文章信息
- 王冬, 汤艳清
- WANG Dong, TANG Yanqing
- 重度抑郁症与肠道菌群关系的研究进展
- The relationship between major depressive disorder and gut microbiota
- 中国医科大学学报, 2022, 51(3): 259-262
- Journal of China Medical University, 2022, 51(3): 259-262
-
文章历史
- 收稿日期:2021-05-26
- 网络出版时间:2022-01-13 15:58
重度抑郁症(major depressive disorder,MDD)是一种令人逐渐衰弱的精神疾病,全世界约有3亿人被不同程度的抑郁症困扰[1]。研究[2]显示,MDD是人类致残的主要原因之一,每年约80万自杀死亡与其相关。目前,尽管对MDD病因的认知有显著的改善,但尚不完全明确,相应的治疗手段亦不完善。肠道菌群是包括细菌在内的数万亿微生物的集合,是微生物群及其遗传物质的集合,它们栖息在人类宿主体内并与宿主相互作用[3]。已有研究[4]认为肠道菌群对宿主来说非常重要,它能够整合到宿主功能中,将其称为“被忽视的器官”。肠道菌群是与MDD病理生理学有关的新兴研究领域,肠道菌群与MDD的相关性研究日益受到关注。本研究对肠道菌群与MDD的关系研究进展进行综述。
1 MDD发病机制及治疗MDD是一种常见的精神疾病,但MDD的病因仍不明确。研究人员提出了各种假说来阐述MDD的病因。其中单胺假说是最常见的病因之一,认为抑郁状态下突触间隙中的单胺类物质[5-羟色胺(5-hydroxytryptamine,5-HT)、去甲肾上腺素和多巴胺等]浓度降低[5-6]。5-HT是一种由色氨酸合成的吲哚胺,与由酪氨酸合成的儿茶酚胺(肾上腺素和多巴胺)一起集中在神经元末端的小泡中[7],在神经信号传递过程中被释放到突触空间。5-HT的作用在被神经元和神经胶质细胞线粒体膜上的单胺氧化酶(monoamine oxidase,MAO)重新捕获和降解时结束[8],因此,治疗MDD第一代药物的作用机制是增加单胺水平,经典抗抑郁药是MAO抑制剂(MAO inhibitors,MAOI)和三环类抗抑郁药(tricyclic antidepressant,TCA),然后出现了选择性5-HT再摄取抑制剂[9]。目前,研究[10]认为MAOI和TCA具有严重的不良反应(高血压危象、心动过速、心律失常等),不应作为治疗MDD的首选方法。因此,阐明MDD发病机制及研究新的治疗药物至关重要。
2 肠道菌群及其相关疾病肠道菌群指存在于胃肠道的所有微生物,主要由细菌、某些病毒和真菌组成。约1 000~1 150种细菌存在于人类结肠中,每个个体至少有160种[11]。肠道菌群能够维持宿主的内环境平衡,并具有免疫和代谢功能,肠道菌群失调不仅与胃肠道疾病有关,还与癌症、代谢疾病、过敏和免疫疾病等有关[12]。最近研究[13]表明肠道菌群与自闭症、焦虑症、肥胖症、精神分裂症、帕金森病和阿尔茨海默病相关。动物实验研究[14]证实肠道菌群通过炎症反应、下丘脑-垂体-肾上腺轴影响神经传递,进而影响中枢神经系统的功能。肠道细菌与大脑之间的联系途径还不完全明确,但压力诱发的“肠道渗漏”可能发挥了作用[15]。肠道黏膜屏障受损导致的细菌易位增加与免疫系统、下丘脑-垂体-肾上腺轴激活有关[16]。
3 肠道菌群的作用机制近年来,人们已经逐渐认识到肠-脑轴在维持体内健康方面的重要性[17]。肠-脑轴通过神经内分泌、神经免疫以及神经解剖途径在大脑和肠道之间形成一种双向调节系统,在神经发育、精神病、神经退行性疾病、年龄相关的生物学和生理学基础的领域中受到了越来越多的关注[18]。肠道菌群能产生神经递质、短链脂肪酸、支链氨基酸和肠道激素等。其中短链脂肪酸(乙酸、丁酸、丙酸和乳酸)能够进入循环系统,并且可能通过循环系统向大脑传递信号[19]。肠道菌群可以调节色氨酸代谢,进而调节5-HT信号传递。肠道菌群也能合成多巴胺、去甲肾上腺素、γ-氨基丁酸和乙酰胆碱[20]。此外,肠道菌群含有与微生物相关的炎性细胞因子,这些炎性细胞因子可以被肠神经系统中的Toll样受体识别[21]。事实上,肠道内还含有大量的免疫细胞,炎性细胞因子通过肠道上皮黏液层物理屏障之后,免疫细胞形成抗炎细胞因子为机体提供第二道防线。因此,肠道菌群影响促炎和抗炎细胞因子的产生,并通过循环系统向大脑传递信号[22]。
迷走神经与肠-脑轴信号转导密切相关,是肠道和大脑之间的主要沟通方式。迷走神经切断术通常用于治疗消化性溃疡病,已有研究[23]表明其与降低患帕金森病的风险有关。相反,临床研究中鼠李糖乳杆菌的许多有益作用在迷走神经切断术后消失,刺激迷走神经可用于抗抑郁治疗[24]。近年来,利用光遗传学刺激迷走神经,能产生许多自主效应,进而引起器官的生理反应。研究[25]表明,对抗抑郁药物没有反应的患者在接受光遗传学刺激迷走神经辅助干预8周后,抑郁和焦虑症状较对照组明显减轻。
4 MDD对肠道菌群的影响近年来,越来越多的研究表明MDD患者肠道菌群组分发生改变,大多数“抑郁菌群”的研究显示抑郁患者和健康对照者之间肠道菌群组分存在差异,整个肠道菌群结构发生了变化,而不是单个物种的丰富度改变。
最近研究[26]报告了肠易激综合征(irritable bowel syndrome,IBS)、MDD和IBS/MDD共病患者之间相似的益生菌特征。其中80%MDD患者和85%IBS患者特点是细菌多样性较低,类杆菌或普雷沃菌属的代表性扩大,结肠炎症增加。IBS/MDD共病患者组显示相对平衡的肠道菌群组成,免疫激活不明显。JIANG等[27]在一项队列研究中报告了活动期MDD患者的细菌多样性,显示活动期MDD患者体内拟杆菌和变形菌增多,而厚壁菌减少。其中,变形菌中的爱丽斯普思菌种是一种吲哚阳性菌种,可以影响色氨酸代谢,也可能会干扰肠道内5-HT代谢,使抑郁症患者肠道内丰度增加[28]。色氨酸主要代谢途径在肠道菌群的直接或间接控制下产生5-HT、犬尿氨酸和吲哚衍生物[29-31]。研究[28]显示,炎症性肠病、IBS、糖尿病、肥胖、非酒精性脂肪肝、动脉粥样硬化、焦虑、抑郁和自闭症都会受到色氨酸代谢终产物的影响,表明微生物群的影响至少部分由色氨酸代谢受损引起。另有研究[32-33]发现爱丽斯普思菌种在慢性疲劳综合征和IBS患者中增多,而慢性疲劳综合征患者往往伴有抑郁症状。ZHENG等[34]研究肠道菌群组成时发现,MDD患者类杆菌门减少、放线菌门和厚壁菌门增加。而将MDD患者粪便肠道菌群移植到无菌小鼠和接受“抑郁肠道菌群”小鼠身上则表现出焦虑和抑郁样行为,表明抑郁表型是通过肠道菌群传播的。可见,MDD可以使肠道菌群发生改变。然而,还需要考虑饮食和药物治疗等因素影响,进而明确MDD对肠道菌群的作用。
5 与肠道菌群相关的MDD治疗肠道菌群失调可诱发多种生理和心理疾病,这些疾病治疗可通过恢复肠道菌群来完成。恢复正常肠道菌群的有效方法有益生菌、健康饮食和粪菌移植。
5.1 益生菌益生菌是产生有益健康的肠道细菌,临床和动物实验研究都表明补充益生菌可以缓解抑郁症状,甚至达到与传统抗抑郁治疗相似的效果。一项双盲、随机、对照的研究[35]显示服用益生菌能够减轻患者的抑郁和焦虑症状,改善患者的认知和新陈代谢。动物研究[36]表明精神生物学的抗抑郁作用与肠-脑轴的调节密切相关。已报道的具有治疗作用益生菌主要为乳酸菌,包括干酪乳杆菌、瑞士乳杆菌和双歧杆菌[37]。
5.2 健康饮食健康饮食是通过增加肠道微生物群的多样性和稳定性来改善健康状态的[38]。抑郁症状促使人们食用高糖和饱和脂肪食物而导致肠道菌群失调,并使抑郁症状加重。有研究[39]证明,高脂肪、高糖饮食会增加肠道通透性和促炎症信号。而富含纤维和短链脂肪酸的饮食可视为MDD的辅助治疗[40]。健康饮食可以刺激肠道中有益菌增殖并可能通过肠-脑轴来改善行为和认知。同样,不健康的饮食最近也被认为是导致抑郁症的重要因素[41]。
5.3 粪菌移植粪菌移植是将健康供体的粪便移植到受者肠道,以恢复受损肠道菌群[42]。有研究[43]表明将MDD患者的粪便菌群移植到菌群缺失的大鼠体内,可以诱导受体动物快感缺乏和类似焦虑的行为,并引起色氨酸代谢改变,表明肠道菌群可能在抑郁症的发展中发挥作用,并可能为抑郁症的治疗和预防提供一个可控制的靶点。尽管没有关于这种反向途径(健康供体获得MDD患者的粪菌移植)的研究调查,但是与肠道菌群相关的遗传性表明粪菌移植可能对治疗MDD有价值[44]。
综上所述,肠道菌群对中枢神经系统、免疫系统和行为具有调节作用,肠道菌群和MDD之间存在相互作用,肠道菌群失调可能与MDD的发病相关。因此进一步明确肠道菌群与MDD之间的关系对于MDD的预防、诊断和治疗具有重要意义。
| [1] |
PITSILLOU E, BRESNEHAN SM, KAGARAKIS EA, et al. The cellular and molecular basis of major depressive disorder: towards a unified model for understanding clinical depression[J]. Mol Biol Rep, 2020, 47(1): 753-770. DOI:10.1007/s11033-019-05129-3 |
| [2] |
CHESNEY E, GOODWIN GM, FAZEL S. Risks of all-cause and suicide mortality in mental disorders: a meta-review[J]. World Psychiatry, 2014, 13(2): 153-160. DOI:10.1002/wps.20128 |
| [3] |
PATEL M, WATSON AJM, RUSHBROOK S. A mechanistic insight into the role of gut microbiota in the pathogenesis of primary sclerosing cholangitis[J]. Gastroenterology, 2019, 157(6): 1686-1688. DOI:10.1053/j.gastro.2019.10.012 |
| [4] |
MIELE L, MARRONE G, LAURITANO C, et al. Gut-liver axis and microbiota in NAFLD: insight pathophysiology for novel therapeutic target[J]. Curr Pharm Des, 2013, 19(29): 5314-5324. DOI:10.2174/13816128130307 |
| [5] |
MARATHE SV, D'ALMEIDA PL, VIRMANI G, et al. Effects of monoamines and antidepressants on astrocyte physiology: implications for monoamine hypothesis of depression[J]. J Exp Neurosci, 2018, 12: 1179069518789149. DOI:10.1177/1179069518789149 |
| [6] |
CORBINEAU S, BRETON M, MIALET-PEREZ J, et al. Major depression and heart failure: interest of monoamine oxidase inhibitors[J]. Int J Cardiol, 2017, 247: 1-6. DOI:10.1016/j.ijcard.2017.07.005 |
| [7] |
DELL'OSSO L, CARMASSI C, MUCCI F, et al. Depression, serotonin and tryptophan[J]. Curr Pharm Des, 2016, 22(8): 949-954. DOI:10.2174/1381612822666151214104826 |
| [8] |
THOMAS SJ, SHIN M, MCINNIS MG, et al. Combination therapy with monoamine oxidase inhibitors and other antidepressants or stimulants: strategies for the management of treatment-resistant depression[J]. Pharmacotherapy, 2015, 35(4): 433-449. DOI:10.1002/phar.1576 |
| [9] |
RÉUS GZ, ABELAIRA HM, TUON T, et al. Glutamatergic NMDA receptor as therapeutic target for depression[J]. Adv Protein Chem Struct Biol, 2016, 103: 169-202. DOI:10.1016/bs.apcsb.2015.10.003 |
| [10] |
CRUPI R, MARINO A, CUZZOCREA S. New therapeutic strategy for mood disorders[J]. Curr Med Chem, 2011, 18(28): 4284-4298. DOI:10.2174/092986711797200417 |
| [11] |
SOMMER F, BÄCKHED F. The gut microbiota: masters of host development and physiology[J]. Nat Rev Microbiol, 2013, 11(4): 227-238. DOI:10.1038/nrmicro2974 |
| [12] |
SHANAHAN F. The colonic microbiota in health and disease[J]. Curr Opin Gastroenterol, 2013, 29(1): 49-54. DOI:10.1097/mog.0b013e32835a3493 |
| [13] |
CAPUTI V, GIRON M. Microbiome-gut-brain axis and toll-like receptors in Parkinson's disease[J]. Int J Mol Sci, 2018, 19(6): 1689. DOI:10.3390/ijms19061689 |
| [14] |
SUDO N. Microbiome, HPA axis and production of endocrine hormones in the gut[J]. Adv Exp Med Biol, 2014, 817: 177-194. DOI:10.1007/978-1-4939-0897-4_8 |
| [15] |
GHAISAS S, MAHER J, KANTHASAMY A. Gut microbiome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases[J]. Pharmacol Ther, 2016, 158: 52-62. DOI:10.1016/j.pharmthera.2015.11.012 |
| [16] |
HOUSEHAM AM, PETERSON CT, MILLS PJ, et al. The effects of stress and meditation on the immune system, human microbiota, and epigenetics[J]. Adv Mind Body Med, 2017, 31(4): 10-25. |
| [17] |
APPLETON J. The gut-brain axis: influence of microbiota on mood and mental health[J]. Integr Med (Encinitas), 2018, 17(4): 28-32. |
| [18] |
ZYOUD SH, SMALE S, WARING WS, et al. Global research trends in microbiome-gut-brain axis during 2009-2018:a bibliometric and visualized study[J]. BMC Gastroenterol, 2019, 19(1): 158. DOI:10.1186/s12876-019-1076-z |
| [19] |
SARKAR A, LEHTO SM, HARTY S, et al. Psychobiotics and the manipulation of bacteria-gut-brain signals[J]. Trends Neurosci, 2016, 39(11): 763-781. DOI:10.1016/j.tins.2016.09.002 |
| [20] |
KENNEDY PJ, CRYAN JF, DINAN TG, et al. Kynurenine pathway metabolism and the microbiota-gut-brain axis[J]. Neuropharmacology, 2017, 112(pt B): 399-412. DOI:10.1016/j.neuropharm.2016.07.002 |
| [21] |
YIU JH, DORWEILER B, WOO CW. Interaction between gut microbiota and toll-like receptor: from immunity to metabolism[J]. J Mol Med (Berl), 2017, 95(1): 13-20. DOI:10.1007/s00109-016-1474-4 |
| [22] |
VANUYTSEL T, VAN WANROOY S, VANHEEL H, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism[J]. Gut, 2014, 63(8): 1293-1299. DOI:10.1136/gutjnl-2013-305690 |
| [23] |
SVENSSON E, HORVÁTH-PUHÓ E, THOMSEN RW, et al. Vagotomy and subsequent risk of Parkinson's disease[J]. Ann Neurol, 2015, 78(4): 522-529. DOI:10.1002/ana.24448 |
| [24] |
BRAVO JA, FORSYTHE P, CHEW MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve[J]. PNAS, 2011, 108(38): 16050-16055. DOI:10.1073/pnas.1102999108 |
| [25] |
BREIT S, KUPFERBERG A, ROGLER G, et al. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders[J]. Front Psychiatry, 2018, 9: 44. DOI:10.3389/fpsyt.2018.00044 |
| [26] |
LIU Y, ZHANG L, WANG X, et al. Similar fecal microbiota signatures in patients with diarrhea-predominant irritable bowel syndrome and patients with depression[J]. Clin Gastroenterol Hepatol, 2016, 14(11): 1602-1611. DOI:10.1016/j.cgh.2016.05.033 |
| [27] |
JIANG HY, LING ZX, ZHANG YH, et al. Altered fecal microbiota composition in patients with major depressive disorder[J]. Brain Behav Immun, 2015, 48: 186-194. DOI:10.1016/j.bbi.2015.03.016 |
| [28] |
NASERIBAFROUEI A, HESTAD K, AVERSHINA E, et al. Correlation between the human fecal microbiota and depression[J]. Neurogastroenterol Motil, 2014, 26(8): 1155-1162. DOI:10.1111/nmo.12378 |
| [29] |
ZELANTE T, IANNITTI RG, CUNHA C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22[J]. Immunity, 2013, 39(2): 372-385. DOI:10.1016/j.immuni.2013.08.003 |
| [30] |
CLARKE G, GRENHAM S, SCULLY P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner[J]. Mol Psychiatry, 2013, 18(6): 666-673. DOI:10.1038/mp.2012.77 |
| [31] |
YANO JM, YU K, DONALDSON GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161(2): 264-276. DOI:10.1016/j.cell.2015.02.047 |
| [32] |
FRÉMONT M, COOMANS D, MASSART S, et al. High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients[J]. Anaerobe, 2013, 22: 50-56. DOI:10.1016/j.anaerobe.2013.06.002 |
| [33] |
SAULNIER DM, RIEHLE K, MISTRETTA TA, et al. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome[J]. Gastroenterology, 2011, 141(5): 1782-1791. DOI:10.1053/j.gastro.2011.06.072 |
| [34] |
ZHENG P, ZENG B, ZHOU C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism[J]. Mol Psychiatry, 2016, 21(6): 786-796. DOI:10.1038/mp.2016.44 |
| [35] |
PIRBAGLOU M, KATZ J, DE SOUZA RJ, et al. Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials[J]. Nutr Res, 2016, 36(9): 889-898. DOI:10.1016/j.nutres.2016.06.009 |
| [36] |
BHARWANI A, MIAN MF, SURETTE MG, et al. Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress[J]. BMC Med, 2017, 15(1): 7. DOI:10.1186/s12916-016-0771-7 |
| [37] |
ABILDGAARD A, ELFVING B, HOKLAND M, et al. Probiotic treatment reduces depressive-like behaviour in rats independently of diet[J]. Psychoneuroendocrinology, 2017, 79: 40-48. DOI:10.1016/j.psyneuen.2017.02.014 |
| [38] |
DAVID LA, MAURICE CF, CARMODY RN, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505(7484): 559-563. DOI:10.1038/nature12820 |
| [39] |
MURPHY T, DIAS GP, THURET S. Effects of diet on brain plasticity in animal and human studies: mind the gap[J]. Neural Plast, 2014, 2014: 563160. DOI:10.1155/2014/563160 |
| [40] |
MARTINEZ-MEDINA M, DENIZOT J, DREUX N, et al. Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonization[J]. Gut, 2014, 63(1): 116-124. DOI:10.1136/gutjnl-2012-304119 |
| [41] |
DASH S, CLARKE G, BERK M, et al. The gut microbiome and diet in psychiatry: focus on depression[J]. Curr Opin Psychiatry, 2015, 28(1): 1-6. DOI:10.1097/yco.0000000000000117 |
| [42] |
BORODY TJ, PARAMSOTHY S, AGRAWAL G. Fecal microbiota transplantation: indications, methods, evidence, and future directions[J]. Curr Gastroenterol Rep, 2013, 15(8): 337. DOI:10.1007/s11894-013-0337-1 |
| [43] |
KELLY JR, BORRE Y, O'BRIEN C, et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat[J]. J Psychiatr Res, 2016, 82: 109-118. DOI:10.1016/j.jpsychires.2016.07.019 |
| [44] |
EVRENSEL A, CEYLAN ME. Fecal microbiota transplantation and its usage in neuropsychiatric disorders[J]. Clin Psychopharmacol Neurosci, 2016, 14(3): 231-237. DOI:10.9758/cpn.2016.14.3.231 |
2022, Vol. 51



