒血症最常见的组织损伤[6]。肺泡-毛细血管屏障的上皮和内皮层损伤和破坏,进而导致炎症细胞聚集到肺泡腔是ALI的典型特征[7]。本研究结果显示,脓毒血症导致大鼠支气管肺泡灌洗液中总蛋白量显著升高,表明内皮通透性增加;支气管肺泡灌洗液中LCN2和TNF-α含量以及PMN计数升高,肺组织W/D比值升高,MDA升高和SOD活性下降,表明脓毒血症促进局部炎性细胞因子释放和中性粒细胞聚集,并提高氧化应激水平,继而导致肺水肿和肺实质损伤。辛伐他汀治疗显著降低了BALF中总蛋白、LCN2、TNF-α水平和PMN计数;降低肺组织MDA水平,提高SOD活性;降低肺W/D比值;减轻肺组织炎症细胞浸润、肺间质充血和水肿。因此,辛伐他汀可能通过改善内皮屏障功能,减轻肺组织炎症反应和抑制过度氧化应激的途径减轻脓毒血症大鼠的ALI。

脓毒症时细菌毒素激活巨噬细胞/枯否细胞,诱导其释放促炎细胞因子及其他启动特异性免疫反应的炎症介质。此外,研究[8]表明,包括TNF-α和IL-6在内的促炎细胞因子在脓毒症导致的组织损伤中发挥重要作用。TNF-α可活化肺组织的中性粒细胞,促进其产生大量的包括颗粒酶、活性氧、生物活性脂类、多种促炎细胞因子等细胞毒性物质,启动炎症级联反应,进而造成组织损伤[9]。LCN2与乳铁蛋白、钙卫蛋白(S100A8/A9)或Mac-1(CD11b/CD18)一起储存于特异性颗粒中,促进中性粒细胞效应功能的发挥和迁移[10-11]。此外,LCN2可抑制卵巢透明细胞癌细胞内铁相关氧化应激反应[12],并高表达于臭氧诱导的受损肺组织中[13]。炎症状态下核转录因子NF-κB活化可刺激IL-6和LCN2表达增加[14]。本研究结果显示,TNF-α和LCN2等细胞因子在脓毒血症致肺损伤的发生中具有重要作用,辛伐他汀通过抑制多种炎性细胞因子的过量表达,对脓毒血症导致的ALI产生保护作用。

脂多糖可激活中性粒细胞、单核细胞/巨噬细胞,引起炎性细胞因子和氧自由基的过度释放,通过脂质过氧化反应,和直接对蛋白质、核酸的破坏,产生氧化应激损伤,引起细胞凋亡,导致脓毒血症ALI[15]。本研究结果显示,脓毒血症组大鼠肺组织MDA含量升高、SOD活性降低。光镜下,脓毒血症组大鼠肺组织病理损伤严重;辛伐他汀治疗可显著降低肺组织MDA含量、增加SOD活性,减轻炎症细胞浸润和肺间质充血、水肿及肺组织病理损伤。提示辛伐他汀减轻脓毒血症大鼠ALI的机制与减轻氧化应激反应有关。

综上所述,辛伐他汀治疗能一定程度上减轻脓毒血症大鼠的肺损伤,其机制可能为辛伐他汀能够改善内皮通透性,降低肺组织炎症反应和氧化应激反应,从而减轻肺损伤,本研究为辛伐他汀用于临床治疗脓毒血症提供了理论基础。

参考文献
[1]
LI G, ZHOU CL, ZHOU QS, et al. Galantamine protects against lipopolysaccharide-induced acute lung injury in rats[J]. Braz J Med Biol Res, 2016, 49(2): e5008. DOI:10.1590/1414-431X20155008
[2]
DO-UMEHARA HC, CHEN C, URICH D, et al. Suppression of inflammation and acute lung injury by Miz1 via repression of C/EBP-δ[J]. Nat Immunol, 2013, 14(5): 461-469. DOI:10.1038/ni.2566
[3]
VERRALL GM. Scientific rationale for a bottom-up approach to target the host response in order to try and reduce the numbers presenting with adult respiratory distress syndrome associated with COVID-19. is there a role for statins and COX-2 inhibitors in the prevention and early treatment of the disease?[J]. Front Immunol, 2020, 11: 2167. DOI:10.3389/fimmu.2020.02167
[4]
RUIZ S, VARDON-BOUNES F, MERLET-DUPUY V, et al. Sepsis modeling in mice: ligation length is a major severity factor in cecal ligation and puncture[J]. Intensive Care Med Exp, 2016, 4(1): 22. DOI:10.1186/s40635-016-0096-z
[5]
ZENG M, HE WM, LI LJ, et al. Ghrelin attenuates sepsis-associated acute lung injury oxidative stress in rats[J]. Inflammation, 2015, 38(2): 683-690. DOI:10.1007/s10753-014-9977-z
[6]
ANGUS DC, VAN DER POLL T. Severe Sepsis and septic shock[J]. N Engl J Med, 2013, 369(9): 840-851. DOI:10.1056/NEJMra1208623
[7]
HERRERO R, SANCHEZ G, LORENTE JA. New insights into the mechanisms of pulmonary edema in acute lung injury[J]. Ann Transl Med, 2018, 6(2): 32. DOI:10.21037/atm.2017.12.18
[8]
GIL M, KIM YK, HONG SB, et al. Naringin decreases TNF-α and HMGB1 release from LPS-stimulated macrophages and improves survival in a CLP-induced Sepsis mice[J]. PLoS One, 2016, 11(10): e0164186. DOI:10.1371/journal.pone.0164186
[9]
BUTT Y, KURDOWSKA A, ALLEN TC. Acute lung injury: a clinical and molecular review[J]. Arch Pathol Lab Med, 2016, 140(4): 345-350. DOI:10.5858/arpa.2015-0519-RA
[10]
WANG Y, YANG WP, ZHAO X, et al. Experimental study of the protective effect of simvastatin on lung injury in rats with sepsis[J]. Inflammation, 2018, 41(1): 104-113. DOI:10.1007/s10753-017-0668-4
[11]
LI DH, SUN WY, FU BW, et al. Lipocalin-2-the myth of its expression and function[J]. Basic Clin Pharmacol Toxicol, 2020, 127(2): 142-151. DOI:10.1111/bcpt.13332
[12]
YAMADA Y, MIYAMOTO T, KASHIMA H, et al. Lipocalin 2 attenuates iron-related oxidative stress and prolongs the survival of ovarian clear cell carcinoma cells by up-regulating the CD44 variant[J]. Free Radic Res, 2016, 50(4): 414-425. DOI:10.3109/10715762.2015.1134795
[13]
MICHAUDEL C, MAILLET I, FAUCONNIER L, et al. Interleukin-1α mediates ozone-induced myeloid differentiation factor-88-dependent epithelial tissue injury and inflammation[J]. Front Immunol, 2018, 9: 916. DOI:10.3389/fimmu.2018.00916
[14]
TANG WY, MA J, GU RP, et al. Lipocalin 2 suppresses ocular inflammation by inhibiting the activation of NF-κβ pathway in endotoxininduced uveitis[J]. Cell Physiol Biochem, 2018, 46(1): 375-388. DOI:10.1159/000488472
[15]
ZHAI Y, ZHOU XH, DAI QC, et al. Hydrogen-rich saline ameliorates lung injury associated with cecal ligation and puncture-induced Sepsis in rats[J]. Exp Mol Pathol, 2015, 98(2): 268-276. DOI:10.1016/j.yexmp.2015.03.005