中国医科大学学报  2022, Vol. 51 Issue (4): 361-364

文章信息

陈波, 李志杰
CHEN Bo, LI Zhijie
Pif1维持基因组稳定性在肿瘤中发挥的作用
The role of Pif1 in maintaining genome stability in tumors
中国医科大学学报, 2022, 51(4): 361-364
Journal of China Medical University, 2022, 51(4): 361-364

文章历史

收稿日期:2021-06-16
网络出版时间:2022-04-29 14:30
Pif1维持基因组稳定性在肿瘤中发挥的作用
陈波 , 李志杰     
中国医科大学附属盛京医院医学研究中心, 辽宁省环境与代谢疾病动物模型研究与应用重点实验室, 沈阳 110004
摘要:解旋酶是核酸代谢所必需的酶,普遍存在于生物体内。Pif1是5’-3’方向ATP依赖的超家族ⅠB类解旋酶,几乎存在于所有真核生物中。Pif1不同程度地影响端粒、线粒体DNA的复制和冈崎片段的成熟。此外,Pif1可通过破坏稳定的核蛋白复合物来影响这些过程。基于Pif1对维持基因组稳定性的重要性,为肿瘤相关疾病提供新的潜在治疗方向。本文论述了Pif1维持基因组稳定性在肿瘤中所发挥的作用。
关键词Pif1    解旋酶    基因组稳定性    复制    肿瘤    
The role of Pif1 in maintaining genome stability in tumors
CHEN Bo , LI Zhijie     
Medical Research Center, Shengjing Hospital of China Medical University, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shenyang 110004, China
Abstract: Helicase is necessary for enzymes involved in nucleic acid metabolism in a variety of organisms. Pif1 is an ATP-dependent superfamily ⅠB class of helicases that work in the 5' to 3' direction and is found in almost all eukaryotes. Pif1 affects telomere, mitochondrial DNA replication, and Okazaki fragment maturation to varying degrees, such as through the disruption of stable nuclear protein complexes. Based on the importance of Pif1 in maintaining genomic stability, these current findings also offer new potential therapeutic directions for tumor-related diseases. This paper reviews the role of Pif1 in maintaining genomic stability in tumors.
Keywords: Pif1    helicase    genome stability    replication    tumor    

解旋酶是生物体内核酸代谢中必不可少的酶,能将遗传物质传递给后代[1]。解旋酶被称为分子运动蛋白,沿着DNA磷酸二酯主链单向转移,利用核苷三磷酸(nucleoside triphosphate,NTP)水解的能量将稳定的DNA双链分离成单链或改造核酸蛋白复合物[2]。解旋酶参与多种细胞功能的调控,与肝癌、乳腺癌和卵巢癌等肿瘤的发生发展密切相关[3-5]

基于解旋酶序列的保守性,可分为6个不同的超家族(superfamily 1-6,Sf1-Sf6)。根据在核酸中移位的方向性,这些家族又被分为A(典型代表为PcrASrs2)和B(典型代表为RecD2Pif1)2组[6]Pif1属于超家族ⅠB解旋酶,在核酸上沿5’-3’方向转位[6]。文献[7]报道,Pif1可抑制DNA损伤,防止G4四链体的复制停顿和双链断裂(double strand breaks,DSBs),并通过调节端粒酶在DSBs上的作用抑制总染色体重排(gross chromosomal rearrangement,GCR),提示Pif1在维持基因组稳定性方面具有不可或缺的作用。本文对Pif1在DSBs修复相关DNA复制中发挥的作用进行综述,利于对Pif1在维持基因组完整性上所发挥作用的理解。

1 Pif1与基因组稳定性

Pif1在不同生物体中有单个或多个亚族。目前,已知酿酒酵母基因组编码2个Pif1同源基因(Pif1Rrm3),裂殖酵母、小鼠和人类基因组只编码1个Pif1同源基因(分别为Pfh1mPif1hPif1[8]。作为DNA解旋酶家族中的典型成员,Pif1在线粒体基因组维护中发挥多种作用,包括线粒体基因组维持、端粒形成的抑制和冈崎片段处理等[2-9]

1.1 线粒体基因组的维持

在正常细胞中,线粒体是主要细胞器,对内环境的调控至关重要。由线粒体DNA(mitochondrial DNA,mtDNA)突变引起的功能障碍,与肿瘤的发生发展密切相关[10]。酿酒酵母Pif1最初在基因筛检中分离出,其突变会影响线粒体基因组的重组频率[11]Rrm3基因编码另外5’-3’方向的DNA解旋酶,最初是因其在核糖体DNA(ribosomal DNA,rDNA)中引起重组升高而被识别,后经蛋白质组分析也发现其位于线粒体[12]。尽管Pif1Rrm3在结构上相似,并通过作用于共同的靶点来促进基因组的完整性,但它们在线粒体中具有不重叠和甚至有时相反的作用[2-13]

Pif1缺乏的细胞中,mtDNA的重组减少,这提示Pif1对mtDNA复制和重组至关重要[14]。在Pif1突变体中,细胞对溴化乙锭(ethidium bromide,EtBr)诱导的DNA损伤敏感,mtDNA易碎裂并随之丢失[15]。此外,在Pif1缺乏的细胞中,在特定位点发生mtDNA的断裂,这意味着Pif1可以阻止或修复mtDNA中的DSBs[15]。研究[16]表明,下调Pif1基因可降低结肠癌细胞存活率,但对正常细胞没有影响,这可能是由于其在重新启动停滞的复制叉方面的作用。

1.2 端粒形成的抑制

Pif1作为从头端粒形成和延伸的负调控因子,以检测失去亚端粒基因表达的突变体。在Pif1缺失的情况下,端粒长度增加约75个碱基对[17]。Pif1蛋白的过量产生可恢复mtDNA重组能力,并适度缩短端粒长度[18]Pif1的过表达导致CDC13-1Ku缺陷菌株的活力降低,且该表型被EXO1的突变抑制,该突变编码端粒降解外切核酸酶,表明Pif1去除端粒酶会降低端粒末端保护功能[19]

在酿酒酵母中,DNA损伤会导致Pif1的磷酸化,从而阻断DSBs端粒酶的活性,但不会阻断染色体末端的活性[20]Pif1Rrm3由不同的框架翻译起始密码子表达,与Pif1突变体表现出的端粒酶活性依赖的高GCR率不同,Rrm3基因突变既不影响GCR率,也不影响从头端粒的添加[21]。然而,Rrm3在体内仍然与端粒相关,并在端粒DNA的及时复制中发挥重要作用,影响端粒的长度[21]。hPif1的氨基酸序列与酿酒酵母Pif1和Rrm3具有同源性[22],在体内外,与端粒酶的催化亚基hTERT相互作用,并在过表达时缩短端粒长度,这表明其在功能上与酿酒酵母Pif1具有相似性。

1.3 冈崎片段的成熟

基于双链体DNA的反向平行结构,当前导链不断向复制叉延伸时,后随链DNA复制是一系列连续的过程,这些过程连接形成冈崎片段[23]。在酿酒酵母中,DNA聚合酶δ(DNA polymerase δ,Polδ)在每个细胞周期内产生约十万个冈崎片段,且每个片段都需要以高保真度连接到DNA链中,以避免未修复缺口的积累导致DSBs和细胞致死性[24]

通过对裂殖酵母的研究,发现Pif1在冈崎片段的加工中起重要作用。其中,对温度敏感的Cdc24等位基因被Pfh1+(酿酒酵母的同系物)内的突变体抑制,而Pif1Dna2-C2突变体对温度敏感的生长缺陷被Pfh1-R20Pfh1的冷敏感突变体等位基因)抑制[25]。在酿酒酵母中观察到了类似的作用,Pif1突变体在30 ℃时抑制了Dna2突变体的致死表型,但在更高的温度下却没有[26]。即使在37 ℃时,Pif1-Dna2双重突变体仍然存在,但DNA聚合酶32(DNA polyme-rase 32,Pol32)会额外缺失,而Pol32缺失编码Polδ的非必需亚基,提示Pif1Pol32通过持续性刺激有助于下游冈崎片段的置换和更长的链瓣产生Polδ[6]。综上,在后随链合成过程中,Pif1Pol32产生了需要Dna2活性才能完成DNA复制的中间底物,有利于冈崎片段的形成。

1.4 DNA合成的修复

在裂殖酵母中,Pfh1不仅需要完成DNA复制,还需要对DNA破坏剂作出反应。对冷敏感的Pfh1-R20突变细胞在特定温度下对甲磺酸甲酯(methyl methanesulfonate,MMS)和羟基脲(hydroxyurea,HU)高度敏感,表明其在DNA损伤修复中的作用[27]。在酿酒酵母中,与裂殖酵母Pfh1突变体相比,Pif1突变体对MMS和HU仅有中等敏感性。然而,Pif1在γ射线照射后与Rad52(同源重组蛋白)共定位在核内,从而修复了病灶,表明Pif1对DSB的修复和重组具有特异性作用[28]。据文献[29]报道,Pif1在通过断裂诱导复制(break-induced replication,BIR)途径产生DSB修复产物中具有重要作用。

2 Pif1与肿瘤的调控

基因组不稳定性突变被认为是癌症发生和发展的重要诱因,而线粒体基因组维持、端粒形成的抑制和冈崎片段处理等对维持基因组的稳定性至关重要。解旋酶被证明在保护细胞免受DNA损伤中起关键作用。与Pif1在维持复制叉完整性中的作用相一致,肿瘤细胞中Pif1的消耗可以防止从胸苷诱导的复制停滞释放后进入S期并减慢S期进程[30]。研究[16]指出,Pif1具有在S期进入和在新的复制位点上触发起点的作用,为维持基因组稳定性所必需。当新的复制位点对起始点激发的需求增加时,尤其是在致癌基因诱导的复制应激期间,这可能变得至关重要。据文献[31]报道,致癌基因的活化和进入S期的失控可能导致肿瘤细胞出现慢性DNA复制应激。在这种情况下,肿瘤细胞表现出对Pif1的依赖性增加,以维持生存能力。研究[32]表明,细胞中Pfh1-L430P等位基因的表达导致细胞核和线粒体功能的丧失,而该变异体无法补充Pfh1在细胞核和线粒体中的基本功能,从而增加了乳腺癌的患病风险。

Pif1可以负调控端粒酶,促进冈崎片段的处理。当细胞内Pif1缺乏或失调时,冈崎片段的成熟受到抑制,加大了正常细胞向肿瘤转变的可能性。据文献[33]报道,Pif1能够抑制DNA末端的端粒酶活性,端粒长度稳态对维持基因组稳定至关重要,端粒酶的激活和抑制是治疗人类疾病的潜在疗法。Pif1被证明在DSB修复中起关键作用,其中,BIR是主要的修复途径,而Pif1可以通过控制核酸酶活性在端粒上启动DDR[34]。此外,必需的端粒“帽”蛋白通过抑制DNA损伤反应和调节端粒酶募集,将端粒与DSB区别开来,从而发挥抗癌的作用[35]

3 总结

Pif1是一类高保守的解旋酶,涉及各类核酸的处理。尽管Pif1在酵母细胞中具有作为全能DNA代谢参与者的多功能性,但与裂殖酵母或更高等的真核生物中其直系同源物的作用不一致。mPif1缺失突变几乎没有可见的表型,包括端粒长度未出现改变。虽然hPif1的功能有很多未知,但保守的Pif1残基的突变与乳腺癌易感性增加有关,这表明hPif1可能起到抑癌作用。即使酿酒酵母Pif1Rrm3,以及hPif1表达定位于裂殖酵母的线粒体和细胞核中,这些同源物都不能提供Pif1的所有基本功能。

Pif1解旋酶家族的每个成员都具有自己独特的活性,这是由于其结构、寡聚状态和底物选择等方面的决定性差异。鉴于Pif1解旋酶家族在细胞中广泛的独特功能,随着对Pif1解旋酶家族进行更全面而深入的研究,将揭示Pif1在人类相关肿瘤疾病中所发挥作用的更多细节,也为抗癌新药的设计等提供新的靶点和思路。

参考文献
[1]
SABOURI N. The functions of the multi-tasking Pfh1Pif1 helicase[J]. Curr Genet, 2017, 63(4): 621-626. DOI:10.1007/s00294-016-0675-2
[2]
SINGH SP, SORANNO A, SPARKS MA, et al. Branched unwinding mechanism of the Pif1 family of DNA helicases[J]. PNAS, 2019, 116(49): 24533-24541. DOI:10.1073/pnas.1915654116
[3]
NI FB, LIN Z, FAN XH, et al. A novel genomic-clinicopathologic nomogram to improve prognosis prediction of hepatocellular carcinoma[J]. Clin Chim Acta, 2020, 504: 88-97. DOI:10.1016/j.cca.2020.02.001
[4]
DEHGHANI-TAFTI S, LEVDIKOV V, ANTSON AA, et al. Structural and functional analysis of the nucleotide and DNA binding activities of the human PIF1 helicase[J]. Nucleic Acids Res, 2019, 47(6): 3208-3222. DOI:10.1093/nar/gkz028
[5]
PAULLIN T, POWELL C, MENZIE C, et al. Spheroid growth in ovarian cancer alters transcriptome responses for stress pathways and epigenetic responses[J]. PLoS One, 2017, 12(8): e0182930. DOI:10.1371/journal.pone.0182930
[6]
KOCAK E, DYKSTRA S, NEMETH A, et al. The Drosophila melanogaster PIF1 helicase promotes survival during replication stress and processive DNA synthesis during double-strand gap repair[J]. Genetics, 2019, 213(3): 835-847. DOI:10.1534/genetics.119.302665
[7]
MORUNO-MANCHON JF, LEJAULT P, WANG Y, et al. Small-mole- cule G-quadruplex stabilizers reveal a novel pathway of autophagy regulation in neurons[J]. Elife, 2020, 11(9): e52283. DOI:10.7554/eLife.52283
[8]
BYRD AK, RANEY KD. Structure and function of Pif1 helicase[J]. Biochem Soc Trans, 2017, 45(5): 1159-1171. DOI:10.1042/bst20170096
[9]
SU N, BYRD AK, BHARATH SR, et al. Structural basis for DNA unwinding at forked dsDNA by two coordinating Pif1 helicases[J]. Nat Commun, 2019, 10(1): 5375. DOI:10.1038/s41467-019-13414-9
[10]
DING L, LIU Y. Borrowing nuclear DNA helicases to protect mitochondrial DNA[J]. Int J Mol Sci, 2015, 16(5): 10870-10887. DOI:10.3390/ijms160510870
[11]
FOURY F, KOLODYNSKI J. Pif mutation blocks recombination between mitochondrial rho+ and rho- genomes having tandemly arrayed repeat units in Saccharomyces cerevisiae[J]. PNAS, 1983, 80(17): 5345-5349. DOI:10.1073/pnas.80.17.5345
[12]
PROKISCH H, SCHARFE C, CAMP DG, et al. Integrative analysis of the mitochondrial proteome in yeast[J]. PLoS Biol, 2004, 2(6): e160. DOI:10.1371/journal.pbio.0020160
[13]
MUELLNER J, SCHMIDT KH. Yeast genome maintenance by the multifunctional PIF1 DNA helicase family[J]. Genes (Basel), 2020, 11(2): 224. DOI:10.3390/genes11020224
[14]
LAHAYE A, STAHL H, THINES-SEMPOUX D, et al. PIF1:a DNA helicase in yeast mitochondria[J]. EMBO J, 1991, 10(4): 997-1007. DOI:10.1002/j.1460-2075.1991.tb08034.x
[15]
CHENG X, DUNAWAY S, IVESSA AS. The role of Pif1p, a DNA helicase in Saccharomyces cerevisiae, in maintaining mitochondrial DNA[J]. Mitochondrion, 2007, 7(3): 211-222. DOI:10.1016/j.mito.2006.11.023
[16]
GAGOU ME, GANESH A, PHEAR G, et al. Human PIF1 helicase supports DNA replication and cell growth under oncogenic-stress[J]. Oncotarget, 2014, 5(22): 11381-11398. DOI:10.18632/oncotarget.2501
[17]
NICKENS DG, ROGERS CM, BOCHMAN ML. The Saccharomyces cerevisiae Hrq1 and Pif1 DNA helicases synergistically modulate telomerase activity in vitro[J]. J Biol Chem, 2018, 293(37): 14481-14496. DOI:10.1074/jbc.ra118.004092
[18]
NICKENS DG, SAUSEN CW, BOCHMAN ML. The biochemical activities of the saccharomyces cerevisiae Pif1 helicase are regulated by its N-terminal domain[J]. Genes (Basel), 2019, 10(6): 411. DOI:10.3390/genes10060411
[19]
VEGA LR, PHILLIPS JA, THORNTON BR, et al. Sensitivity of yeast strains with long G-tails to levels of telomere-bound telomerase[J]. PLoS Genet, 2007, 3(6): e105. DOI:10.1371/journal.pgen.0030105
[20]
MAKOVETS S, BLACKBURN EH. DNA damage signalling prevents deleterious telomere addition at DNA breaks[J]. Nat Cell Biol, 2009, 11(11): 1383-1386. DOI:10.1038/ncb1985
[21]
IVESSA AS, ZHOU JQ, SCHULZ VP, et al. Saccharomyces Rrm3p, a 5' to 3' DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA[J]. Genes Dev, 2002, 16(11): 1383-1396. DOI:10.1101/gad.982902
[22]
MATEYAK MK, ZAKIAN VA. Human PIF helicase is cell cycle regulated and associates with telomerase[J]. Cell Cycle, 2006, 5(23): 2796-2804. DOI:10.4161/cc.5.23.3524
[23]
BAMBARA RA, MURANTE RS, HENRICKSEN LA. Enzymes and reactions at the eukaryotic DNA replication fork[J]. J Biol Chem, 1997, 272(8): 4647-4650. DOI:10.1074/jbc.272.8.4647
[24]
GARG P, STITH CM, SABOURI N, et al. Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication[J]. Genes Dev, 2004, 18(22): 2764-2773. DOI:10.1101/gad.1252304
[25]
RYU GH, TANAKA H, KIM DH, et al. Genetic and biochemical analyses of Pfh1 DNA helicase function in fission yeast[J]. Nucleic Acids Res, 2004, 32(14): 4205-4216. DOI:10.1093/nar/gkh720
[26]
BUDD ME, REIS CC, SMITH S, et al. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta[J]. Mol Cell Biol, 2006, 26(7): 2490-2500. DOI:10.1128/mcb.26.7.2490-2500.2006
[27]
TANAKA H, RYU GH, SEO YS, et al. The fission yeast pfh1(+) gene encodes an essential 5' to 3' DNA helicase required for the completion of S-phase[J]. Nucleic Acids Res, 2002, 30(21): 4728-4739. DOI:10.1093/nar/gkf590
[28]
MCDONALD KR, GUISE AJ, POURBOZORGI-LANGROUDI P, et al. Pfh1 is an accessory replicative helicase that interacts with the replisome to facilitate fork progression and preserve genome integrity[J]. PLoS Genet, 2016, 12(9): e1006238. DOI:10.1371/journal.pgen.1006238
[29]
BHANDARI J, KARG T, GOLIC KG. Homolog-dependent repair following dicentric chromosome breakage in Drosophila melanogaster[J]. Genetics, 2019, 212(3): 615-630. DOI:10.1534/genetics.119.302247
[30]
GAGOU ME, GANESH A, THOMPSON R, et al. Suppression of apoptosis by PIF1 helicase in human tumor cells[J]. Cancer Res, 2011, 71(14): 4998-5008. DOI:10.1158/0008-5472.can-10-4404
[31]
BARTKOVA J, REZAEI N, LIONTOS M, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints[J]. Nature, 2006, 444(7119): 633-637. DOI:10.1038/nature05268
[32]
CHISHOLM KM, AUBERT SD, FREESE KP, et al. A genomewide screen for suppressors of Alu-mediated rearrangements reveals a role for PIF1[J]. PLoS One, 2012, 7(2): e30748. DOI:10.1371/journal.pone.0030748
[33]
STINUS S, PAESCHKE K, CHANG M. Telomerase regulation by the Pif1 helicase: a length-dependent effect?[J]. Curr Genet, 2018, 64(2): 509-513. DOI:10.1007/s00294-017-0768-6
[34]
CHUNG WH, ZHU Z, PAPUSHA A, et al. Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting[J]. PLoS Genet, 2010, 6(5): e1000948. DOI:10.1371/journal.pgen.1000948
[35]
DEWAR JM, LYDALL D. Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping[J]. EMBO J, 2010, 29(23): 4020-4034. DOI:10.1038/emboj.2010.267